用户名: 密码: 验证码:
飞秒激光在透明玻璃及金属膜中制备光功能微结构
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着激光技术的发展,近些年飞秒激光技术作为一种新兴的技术也越来越完善。因为飞秒激光脉冲通过多光子吸收机制能够得到免损伤、高质量的结果,飞秒激光正在逐渐成为一种在各种材料中显微加工光功能结构的强有力工具,到目前为止,通过飞秒激光直扫技术及全息加工技术,已经有很多高质量的光功能器件被加工出来,比如光波导、微光栅、光子晶体、以及一些光学衍射元件等。在本论文中,我们提出了几种加工光功能微结构的方法。同时,也给出了有关飞秒激光脉冲与材料相互作用过程的全面物理解释。具体的细节工作被总结如下所示:
     丰富了激光与透明玻璃相互作用的理论。使用同源脉冲在材料表面相干的技术,我们在材料表面得到了不同的微结构。使用同源双脉冲相干,不但在硅酸盐玻璃表面得到周期符合理论计算公式d =λ/[2sin(θ/2)]的常规微光栅,还得到了一种周期是常规光栅一半的非常规光栅。这种非常规光栅的深度也基本上达到常规光栅的一半。这种非常规光栅形成在常规光栅的每一个凸起槽上,我们认为非常规光栅形成是由于飞秒激光在介质中产生了非线性效应,产生了二次谐波所造成的。
     我们还研究了同源三脉冲在硅酸盐玻璃表面相干方面的实验,得到了二维六边形分布的周期性微结构,我们使用原子力显微镜(AFM)对这种结构进行了分析,结果显示微结构的周期与推导公式计算的结果符合得很好。使用400nm的激光直射到这个微结构上,得到的衍射结果显示出这种结构可以作为光束分束器,并且,一级衍射效率达到16.42%。当激光脉冲能量改变时,所形成的微结构的形貌也发生了改变。当脉冲能量比较高的时候,二维周期性微孔将会形成在玻璃样品的表面,然而,当脉冲能量比较低时,二维周期性中空薄圆台结构将会形成在样品表面。我们建立了一套理论模型来解释这种实验结果,这种所形成的微结构形貌随激光脉冲能量的变化是由于光压对等离子体的作用机制及激光熔融材料的马朗戈尼效应机制的共同作用的结果。
     提出一种实现光学涡旋的新方法,并实现光子轨道角动量叠加。提出了一种通过利用飞秒激光在硅酸盐玻璃中直写计算全息图的全新的方法,实现光学涡旋。这种通过飞秒激光诱导玻璃体内产生微爆的方法,不需要任何的材料预、后处理能够把光涡旋的计算全息图直写入透明玻璃体内。使用一束准直的He-Ne激光斜入射到所加工的计算全息图上,再现出了包括透射与反射衍射模式的光涡旋,总的衍射效率也达到了4.79%。
     提出一种利用飞秒激光脉冲在硅酸盐玻璃中加工组合计算全息图的新方法去实现光子轨道角动量的叠加。首先,我们先得到两个涡旋的计算全息图,再把他们按照设定的方式组合起来得到组合计算全息图。然后,利用飞秒激光脉冲把组合计算全息图直接写入到玻璃中。再使用一准直的He-Ne激光直射到组合计算全息图上,我们得到了携带不同拓扑荷的涡旋光束(包括一些新的拓扑荷)。对于新拓扑荷的产生,我们也给出了理论、实验解释。
     在金属膜上实现了计算全息光存储。从理论、实验上研究了飞秒激光与金属膜之间的相互作用。在飞秒脉冲与金膜相互作用的时候,金属膜上所形成的微结构形貌随着激光脉冲能量的变化而变化,当激光脉冲能量比较大的时候,能够得到金属膜上的烧蚀孔,然而,当激光脉冲的能量足够小的时候,我们在金属膜上得到了纳米锥结构。当飞秒脉冲与铝膜相互作用的时候,我们不仅在铝膜上得到烧蚀孔,而且还在玻璃基底上形成了纳米级的微孔,这也许又将提供一种纳米加工的全新途径。
     借助于计算全息的方法,我们使用飞秒脉冲把光信息存储在金属膜上。首先在计算机上对一物光波进行傅立叶变换,然后使用迂回相位编码方法,对所得到的复振幅分布进行编码。使用飞秒激光选择性烧蚀技术,把所得到的具有定向单元的CGH直写到沉积在玻璃基底上的金属膜上。最后,使用一束准直的He-Ne激光,物光波被很忠实的再现出来。
     飞秒脉冲直写在透明玻璃体内制备体光栅。高能量的飞秒激光脉冲与透明材料相互作用可以在材料内部形成多次微爆,并且能够在玻璃体内形成一条长的折射率改变痕迹。我们研究了不同能量激光脉冲、不同数量激光脉冲与玻璃相互作用所产生的微爆孔洞现象。当激光脉冲的能量达到20μJ的时候,激光脉冲在玻璃体内的作用痕迹长度基本上达到160μm,这为体光栅的加工提供了一种可能。我们研究了不同激光脉冲能量、不同激光扫描速度情况下所加工的光栅的衍射效率的变化,并在理论上解释了导致光栅衍射效率变化的物理机制。
With the developments of the laser technology, femtosecond laser technologyis also becoming more and more consummate as a novel technology in recent years.Femtosecond laser pulse is a powerful tool for microfabrication and micro-machiningof various multi-functional structures in dielectric materials through multi-photon ab-sorption because of its high-quality and damage-free processing. Up to now, manyhigh-quality material processing techniques have been achieved by using femtosec-ond laser pulses with the methods of directly writing and holographic fabrication,such as waveguide, micro-gratings, photonic crystals and diffractive optical elements(DOE). In this dissertation, we propose several methods for fabrication of the photicfunctional microstructures. we also give a full and accurate theoretic interpretation forthe interactions between the femtosecond laser pulses and the materials. The researchwork has been summarized in detail as follows.
