用户名: 密码: 验证码:
大鼠在递增负荷游泳运动中体内有氧氧化向无氧代谢转变机制的初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长期以来一直认为,运动中体内糖代谢由有氧氧化向糖酵解转变的原因是缺氧造成的。当运动达到某一强度时,机体的吸氧量不能满足代谢需求时造成机体缺氧,糖酵解速率加快,乳酸大量堆积,因此认为缺氧是乳酸产生的原因,进而提出了无氧阈概念,然而近年来大量的实验数据表明乳酸增加时,体内并不存在缺氧现象,故对无氧阈产生的原因提出了质疑。
     本实验以大鼠为研究对象,建立大鼠递增负荷游泳的运动模型,确定大鼠乳酸拐点强度。在其乳酸拐点强度时,测定血乳酸、丙酮酸、PO_2等指标。在相同的运动条件下,向相对密闭的游泳圆筒中加入30%氧气,在其乳酸拐点强度时,测定上述各项指标。通过对比分析,重新认识有氧氧化向无氧代谢转变的动因,即在体内不缺氧条件下丙酮酸向乳酸转变的动因,为代谢转变机制的新假说提供实验依据。
     结果表明:(1)大鼠递增负荷游泳运动的血乳酸变化趋势与文献报道的人体血乳酸变化趋势相类似,这提示大鼠递增负荷游泳运动模型有意义。(2)补充氧气与乳酸拐点强度各项指标之间没有明显差异,结果提示代谢转变时与缺氧与否无关。(3)通过对安静时与代谢转变时血丙酮酸及血乳酸的测定分析,间接表明丙酮酸不易透过肌细胞膜,而乳酸可以自由通过,支持了丙酮酸快速转变成乳酸的作用是防止丙酮酸在胞浆内堆积,以保证糖酵解供能畅通的假说。
The reason of the aerobic oxidation to glycolysis is often taken as a sign of tissue hypoxia. When the exercise is reach some intensity, which inspired O2 is not need the metabolism in human body, which make the tissue hypoxia and accelerate the speed of glycolysis and accumulate the blood lactate. This thinking has led to the anaerobic threshold hypothesis, which links lactate generation in exercise muscle to an intracellular O2 limitation. It is well known that in human subjects lactate (LA)concentration in blood increase exponentially with exercise intensity, although anaerobiosis as a cause of the accelerated LA production has been questioned. There is recent controversy, however, on whether the lactate increasing during exercise relates at all to the adequacy of O2 availability for energy production in the exercising muscle.
    The objective of this study was to establish a model of swimming exercise with progressive intensities for rats, which in order to confirm the intensity of lactate threshold(LT); During graded incremental swimming exercise, blood was collected and investigate venous lactate concentration, venous pyruvate, venous PO2 at the intensity of LT, in order to discuss the reason of metabolism; The rats were submitted to an incremental swimming test in a relative pressurized cylinder tank, which full the 30% oxygen, which at the same intensity of LT, blood was collected and investigate venous lactate concentration, venous pyruvate, venous PO2, in order to discuss the relation between metabolism and oxygen of supply.
    Results show: (1) Our study clearly demonstrated that in rats, swimming with increasing intensity, changes in blood lactate show a pattern similar to that described in human subjects. So we can say the model is signification. (2) There is no significant difference lactate concentration and venous pyruvate and PO2, at break points and even given fraction of inspired O2 at break points. The lactate concentration is unrelated to PO2, and even given fraction of inspired O2 at break points, which explain there is no relation with oxygen when the aerobic oxidation to glycolysis. Even in full oxygen the aerobic oxidation also translate into glycolysis. (3) Aanalyse the venous pyruvate and lactate at rest and break point,which indirectly indicate the pyruvate can not
    
    
    
