用户名: 密码: 验证码:
基于聚氨酯丙烯酸酯大单体的透明稀土高分子材料的构筑及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以聚氨酯丙烯酸酯大分子单体(MUA)及其聚合物(PUA)的合成研究为基础,在设计合成具有新颖结构的稀土配合物的同时,创造性的将稀土配合物引入到聚氨酯丙烯酸酯大单体的聚合体系中,构筑了一系列具有良好光致发光性能的透明稀土高分子材料,并对材料的结构、性能进行了详细的研究探讨。
     1.利用水热法和常规溶液反应法,设计合成了以下不同配体系列的九种稀土配合物:[Tb(C_(15)H_9O_2)_3(C_(10)H_8N_2)]_2 ( C_(15)H_9O_2 : 9-蒽甲酸; C_(10)H_8N_2 : 2,2-联吡啶)( 1 )、{[Sm(C_(16)H_8O_4)_2(H_2O)_2](C_7H_(10)N)(H_2O)_(1.75)}_∞(C_(16)H_8O_4:9,10-蒽二甲酸;C_7H_(10)N:质子化的2,6 -二甲基吡啶) ( 2 )、Eu(C_3H_3O_2)_3 ( C_3H_3O_2 :丙烯酸根) ( 3 )、[Eu(C_4H_3O_4)_2(H_2O)_7](C_4H_4O_4)(H_2O)(C_4H_3O_4:单质子化的马来酸,C_4H_4O_4:马来酸)(4)、[Eu_2(C_7H_4O_3)_2(C_7H_5O_3)_2(phen)_3](H_2O)0.5(C_7H_4O_3:羟基参与配位的邻羟基苯甲酸;C_7H_5O_3:羟基未参与配位的邻羟基苯甲酸;phen:邻菲咯啉)(5)、[La(C_7H_5O_3)_3(phen)(H_2O)]_2(phen)_2(C_7H_5O_3:间羟基苯甲酸;phen:邻菲咯啉)(6)、{[Eu(C_7H_5O_3)(C_7H_4O_3)(phen)_2](H_2O)}_∞(C_7H_5O_3:羟基未参与配位的间羟基苯甲酸;C_7H_4O_3:羟基参与配位的间羟基苯甲酸; phen:邻菲咯啉)(7)、[Eu(C_7H_6NO_2)_3(phen)]_2(C_7H_6NO_2:间氨基苯甲酸;phen:邻菲咯啉)(8)、[La_2(C_7H_6NO_2)4(NO_3)(H_2O)_2](C_7H_6NO_2:对氨基苯甲酸)(9)。通过X射线单晶衍射仪对配合物1、2、4、5、6、7、8共七种稀土配合物的单晶结构进行了解析。同时,对上述九种稀土配合物的结构和性能进行了研究表征。
     2.以合成的聚氨酯丙烯酸酯大分子单体(MUA)为基础,在大单体MUA均聚制备聚合物PUA的过程中,将所合成的稀土配合物引入到MUA的聚合体系中,建立了稀土配合物/大单体原位聚合制备掺杂型稀土聚合物材料的新方法。本文第二章利用该方法分别制备了含稀土配合物1、配合物2的掺杂型稀土聚合物材料RE/PUA,并对材料的结构、性能进行了详细探讨。结果发现,该类掺杂型稀土聚合物材料具有良好的荧光性能,但随着配合物的加入,严重影响了PUA基体材料的透明性,这也是掺杂法制备稀土聚合物材料本身无法回避的缺陷。
     3.以聚氨酯丙烯酸酯大分子单体(MUA)为基础,将所合成的含活性-C=C官能团的稀土配合物引入到MUA的聚合体系中,通过大单体MUA与配合物中的-C=C双键共聚,建立了稀土配合物—大单体原位共聚合制备键合型稀土聚合物材料的新方法。本文第三章利用该方法分别制备了配合物3、配合物4与大单体MUA共聚的键合型稀土聚合物RE-PUA,并对共聚物材料的结构、性能进行了探讨。结果发现,该类键合型稀土聚合物材料在具有稀土离子的荧光特性的基础上,还具有PUA基体材料良好的透明性(透光率在90%左右)、热稳定性(热分解温度在300℃左右)和力学性能,且材料的荧光强度随稀土配合物含量的增加而提高,在论文实验范围内没有出现荧光猝灭现象,是一类综合性能优良的功能性透明稀土聚合物,有望应用于特殊光学领域。
     4.以聚氨酯丙烯酸酯大分子单体(MUA)合成技术为基础,将所合成的含活性-OH、-NH2等基团的稀土配合物引入到MUA的合成体系中,合成了含稀土配合物的大分子单体RE-MUA,通过MUA、RE-MUA两类大单体共聚,建立了大单体型稀土配合物—大单体共聚合制备键合型稀土聚合物材料的又一新方法。本文第四、第五章利用该方法分别制备了含配合物5(6、7)、配合物8(9)的键合型稀土聚合物P(RE-UA),并分别对共聚物材料的结构、性能进行了探讨。结果发现,该类键合型稀土聚合物材料同样具有优良的荧光性能、透明性、热稳定性和力学性能,具有广阔的应用前景;尤其是含配合物8(9)的键合型稀土聚合物还具有良好的抗菌性能,对大肠杆菌具有一定的抑制作用,是一类功能高度集成化的新型稀土功能材料,在未来的新材料领域具有巨大的发展应用潜力。
In this dissertation, rare-earth complexes with novel structures were synthesized and introduced into the polymeric system of macromonomers of polyurethane acrylate for achieving a series of transparent rare-earth polymers with excellent photoluminescence performance, based on the study of our research group on the macromonomer of polyurethane acrylate(MUA) and its polymer(PUA). The structures and properties of such rare-earth polymers have been systematically investigated in detail.