     improve the theory of the interaction between the laser and the transparentglass. Different periodic structures are attained on the surface of the transparent glassby a single shot of two or three pulses. When a single shot of two pulses interferedwith each other, not only did we get the ordinary grating whose periods accordedwith the theoretic equation d =λ/[2sin(θ/2)], but also obtained the extraordinarygrating whose period is a half of the ordinary grating. The depth of the extraordinarygrating is a half of the ordinary grating’s. The extraordinary grating formed at themiddle of each bulge of the ordinary grating and was attributed to the higher-ordermodulation arising from second-harmonic generation (SHG) of the femtosecond laserpulse incident to the surface of silica glass.
     When a single shot of three pulses interfered with each other, the two-dimensional periodic microstructure have been obtained, which distributed as a hexag-onal lattice. We also analyzed the microstructure by atomic force microscopy(AFM),and the analyzed results showed that the period accorded with the calculated result bythe equation very well. Diffraction pattern of the microstructure has been observedwith a laser beam at wavelength of 400 nm. The experimental results show that thefabricated microstructure can be utilized as a multi-beam-splitter. And the first order diffraction efficiency is up to 16.42% nearly. The morphology of the structures couldbe changed when the energy of the pulse was changed. The microvoid can be formedon the surface of the silica glass when the energy of the pulses is higher, on the otherhand, the orbicular platform of the microstructure can be observed. We propose anovel theoretic model to interpret the experimental results. The formation of the dif-ferent microstructures in our experiments can be attributed to the combined action oflight pressure to the induced plasma and the Marangoni effect to the molten liquid onthe surface of the bulk silica glass at different energy level of the pulse.
     Propose a novel method for generating optical vortex, and realize Super-position of orbit angular momentum of photons. We introduce a novel method togenerate the optical vortex with computer-generated hologram (CGH) fabricated in-side glass by femtosecond laser pulses. The CGH was directly written inside glass byfemtosecond laser pulses induced microexplosion without any pre- or post-treatmentof the material. We also realized the restructured optical vortex beams of both thetransmission and reflection pattern with high fidelity using a collimated He–Ne laserbeam. The total diffractive efficiency of both the transmission and reflection patternis about 4.79%.
     A novel method to realize the superposition of orbit angular momentum (OAM)of photons has been proposed by combined computer-generated hologram (CCGH)fabricated in silica glass with femtosecond laser pulses. Firstly, the two CGH of op-tical vortex (OV) were obtained and combined as a CCGH according to the design.Then the CCGH was directly written inside glass by femtosecond laser pulses. Thevortex beams with different vortex topological charges (including new topologicalcharges) have been restructured using a collimated He-Ne laser beam incidence to theCCGH normally. Theoretical and experimental explanations have been presented forthe generations of the new topological charges.
     Realize optical storage on the metal Film with the aid of the computer-generated hologram (CGH). The interaction between the femtosecond laser and themetal film has been studied in theoretic and experiment. When the femtosecond pulseinteracted with the Au film, the morphology of the ablated area is changing with theenergy of the pulse. If the energy of the pulse is large enough, we can get an ablatedvoid on the surface of the metal film. while the energy of the pulse is small enough,the nanocone could be attained on the surface of the metal film. When the femtosec- ond pulse interacted with the Al film, not only did we get the voids on the surface ofthe metal film, but we obtained the nanostructure on the surface of the substrate glass.It may offer a novel method for nanofabrication.
     Optical information has been stored on the metal film by femtosecond laserpulses with the aid of the computer-generated hologram (CGH). The Fourier transformof an object is performed by a computer, and then the resulted complex amplitude dis-tribution is encoded by the detour phase method. The resulted cell-oriented CGH isdirectly written on the metal film deposited on the glass substrate using near infraredfemtosecond laser by selective ablation. The object wave has also been restructuredwith high fidelity by using a collimated He-Ne laser beam.
     Fabricate volume grating in transparent glass by femtosecond laser pulsewriting directly. Femtosecond laser pulse with high energy could caused multiplemicroexplosion in the transparent materials, and there would be a relative long re-fracting index changing line formed in the direction of the pulse propagation. Theinteraction between the pulse with different energy or different number of the pulsesand the transparent glass have been studied, and we find different microexplosionviods array in the glass. When the energy of the pulse reaches to 20μJ, the refractingindex changing line arrive at 160μm. It could be used for fabrication of the volumegrating. The diffraction efficiency of the grating is changing with the fabricating con-dition which are different energy of pulse and different scanning velocity. We give aconcrete interpretation to the physical mechanism of the diffraction efficiency trans-formation.