    permeat the muscle membrance,but lactate can do, which also prove the hypothsis that pyruvate translate into lactate in order to prevent accumulate in the cytosol, which assure the pathway of glycolysis is smooth, which assure the necessity of energy.
引文
[1]顾天爵主编 生物化学第四版[M].高等医药院校教材人民卫生出版社1995.
    [2]Brooks,G.A.Lactate shuttles in nature[J].Biocem.Soc.Trans. 2001;30: 258-264.
    [3]Brooks,G.A.The lactate shuttle during exercise and recovery[J].Med.Sci. Sports Exerc. 1986; 18:360-368.
    [4]Wasserman,K;Mcllroy, M.Detecting the threshold of anaerobic metabolism in cardiac patients during exercise[J].Am.J.Cardiol. 1964; 14:844-852.
    [5]Matsumruam,N.; Nisshijima,H.; Kojima, S.; Hashimoto, F.;Minami,M.; Yasuda,H. Determination of anaerobic threshold for assessment of functional state in patients with chronic heart failure[J].Cirvulaiton. 1983 ;68:360-367.
    [6]Weber K.T. Oxygen utilization and ventilation during exercise in patients with chronic cardiac failure[J].Circulation. 1982; 65:1213-1223.
    [7]Wasserman K, Whipp, B. J., Koyal, S. N. and Beaver, W. L. Anaerobic threshold and respiratory gas exchange during exercise[J].J. Appl.Physiol. 1973;35,236-243.
    [8]杨锡让等译.实用运动生理学[M].北京:人民体育出版社1984.
    [9]尹呤青 高强 有氧训练与无氧训练[J].中国运动医学杂志1985,4(2):115.
    [10]冯炜权 用物质和能量代谢的新知识提高训练效果[J].体育科学.2002,22(6):86.
    [11]冯连世等 运动员机能评定常用生理生化指标测试方法及应用[M].人民体育出版社2002.
    [12]Maughan RJ,et al.Aerobic capacity and fractional utilization of aerbic capacity in elite and non-elite male and female marathon runners[J].Eur J
    
    Appl Physiol. 1983;52:80.
    [13]Kindermann w, et al. The signeficance of the Aerobic-anaerobic transition for the determination of work load intensities during endurance training[J].Eur. J. Appl .Physiol. 1979;42:25.
    [14]王凤阳 关于无氧阈概念与机制的探讨[J].中国运动医学杂志.2002,21,(1):110-112.
    [15]Mader A & Heck H.A theory of metabolic origin of the anaerobic threshold[J].Intermational Journal of Spoart Medicine. 1986;7:45-65.
    [16]Brooks G.A, et al. Anaerobic threshold: review of the concept and directions for future research[J].Med Sci Sports Exercise. 1985;17:22.
    [17]Yeh MP, et al. Critical analysis of the "anaerobic threshold ": problems of determination and validation [J].J Appl Physiol. 1983;55:178.
    [18]Stengmann H, et al. Lactate kinetics and individual Anaerobic Threshold [J].Int J Sports Med. 1981;2:160-165.
    [19]许豪文主编 运动生物化学概论[M].高等教育出版社 2001.
    [20]冯美云 冯炜权 乳酸与运动能力[J].中国运动医学杂志.1985,4;179.
    [21]Mader A and Heck H. A theory of metabolic origin of the anaerobic threshold [J].Internation Jorunal of Sports Medicin 1986;7:45-65.
    [22]Brooks G A. Intra-and-extra cellular lactate shuttles[J].Medicine and science in sports and exercise 2003;2:790-799.
    [23]浦钧宗 无氧阈测定在耐力运动员的预测和评定能力的意义[J].中国运动医学杂志.1989,8(1)8-13.
    [24]Jones AM. Garter H The effect of endurance training on parameters of aerobic fitness sports [J].Medicine 2000;29:373-376.
    [25]Billat LA. Interval training for performance :Scientific and empirical pratice-special recommendations for middle and long-distance running Partl:aerobic interval training [J].Sports Medicine 2000;31:13-31.
    
    
    [26]Spencer MR., Gastin PB. Energy System Contribution during 200m to 1500m Running in Highly Trained Athletes[J].Med. Sci. Sports Exerc. 2001;33(1): 157-162.
    [27]Hermansen,L.In Human muscle fatigue: physiological mechanisms[J]. Ciba Foundation symposium 82 (Pitaman Medical, London ),pp.75-88; 1981.
    [28]Karlsson,J. Lactate and phosphagen concentrations in working muscle of man with special reference to oxygen deficit at the onset of work[J].Acta Physiol.Scand.Suppl. 1971 ;358,1-12.
    [29]Wasserman,K.William,L and Beaver, L.Mechanisms and patterns of blood lactate increase during exercise in man[J].Med.Sci.Sports.Exercise. 1986;18,344-352.
    [30]Katz,A,.and Sahlin,K. Regulation of lactic acid production during exercise [J]J.Appl.Physiol. 1988;65,509-518.
    [31]Wasserman, K. The anaerobic threshold measurement to evaluate exercise performance[J].Am.Rev. Respir, Dis. 129, suppl.S35-S40; 1984.
    [32]冯炜权 冯美云 乳酸与运动能力[J].中国运动医学杂志.1887,6(3):157-160.
    [33]Connett, R.J.,T.E.J.Gayeski,and C.R.Honig.Lcatate accumulation in full aerobic, working,dog gracilis muscle[J].Am.J.Physiol. 1984;246: H120-H128.
    [34]Connett, R.J.,C.R.Honig, T.E.J.,Gayeski,and G.A.Brooks.Defing hypoxia: a systems view of VO_2, glycolysis, energetics and intracellular PO2 [J].J. Appl, Physiol. 1990;68:833-842.
    [35]Jobsis,F.F and Stainsby, W.B. Oxidation of NADH during contractions of circulated mammalian skeletal muscle. Am. Respir[J].Physiol.1968;4, 292-300.
    [36]邢华城,无氧阈学说面临的挑战[J].中国运动医学杂志,1986,5(4):222.
    