引文
1 G. A. Mourou, C. P. J. Barty, M. D. Perry. Ultrahigh-intensity Lasers: Physicsof the Extreme on a Tabletop. [J]. Phys. Today. 1998, 22:22–28
    2 R. L. Fork, B. I. Greene, C. V. Shank. Generation of Optical Pulses ShorterThan 0.1 Psec by Colliding Pulse Mode Locking. Appl. Phys. Lett. 1981,38:671–672
    3 I. S. Ruddock, D. J. Bradley. Bandwidth-limited Subpicosecond Pulse Genera-tion in Mode-locked Cw Dye Lasers. Appl. Phys. Lett. 1976, 29:296–298
    4 R. L. Fork, B. I. Greene, and C. V. Shank. Generation of Optical Pulses ShorterThan 0.1 Psec by Colliding Pulse Mode Locking. Appl. Phys. Lett. 1981,31:671–673
    5 J. A. Valdmanis, R. L. Fork, J. P. Gordon. Generation of Optical Pulses as Shortas 27 Femtoseconds Directly from a Laser Balancing Self-phase Modulation,Group-velocity Dispersion, Saturable Absorption, and Saturable Gain. Opt.Lett. 1985, 10:131–133
    6 J. Goodberlet, J. Wang, J. G. Fujimoto, P. A. Schulz. Femtosecond PassivelyMode-locked Ti:al2o3 Laser with a Nonlinear External Cavity. Opt. Lett. 1989,14:1125–1127
    7 N. Sarukura, Y. Ishida, H. Nakano. Generation of 50-fsec Pulses from a Pulse-compressed, Cw, Passively Mode-locked Ti:sapphire Laser. Opt. Lett. 1991,16:153–155
    8 D. E. Spence, P. N. Kean, W. Sibbett. 60-fsec Pulse Generation from a Self-mode-locked Ti:sapphire Laser. Opt. Lett. 1991, 16(1):42–44
    9 A. Stingl, M. Lenzner, C. Spielmann, F. Krausz, R. Szipocs. Sub-10-fs Mirror-dispersion-controlled Ti:sapphire Laser. Opt. Lett. 1995, 20:602–604
    10 A. Kasper, K. J. Witte. 10-fs Pulse Generation from a Unidirectional Kerr-lensMode-locked Ti:sapphire Ring Laser. Opt. Lett. 1996, 21:360–362
    11 I. D. Jung, F. X. Krtner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, G.Zhang, U. Keller, V. Scheuer, M. Tilsch, T. Tschudi. Self-starting 6.5-fs Pulsesfrom a Tisapphire Laser. Opt. Lett. 1997, 22:1009–1011
    12 U. Morgner, F. X. Ka¨rtner, S. H. Cho, Y. Chen, H. A. Haus, J. G. Fujimoto, E.P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi. Sub-two-cycle Pulses froma Kerr-lens Mode-locked Ti:sapphire Laser. Opt. Lett. 1999, 24:411–413
    13 D. Strickland and G. Mourou. Compression of Amplified Chirped OpticalPulses. Opt. Comm. 1985, 56:219–221
    14 C. Spielinann. author. Laser Focus World. 1996, 32:13–13
    15 H. Zeng, C. Zhao, J. Qiu, Y. Yang, G. Chen. Preparation and Optical Propertiesof Silver Nanoparticles Induced by a Femtosecond Laser Irradiation. Journal ofCrystal Growth. 2007, 300:519–522
    16 S. Qu, Y. Zhang, H. Li, J. Qiu, C. Zhu. Nanosecond Nonlinear Absorptionin Au and Ag Nanoparticles Precipitated Glasses Induced by a FemtosecondLaser. Optical Materials. 2006, 28:259–265
    17 H. Zeng, J. Qiu, X. Jiang, S. Qu, C. Zhu, F. Gan. In?uence of FemtosecondLaser Irradiation and Heat Treatment on Precipitation of Silver Nanoparticlesin Glass. Chinese Physics Letters. 2003, 20:932–934
    18 H. Zeng, G. Chen, J. Qiu, X. Jiang, C. Zhu, F. Gan. Effect of Pbo on Precipi-tation of Laser-induced Gold Nanoparticles Inside Silicate Glasses. Journal ofNon-Crystalline Solids. 2008, 354:1155–1158
    19 H. Zeng, J. Qiu, S. Yuan, Y. Yang, G. Chen. Precipitation of Metallic Nanopar-ticles Inside Silicate Glasses by Femtosecond Laser Pulses. Ceramics Interna-tional. 2008, 34:605–608
    20 H. H. Huang, F. Q. Yan, Y. M. Kek, C. H. Chew, G. Q. Xu, W. Ji, P. S. Oh, S. H.Tang. Synthesis, Characterization, and Nonlinear Optical Properties of CopperNanoparticles. Langmuir. 1997, 13:172–175
    21 Y. Sun, J. E. Riggs, H. W. Rollins, R. Guduru. Strong Optical Limiting of Siver-containing Nanocrystalline Particles in Stable Suspensions. J. Phys. Chem. B.1999, 103:77–82
    22 S. Link, M. A. El-Sayed. Spectral Properties and Relaxation Dynamics of Sur-face Plasmon Electronic Oscillation in Gold and Silver Nanodots and Nanorods.J. Phys. Chem. B. 1999, 103:8410–8426