    
    [37]Connett, R.T.,Gayeski, T. E. J. and Honing,C. R. Lactate accumulation in fully aerobic,working dog gracilis muscle[J].Am J Physiol. 1984;246, H120-H128.
    [38]Connett, R.T.,Gayeski, T. E. J. and Honing,C. R. Lactate production in a pure red muscle in absence of anoxia: mechanisms and significance[J].Adv. Exp. Med, Biol. 1983;159:327-335.
    [39]Connett, R.T.,Gayeski, T. E. J. and Honing,C. R. Energy sources in fully aerobic rest-work transitions: a new role for glycolysis[J].Am. J. Physiol. Heart Circ. Physiol. 1985:248,H922-H929.
    [40]Richardson, R. S., Noyszewski, E. A. Leigh, J. S. and Wagner, P. D. Lactate effiux from exercising human skeletal muscle: role of intracellular PO_2 [J].J. Appl. Physiol. 1998;85,627-634.
    [41]Brooks GA, et al Anaerobic threshold: review of the concept and directions for future research[J].Med Sci Sports Exercise. 1985; 17:22-31.
    [42]Srainsby W.N. Biochemical and physiological bases for lactate production[J].Med. Sci. Sports.Excerc. 1986; 18(3):341-345.
    [43]冯炜权 冯美云 王元勋主编 运动生物化学[M].高等教育出版社1998.
    [44]Brooks, G A., Dubouchaud, H., Brown, M., Sicurello, J. P. and Butz, C. E. Role of mitochondrial lactate dehydrogenase and lactate oxidation in the intracellular lactate shuttle[J].Proc.Natl.Acad.Sci, USA. 1999; 96, 1129-1134.
    [45]肖国强 著 运动能量代谢—关于有氧训练和无氧训练研究[M].人民体育出版社1997.
    [46]Gladden, L. B. in Handbook of Exercise. Section 12, Exercise: Regulation and Integration of Multiple Systems[J].Rowell,L.B. and Shepherd, J.T. (Oxford Univ. Press, London),pp. 614-648. 1996.
    [47]Gladden, L.B. Muscle as a consumer of lactate[J].Med.Sci.Sports Exercise 2000;32, 764-771.
    
    
    [48]Brooks,G. A., Brown,M. A., Butz, C. E., Sicurello, J. P. and Dubouchaud, H. Cardiac and skeletal muscle mitochondria have a monocarboxylate transporter MCT1 [J]J. Appl. Physiol. 1999;87, 1713-1718.
    [49]Kemper, W. E, Lindstedt, S. T., Hartxler, L. K., Hicks J.W. and Conley, K. E. Shaking up glycolysis: Sustained, high lactate flux during aerobic rattling[J].Proc. Natl. Acad. Sci. USA 2001 ;98:723-728.
    [50]Gladden, B. L. Lactate acid: New roles in a new millennium[J].Proc.Natl. Acad.Sci.USA.January 2001; 16:98(2)395-397.
    [51]Gobatto CA, Mello MAR, Sibuya CY, Azevedo JRM, Santos LA and Kokubun E.Maximal lactate steady state in rats submitted to swimming exercise[J].Comparative Biochemistry and Physiology. 2001;130:21-27.
    [52]李玉琳 运动生理学的动物实验[J].中国运动医学杂志1986,5(1):40-43.
    [53]朱全 浦钧宗 大鼠游泳训练在运动实验中的应用方法[J].中国运动医学杂志,1996,2:125-129.
    [54]Harri M and Kuuseld P.Is swimming exercise or cold exposure for rats ? [J].Acta Physiol Scannd. 1986; 126:189-197.
    [55]Voltarelli,E A. Gobatto,C.A.,de Mello, M.A. Determination of anaerobic threshold in rats using the lactate minimum test[J].Braz J Med Res. 2002 Nov:35(11);1389-1394.
    [56]Gobato CA,Mello MAR, Sibuys CY, Azevedo JRM, Santos LA and Kokubun E. Maximal lactate steady state in rats submitted to swimming exercise[J].Comparative Biochemistry and Physiology, 2001; 130:21-27.
    [57]Marcus, J. H., R. H. Ingram, J. R. and R.L. Mclean. The threshold of anaerobic metabolisn in chronic obstructive pulmonary disease, a promising index of evaluation[J].Am. Rev. Respir.Dis, 1971 ;104: 490-498.
    [58]Matsumura, N., H. Nishijima, S. Kojima, F. Hashimoto, M. Minami, and H. Yasuda. Determination of anaerobic threshold for assessment of functional
    