    23 R. G. Ispasoiu, L. Balogh, O. P. Varnavski, D. A. Tomalia, T. Goodson. LargeOptical Limiting from Novel Metal-dendrimer Nanocomposite Matericals. J.Am. Chem. Soc. 2000, 122:11005–11006
    24 L. Francois, M. Mostafavi, J. Belloni. Optical Limitation Induced by GoldClusters. 1. Size Effect. J. Phys. Chem. B. 2000, 104:6133–6137
    25 R. Philip, R. Kumar. Picosecond Optical Nonlinearity in Monolayer-protectedGold, Silver, and Gold-silver Alloy Nanoclusters. Phys. Rev. B. 2000,62:13160–13166
    26 M. Kerker. The Scattering of Light and Other Electromagnetic Radiation. Aca-demic Press, New York. 1969:85–101
    27 W. Hayes, R. Loudon. Scattering of Light by Crystals. Wiley. 1978:125–148
    28 Z. Guosheng, P. Fauchet, A. Siegman. Growth of Spontaneous Periodic SurfaceStructures on Solids During Laser Illumination. Phys. Rev. B. 1982, 26:5366–5381
    29 H. van Driel, J. Sipe, J. Young. Laser-induced Periodic Surface Structure onSolids: A Universal Phenomenon. Phys. Rev. Lett. 1982, 49:1955–1958
    30 J. Sipe, J. Young, J. Preston, H. van Driel. Laser-induced Periodic SurfaceStructure. I. Theory. Phys. Rev. B. 1983, 27:1141–1154
    31 S. Clark, D. Emmony. Ultraviolet-laser-induced Periodic Surface Structures.Phys. Rev. B. 1989, 40:2031–2041
    32 R. Wagner, J. Gottmann. Sub-wavelength Ripple Formation on Various Ma-terials Induced by Tightly Focused Femtosecond Laser Radiation. Journal ofPhysics Conference Series. 2007, 57:333–337
    33 N. Tsutsumi, A. Fujihara. Self-assembled Spontaneous Structures Induced by aPulsed Laser on a Surface of Azobenzene Polymer Film. J. Appl, Phys. 2007,101:033110
    34 A. Vorobyev, V. Makin, C. Guo. Periodic Ordering of Random Surface Nanos-tructures Induced by Femtosecond Laser Pulses on Metals. J. Appl, Phys. 2007,101(3):034903
    35 A. Vorobyev, C. Guo. Colorizing Metals with Femtosecond Laser Pulses. Appl.Phys. Lett. 2008, 92:041914
    36 Q. Zhao, S. Malzer, and L. Wang. Formation of Subwavelength PeriodicStructures on Tungsten Induced by Ultrashort Laser Pulses. Opt. Lett. 2007,32:1932–1934
    37 D. Wilkinson, H. Haugen, J. Preston, A. Weck, T. Crawford. Ripple FormationDuring Deep Hole Drilling in Copper with Ultrashort Laser Pulses. Appl. Phys.Lett. 2007, 89:1001
    38 A. Borowiec, H. Haugen. Subwavelength Ripple Formation on the Surfaces ofCompound Semiconductors Irradiated with Femtosecond Laser Pulses. Appl.Phys. Lett. 2003, 13(6):4462–4464
    39 T. Crawford, A. Borowiec, H. Haugen. Femtosecond Laser Micromachining ofGrooves in Silicon with 800 Nm Pulses. Appl. Phys. A. 2005, 80:1717–1724
    40 B. Tan, K. Venkatakrishnan. A Femtosecond Laser-induced Periodical SurfaceStructure on Crystalline Silicon. J. Micromech. Microeng. 2006, 16:1080–1085
    41 Y. Shimotsuma, P. Kazansky, J. Qiu, and K. Hirao. Self-organized Nanograt-ings in Glass Irradiated by Ultrashort Light Pulses. Phys. Rev. Lett. 2003,91:247405
    42 S. Kanehira, J. Si, J. Qiu, K. Fujita, K. Hirao. Periodic Nanovoid Structures ViaFemtosecond Laser Irradiation. Nano. Lett. 2005, 5:1591–1595
    43 Y. Dai, X. Hu, J. Song, B. Yu and J. Qiu. Self-assembled Quasi-periodic Voidsin Glass Induced by a Tightly Focused Femtosecond Laser. Chin. Phys. Lett.2007, 24:1941–1944
    44 K. Miura, J. Qiu, T. Mitsuyu, and K. Hirao. Space-selective Growth ofFrequency-conversion Crystals in Glasses with Ultrashort Infrared Laser Pulses.Opt. Lett. 2000, 25:408–410
    45 Y. Yonesaki, K. Miura, R. Araki, K. Fujita, and K. Hirao. Space-selective Pre-cipitation of Non-linear Optical Crystals Inside Silicate Glasses Using Near-infrared Femtosecond Laser. J. Non-Cryst. Solids. 2005, 351:885–892
    46 B. Zhu, Y. Dai, H. Ma, S. Zhang, G. Lin, and J. Qiu. Femtosecond LaserInduced Space-selective Precipitation of Nonlinear Optical Crystals in Rare-earth-doped Glasses. Opt. Express. 2007, 15:6069–6074
    47 Y. Dai, H. Ma, B. Lu, B. Yu, B. Zhu, and J. Qiu. Femtosecond Laser-inducedOriented Precipitation of Ba2TiGe2O8 Crystals in Glass. Opt. Express. 2008,16:3912–3917
    48 Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, S. Cao, and B. Yu. Direct WritingThree-dimensional Ba2TiSi2O8 Crystalline Pattern in Glass with UltrashortPulse Laser. Appl. Phys. Lett. 2007, 90:181109
    49 T. Her, R. Finlay, C. Wu, S. Deliwala, and E. Mazur. Microstructuring of Siliconwith Femtosecond Laser Pulses. Appl. Phys. Lett. 1998, 73:1673–1675
    50 F. Sa′nchez, J. Morenza, and V. Trtik. Characterization of the ProgressiveGrowth of Columns by Excimer Laser Irradiation of Silicon. Appl. Phys. Lett.1999, 75:3303–3305
    51 Y. Nakata, T. Okada, and M. Maeda. Nano-sized Hollow Bump Array Gener-ated by Single Femtosecond Laser Pulse. Jpn. J. Appl. Phys. 2003, 42:L1452–L1454
    52 J. Koch, F. Korte, T. Bauer, C. Fallnich, A. Ostendorf, B. Chichkov. Nanotex-turing of Gold Films by Femtosecond Laser-induced Melt Dynamics. Appl.Phys. A. 2005, 81:325–328
    53 Y. Meshcheryakov, N. Bulgakova. Thermoelastic Modeling of Microbump andNanojet Formation on Nanosize Gold Films under Femtosecond Laser Irradia-tion. Appl. Phys. A. 2006, 82:363–368
    54 J. Si, J. Qiu, J. Zhai, Y, Shen, K. Hirao. Photoinduced Permanent GratingsInside Bulk Azodye-doped Polymers by the Coherent Field of AfemtosecondLaser. Appl. Phys. Lett. 2002, 80:359–361
    55 S. Katayama, N. Tsutsumi, T. Nakamura, M. Horiike, and K. Hirao. Femtosec-ond Laser Induced Crystallization and Permanent Relief Grating Structures inAmorphous Inorganic Films. Appl. Phys. Lett. 2002, 81:832–834
    56 G. Qian, J. Guo, M. Wang, J. Si, J. Qiu, and K. Hirao. Holographic VolumeGratings in Bulk Peylene-orange-doped Hybrid Inorganic-organic Materials bythe Coherent Field of a Femtosecond Laser. Appl. Phys. Lett. 2003, 83:2327–2329
    57 J. Qiu, J. Si, and K. Hirao. Photoinduced Stable Second-harmonic Generationin Chalcogenide Glasses. Opt. Lett. 2001, 26:914–916
    58 K. Kawamura, T. Ogawa, N. Sarukura, M. Hirano, and H. Hosono. Fabricationof Surface Relief Gratings on Transparent Dielectric Materials by Two-beamHolographic Method Using Infrared Femtosecond Laser Pulses. Appl. Phys. B.2001, 71:119–121
    59 K. Kawamura, N. Sarukura, M. Hirano, N. Ito, and H. Hosono. Periodic Nanos-tructure Array in Crossed Holographic Gratings on Silica Glass by Two Inter-fered Infrared-femtosecond Laser Pulses. Appl. Phys. Lett. 2001, 79(9):1228–1230
    60 K. Kawamura, M. Hirano, T. Kamiya, and H. Hosono. Holographic Writingof Volume-type Microgratings in Silica Glass by a Single Chirped Laser Pulse.Appl. Phys. Lett. 2002, 81(6):1137–1139
    61 S. Qu, J. Qiu, and C. Zhao, X. Jiang, H. Zeng, C. Zhu, and K. Hirao. MetalNanoparticle Precipitation in Periodic Arrays in Au2O-doped Glasses by TwoInterfered Femtosecond Laser Pulses. Appl. Phys. Lett. 2004, 84:2406–2408
    62 S. Qu, H. Zeng, C. Zhao, J. Qiu, C. Zhu. One-off Holographic Writing ofDouble-microgratings in Ag2O-doped Glass by a Single Femtosecond LaserPulse. Chem. Phys. Lett. 2004, 384:382–385
    63 S. Qu, C. Zhao, X. Jiang, G. fang, Y. Gao, H. Zeng, Y. Song, J. Qiu, C. Zhu, K.Hirao. Optical Nonlinearities of Space Selectively Precipitated Au Nanoparti-cles Inside Glasses. Chem. Phys. Lett. 2003, 368:352–358
    64 S. Qu, C. Zhao, Q. Zhao, J. Qiu, C. Zhu, and K. Hirao. One-off Writing ofMulti-microgratings on Glass by Two Interfered Femtosecond Laser Pulses.Opt. Lett. 2004, 29:2058–2060
    65 L. Cai, X. Yang, and Y. Wang. All Fourteen Bravais Lattices can Be Formed byInterference of Four Noncoplanar Beams. Opt. Lett. 2002, 27:900–902
    66 L. Cai, X. Yang, and Y. Wang. Formation of Three-dimensional Periodic Mi-crostructures by Interference of Four Noncoplanar Beams. J. Opt. Soc. Am. A.2002, 19:2238–2244