    state in patinents with chronic heart failure[J].Circulation 1983 ;68:360-367.
    [59]Kinderman, W., G. Simon, and J. Keul.The significance of the anaerobic threshold transition for the determination of work load intensities during endurance training [J].Eur. J. Appl. Physiol. Occup. Physiol. 1979;42: 25-34.
    [60]Kumagai, S., K. Tanaka, Y. Matsuura, A. Matsuxaka, K. Hirakoba. And K. Asano.Relationships of the anaerobic threshold with the 5kin, 10kin, and 10mile races [J].Eur.J. Appl. Physiol.Occup. Physiol. 1982;49:13-23.
    [61]Brooks, G. A., G E. Butterfield, R. R. Wolfe, et al. Increased dependence on blood glucose after acclimatization to 4,300m[J]J.Appl. Physiol. 1991;70:919-927.
    [62]Brooks, G. A., G. E. Butterfield, R. R. Wolfe, et al. Decreased reliance on lactate during exercise after acclimatization to 4,300m[J].J.Appl.Physiol. 1991;71:333-341.
    [63]Brooks, G. A., E. E. Wolfel, G. E. Butterfield, et al. Poor relationship between arterial [lactate] and leg net release during steady-rate exercise at 4,300m altitude[J].J. Appl. Physiol, 1988;275: R1192-R1201.
    [64]Roberts,A,C. ,G.E.Butterfield.J.T.Reeves.A.Cymerman,E.E.Woll fel,andG. A.Brooks.Altitude and b-blockade augment glucose utilization during submaximal exercise [J].J. Appl. Physiol. 1996; 80:606-615.
    [65]Roberts,A.C., E.Butterfield,A.Cymerman, J.T.Reeves,E.E. Wolfel, and G.A. Brooks.Acclimatization to 4,300m altitude decreses reliance on fat as a substrate[J].J.Appl. Physiol. 1996;81:1762-1771.
    [66]Stanley, W.C., J.A.W. Gertz, J.A.Wisneski, D.L.Morris, R.Neese, and G.A.Brooks. Systemic lactate turnover during graded exercise in man [J]. J.Physiol E59-62, 1985.
    [67]Pills W, Zarzeczny R, Langfort J, Kaciuba-Uscilko H, Nazar K and Wojtyna. Anaerobic threshold in rats[J].Compartive Biochemistry and Physiology. 106A: 285-289,1993.
    
    
    [68]Langfort J, Zarzeczny R, Pills W, Kaciuba-Uscilko H, Nazar K and Ports S.Effects of sustained hyperadrenalinemia on exercise performance and lactate and lactate threshold in rats[J].Compartive Biochemistry and Physiology. 114A:51-55,1996.
    [69]邓树勋,洪泰田,曹志发主编 运动生理学[M].高等教育出版社1999.
    [70]浦钧宗 对常人运动中达无氧阈时动脉血乳酸、丙酮酸等指标变化的探讨[J].中国运动医学杂志,1985,4(1):17-22.
    [71]徐国栋,骆清铭 运动时血乳酸与血红蛋白饱合度关系的研究[J].武汉体育学院,2001,35(3):40-42.
    [72]王荣辉等 递增负荷运动肌肉氧含量的变化[J].北京体育大学学报,2002,25(5):630-632.
    [73]曲绵域等主编,实用运动医学[M],北京科学技术出版社1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700