    67 T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa. Femtosecond Laser In-terference Technique with Diffractive Beam Splitter for Fabrication of Three-dimensional Photonic Crystals. Appl. Phys. Lett. 2001, 79:725–727
    68 T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis and H. Misawa. MultiphotonFabrication of Periodic Structures by Multibeam Interference of FemtosecondPulses. Appl. Phys. Lett. 2004, 82(17):2758–2760
    69 J. Guo, J. Si, G. Qian, B. Hua, Z. Wang, J. Qiu. Hybrid Silica Gel Glasses withFemtosecond Optical Kerr Effect Based on Phthalocyanine. Chem. Phys. Lett.2006, 431:332–336
    70 J. Si, Z. Meng, S. Kanehira, J. Qiu, B. Hua, K. Hirao. Multiphoton-inducedPeriodic Microstructures Inside Bulk Azodye-doped Polymers by MultibeamLaser Interference. Chem. Phys. Lett. 2004, 399:276–279
    71 J. Guo, J. Si, G. Qian, B. Hua, J. Qiu, M. Wang, K. Hirao. Multiphoton-inducedTwo-dimensional Microstructures in Dye-doped Bulk Materials by Four-beamInterference of Femtosecond Pulses. Chem. Phys. Lett. 2006, 424:189–192
    72 S. Katayama, M. Horiike, K. Hirao, N. Tsutsumi. Structure Induced by Irra-diation of Femtosecond Laser Pulse in Dyed Polymeric Materials. J. PolymerScience: Part B: Polymer Physics. 2002, 40:2800–2806
    73 S. Katayama, M. Horiike, and K. Hirao, N. Tsutsumi. Diffraction Measure-ment of Grating Structure Induced by Irradiation of Femtosecond Laser Pulsein Acrylate Block Coplymers. Jpn. J. Appl. Phys. 2002, 41:2155–2162
    74 Y. Li, Y. Dou, R. An, H. Yang, and Q. Gong. Permanent Computer-generatedHolograms Embedded in Glass by Femtosecond Laser Pulses. Opt. Express.2005, 13(7):2433–2438
    75 Q. Zhao, J. Qiu, X. Jiang, E. Dai, C. Zhou and C. Zhu. Direct WritingComputer-generated Holograms on Metal Film by an Infrared FemtosecondLaser. Opt. Express. 2005, 13:2089–2092
    76 R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi,H. Bookey, R. Thomson, N. Psaila, A. Kar. Femtosecond Laser Writing ofWaveguides in Periodically Poled Lithium Niobate Preserving the NonlinearCoefficient. Appl. Phys. Lett. 2007, 90:241107
    77 D. McPhail, M. Straub, M. Gu. Optical Tuning of Three-dimensional PhotonicCrystals Fabricated by Femtosecond Direct Writing. Appl. Phys. Lett. 2005,87:091117
    78 X.Wang, J. Xu, J. Lee, Y. Pang, W. Tam, C. Chan, P. Sheng. Realization ofOptical Periodic Quasicrystals Using Holographic Lithography. Appl. Phys.Lett. 2006, 88(5):051901
    79 Y. Wang. Fabrication and Characterization of Metallic Quasi-periodic Struc-tures. Opt. Express. 2008, 16(2):1090–1095
    80 W. Tam. Woodpile and Diamond Structures by Optical Interference Hologra-phy. J. Opt. A: Pure Appl. Opt. 2007, 9(11):1076–1081
    81 W. Mao, G. Liang, H. Zou, R. Zhang, H. Wang, Z. Zeng. Design and Fabrica-tion of Two-dimensional Holographic Photonic Quasi Crystals with High-orderSymmetries. J. Opt. Soc. Am. B. 2006, 23(10):2046–2050
    82 N. Lai, J. Lin, Y. Huang, C. Hsu,. Fabrication of Two- and Three-dimensionalQuasi-periodic Structures with 12-fold Symmetry by Interference Technique.Opt. Express. 2006, 14(22):10746–10752
    83 P. Sprangle, E. Esarey, A. Ting. Nonlinear Interaction of Intense Laser Pulsesin Plasmas. Phys. Rev. A. 1990, 41(8):4463–4469
    84 Y. Shen. The Principles of Nonlinear Optics. Wiley, New York. 2003:553–560
    85 D. Von der Linde, H. Schulz, T. Engers and H. Schuler. Second HarmonicGeneration in Plasmas Produced by Intense Femtosecond Laser Pulses. IEEEJ. Quantum Electron. 1992, 28(10):2388–2397
    86 U. Osterberg, W. Margulis. Dye Laser Pumped by Nd:yag Laser Pulses Fre-quency Doubled in a Glass Optical Fiber. Opt. Lett. 1986, 11(8):516–518
    87 S. Juodkazis, H. Misawa, T. Hashimoto, E. Gamaly, B. Luther-Davies. Laser-induced Microexplosion Confined in a Bulk of Silica: Formation of Nanovoids.Appl. Phys. Lett. 2006, 88(20):201909
    88 Y. Lu, S. Theppakuttai, S. Chen. Marangoni Effect in Nanosphere-enhancedLaser Nanopatterning of Silicon. Appl. Phys. Lett. 2003, 82(23):4143–4145
    89 J. Eizenkop, I. Avrutsky, G. Auner, D. Georgiev, V. Chaudhary. Single PulseExcimer Laser Nanostructuring of Thin Silicon Films: Nanosharp Cones For-mation and a Heat Transfer Problem. J. Appl. Phys. 2007, 101(9):094301
    90 S. Huang, Z. Sun, B. Luk’yanchuk, M. Hong, L. Shi. Nanobump Arrays Fab-ricated by Laser Irradiation of Polystyrene Particle Layers on Silicon. Appl.Phys. Lett. 2005, 86:161911
    91 R. Piparia, E. W. Rothe, and R. J. Baird. Nanobumps on Silicon Created withPolystyrene Spheres and 248 Or 308nm Laser Pulses. Appl. Phys. Lett. 2006,89:223113
    92 S. Huang, Z. Sun, Y. Lu. Nanofabrication by Laser Irradiation of PolystyreneParticle Layers on Silicon. Nanotechnology. 2007, 18:025302
    93 J.F. Nye, M.V. Berry. Dislocation in Wave Trains. Proc. R. Soc. A. 1974,336:165–190
    94 D. Grier. A Revolution in Optical Manipulation. Nature. 2003, 424:810–816
    95 K. Svoboda, S. Block. Optical Trapping of Metallic Rayleigh Particles. Opt.Lett. 1994, 19(13):930–932
    96 A. Ashkin, J. Dziedzic, J. Bjorkholm, C. Steven . Observation of a Single-beam Gradient Force Optical Trap for Dielectric Particles. Opt. Lett. 1986,11(5):288–290
    97 N. Simpson, K. Dholakia, L. Allen, M. Padgett. Mechanical Equivalence ofSpin and Orbital Angular Momentum of Light: An Optical Spanner. Opt. Lett.1997, 22(1):52–54
    98 A. Desyatnikov, A. Sukhorukov, Y. Kivshar. Azimuthons: Spatially ModulatedVortex Solitons. Phys. Rev. Lett. 2005, 95:203904
    99 M. Beijersbergen, R. Coerwinkel, M. Kristensen, J. Woerdman. Helical-wavefront Laser Beams Produced with a Spiral Phaseplate. Opt. Comm. 2005,112(5):321–327
    100 J. Leach, E. Yao, M. Padgett. Observation of the Vortex Structure of a Non-integer Vortex Beam. New J. Phys. 2004, 6:71
    101 V. Bazhenov, M. Vasnetsov, M. Soskin. Laser Beams. with Screw Dislocationsin Their Wavefront. JETP Lett. 1990, 52:429–431
    102 N. Heckenberg, R. McDuff, C. Smith, A. White. Generation of Optical PhaseSingularities by Computer-generated Holograms. Opt. Lett. 1992, 17(3):221–223103 M. Beijersbergen, L. Allen, H. van der Veen and J. Woerdman. Astigmatic LaserMode Converters and Transfer of Orbital Angular Momentum. Opt. Comm.1993, 96(1):123–132
    104 E. Glezer , E. Mazur. Ultrafast Laser Driven Microexplosions in TransparentMaterials. Appl. Phys. Lett. 1997, 71(7):882–884
    105 E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies. Laser-matter Interaction in the Bulk of a Transparent Solid : Confined Microexplosionand Void Formation. Phys . Rev . B. 2006, 73(21):214101
    106 T. Jia , Z. Xu , X. Li. Microscopic Mechanisms of Ablation and Microma-chining of Dielectrics by Using Femtosecond Lasers. Appl. Phys. Lett. 2003,82(24):4382–4384
    107 Jackson. Classical Electrodynamics. NewYork: Wiley. 1962
    108 R. Beth. Mechanical Detection and Measurement of the Angular Momentumof Light. Phys. Rev. 1936, 50:115–125
    109 M. Friese, J. Enger, H. Rubinsztein-Dunlop, N. Heckenberg. Optical Angular-momentum Transfer to Trapped Absorbing Particles. Phys. Rev. A. 1996,54:1593–1596
    110 H. He, M. Friese, N. Heckenberg, H. Rubinsztein-Dunlop. Direct Observationof Transfer of Angular Momentum to Absorptive Particles from a Laser Beamwith a Phase Singularity. Phys. Rev. Lett. 1995, 75(5):826–829
    111 J. Courtial, D. Robertson, K. Dholakia, L. Allen, M. Padgett. Rotational Fre-quency Shift of a Light Beam. Phys. Rev. Lett. 1998, 81:4828–4830
    112 L. Allen, M. Beijersbergen, R. Spreeuw, J. Woerdman. Orbital Angular Mo-mentum of Light and the Transformation of Laguerre-gaussian Laser Modes.Phys. Rev. A. 1992, 45(11):8185–8189
    113 V. Mizeikis, H. Sun, A. Marcinkevicius, J. Nishii, S. Matsuo, S. Juodkazis, H.Misawa. Femtosecond Laser Micro-fabrication for Tailoring Photonic Crystalsin Resins and Silica. Journal of Photochemistry and Photobiology A:chemistry.2001, 145:41–47
    114 A. Vorobyev, V. Makin, C. Guo. Periodic Ordering of Random Surface Nanos-tructures Induced by Femtosecond Laser Pulses on Metals. J. Appl. Phys. 2007,101:034903
    115 A. Ruf, F. Dausinger. Interaction with Metals. Topics in Appl. Phys. 2004,96:105–114
    116 J. Kruger , W. Kautek. Ultrashort Pulse Laser Interaction with Dielectrics andPolymers. Adv. Polym. Sci. 2004, 168:247–289
    117 Y. Yao , H. Chen , W. Zhang. Time Scale Effects in Laser Material Removal: AReview. Int. J. Adv. Manuf. Technol. VOLUME =
    118 S. Nolte, C. Momma, H. Jacobs, A. Tu¨nnermann, B. Chichkov, B. Wellege-hausen, H. Welling. Ablation of Metals by Ultrashort Laser Pulses. J. Opt. Soc.Am. B. 1997, 14(10):2716–2722
    119 B. Hüttner, G. Rohr. On the Theory of Ps and Sub-ps Laser Pulse Interactionwith Metals I. Surface Temperature. Appl. Surf. Sci. 1996, 103(3):269–274
    120 J. Fujimoto, J. Liu, E. Ippen. Femtosecond Laser Interaction with MetallicTungsten and Nonequilibrium Electron and Lattice Temperatures. Phys. Rev.Lett. 1984, 53(19):1837–1840
    121 B. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tünnermann. Fem-tosecond, Picosecond, and Nanosecond Laser Ablation of Solids. Appl. Phys.A. 1996, 63(2):109–115
    122 Y. Nakata, T. Okada, M. Maeda. Nano-sized Hollow Bump Array Generated bySingle Femtosecond Laser Pulse. Jpn. J. Appl. Phys. 2003, 42:L1452–L1454
    123 J. Koch, F. Korte, T. Bauer, C. Fallnich, A. Ostendorf, B. Chichkov. Nanotex-turing of Gold Films by Femtosecond Laser-induced Melt Dynamics. Appl.Phys. A. 2005, 81:325–328
    124 F. Korte, J. Koch, B. Chichkov. Formation of Microbumps and Nanojets onGold Targets by Femtosecond Laser Pulses. Appl. Phys. A. 2004, 79:879–881
    125 J. Wang, C. Guo. Formation of Extraordinarily Uniform Periodic Structures onMetals Induced by Femtosecond Laser Pulses. J. Appl. Phys. 2006, 100:023511
    126 Y. Meshcheryakov, N. Bulgakova. Thermoelastic Modeling of Microbump andNanojet Formation on Nanosize Gold Films under Femtosecond Laser Irradia-tion. Appl. Phys. A. 2006, 82:363–368
    127 A. Lohmann, D. Paris. Binary Fraunhofer Holograms Generated by Computer.Appl. Opt. 1967, 6:1739–1786
    128 B. Brown, A. Lohmann. Computer-generated Binary Holograms. IBM J. Res.Develop. 1969, 13(11):160–167
    129苏显渝,李继陶.信息光学.科学出版社. 1999:159–180
    130何飞,程亚.飞秒激光微加工:激光精密加工领域的新前沿.中国激光.2007, 34(5):595–622
    131 X. Hu, Y. Dai, L. Yang, J. Song, C. Zhu, J. Qiu. Self-formation of QuasiperiodicVoid Structure in CaF2 Induced by Femtosecond Laser Irradiation. J. Appl.Phys. 2007, 101(2):023112
    132 X. Hu, B. Qian, P. Zhang, X. Wang, L. Su, J. Qiu, C. Zhu. Self-organized Mi-crovoid Array Perpendicular to the Femtosecond Laser Beam in CaF2 Crystals.LASER PHYS. LETT. 2008, 5(5):394–397
    133 W. Wagner, H. Haus, J. Marburger. Large-scale Self-trapping of Optical Beamsin the Paraxial Ray Approximation. Phys. Rev. 1968, 175(1):256–266
    134 K. Yamada, W. Watanabe, K. Kintaka, J. Nishii, K. Itoh. Fabrication of VolumeGrating Induced in Silica Glass by Femtosecond Laser. Proc. SPIE Int. Soc.Opt. Eng. 2003, 5063:474–477
    135 K. Yamada, W. Watanabe, K. Kintaka1, J. Nishii1, K. Itoh. Volume GratingInduced by a Self-trapped Long Filament of Femtosecond Laser Pulses in SilicaGlass. Jpn. J. Appl. Phys. 2003, 42:6916–6919
    136 Y. Li, W. Watanabe, K. Yamada, T. Shinagawa, K. Itoh, J. Nishii, Y. Jiang.Holographic Fabrication of Multiple Layers of Grating Inside Soda-lime Glasswith Femtosecond Laser Pulses. Appl. Phys. Lett. 2002, 80(9):1508–1510

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700