     1. Nine rare-earth complexes with different ligands, [Tb(C_(15)H_9O_2)_3(C_(10)H_8N_2)]_2 (C_(15)H_9O_2 = anthracence-9-carboxylic and C_(10)H_8N_2 = 2,2-bipyridine) (1), {[Sm(C_(16)H_8O_4)_2(H_2O)_2](C_7H_(10)N) (H_2O)_(1.75)}_∞(C_(16)H_8O_4 = anthracene-9,10-dicarboxylic acid and C_7H_(10)N = protonated 2,6- dimethylpyridine) (2), Eu(C_3H_3O_2)_3 (C_3H_3O_2 = acrylic acid ) (3), [Eu(C_4H_3O_4)_2(H_2O)7](C_4H_4O_4)(H_2O) (C_4H_3O_4 = single proeonated maleic acid and C_4H_4O_4 = maleic acid) (4), [Eu2(C_7H_4O_3)_2(C_7H_5O_3)_2(phen)_3](H_2O)0.5 (C_7H_4O_3 = salicylic acid coordinated by oxygen aroms from -COOH and -OH, C_7H_5O_3 = salicylic acid coordinated by oxygen aroms from–COOH and phen = 1,10-phenanthroline) (5), [La(C_7H_5O_3)_3(phen)(H_2O)]_2(phen)_2 (C_7H_5O_3 = m-hydroxybenzoic acid and phen = 1,10-phenanthroline) (6), {[Eu(C_7H_5O_3)(C_7H_4O_3)(phen)_2] (H_2O)}_∞(C_7H_5O_3 = m-hydroxybenzoic acid coordinated by oxygen aroms from–COOH, C_7H_4O_3 = m-hydroxybenzoic acid coordinated by oxygen aroms from -COOH and–OH and phen = 1,10-phenanthroline) (7), [Eu(C_7H_6NO_2)_3(phen)]_2 (C_7H_6NO_2 = m-aminobenzoic acid and phen = 1,10-phenanthroline) (8), [La_2(C_7H_6NO_2)_4(NO_3)(H_2O)_2] (C_7H_6NO_2 = p-aminobenzoic acid) (9), have been designed and synthesized by hydro-thermal method and conventional solution method, in which complexes 1, 2, 4, 5, 6, 7 and 8 have been structurally analyzed by X-ray single crystal diffractometer. In addition, the structures and the relevant performance of nine rare-earth complexes have been characterized in detail.
     2. A new method for preparation doping-type rare-earth polymer by rare-earth complex/ macromonomer in situ polymerization on the basis of macromonomer of polyurethane acrylate(MUA), introducing the synthesized rare-earth complex into the polymeric system of MUA in the process of homopolymerization of MUA for achieving homopolymer (PUA), has been established. In chapter 2, doping- type rare-earth polymer materials (RE/PUA) containing complex 1 (or 2) have been synthesized by this new method. The structures and properties of RE/PUA have been systematically characterized by infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), scanning electron microscopy (SEM), fluorescence spectrophotometer and so on. It is proved that such kinds of doping-type rare-earth polymer materials assume favorable fluorescence. However, the transparency of such PUA matrix mentioned above has been severely affected by the addition of rare-earth complex. As for doping-type rare-earth polymer, the influence of rare-earth on the transparency has been one of the inevitable disadvantages to date.
     3. A new method for preparation bonding-type rare-earth polymer via rare-earth complex-macromonomer in situ copolymerization based on MUA, introducing the synthesized rare-earth complex containing the reactive group–C=C into the polymeric system of MUA and copolymerizing between the MUA and complex, has been established. In chapter 3, bonding-type rare-earth polymer materials RE-PUA have been prepared through copolymerization of complex 3 (or 4) and the macromonomer of MUA by this method. The characterizations of structures and properties of the RE-PUA show that this kind of bonding-type rare-earth polymer exhibiting not only the fluorescent characteristic of rare-earth ions, but also the excellent transparency (spectral transmittance ~90%), heat stability (the temperature of thermal degradation at 300℃) and mechanical properties, is a novel functional transparent rare earth polymer. Moreover, the results also indicate that the fluorescence intensity of the RE-PUA increase with increasing amount of the relevant complex and without fluorescence concentration quenching within the range of experiment.
     4. Another new method for preparation bonding-type rare-earth polymer by macromonomer of rare-earth complex-macromonomer copolymerization, on the basis of MUA, introducing the synthesized rare-earth complex containing the reactive group–OH or–NH2 into the synthetical system of MUA and synthesizing the macromonomer of rare-earth complex RE-MUA, copolymerizing between the RE-MUA and MUA, has been investigated and founded. In chapter 4, based on above method, bonding-type rare-earth polymer materials P(RE-UA) containing complex 5 (6 or 7) have been synthesized and characterized, and another P(RE-UA) containing complex 8 (or 9) have been investigated in chapter 5. The results show that this bonding-type rare-earth polymer also have good fluorescence, transparency, heat stability and mechanical properties, similar to that of RE-PUA copolymer reported in chapter 3. Especially, the P(RE-UA) containing complex 8 (or 9) assume favorable antibacterial properties, and have inhibitory effects on colon bacillus.
     In conclusion, a series of novel rare-earth polymers in this dissertation that exhibit excellent combination properties such as fluorescence, transparency, heat stability and so on were synthesized and structurally characterized. It can be expected, thus, that such rare-earth polymers may find applications in different functional material areas of optical, electrical and magnetic.
引文
[1]黄春晖.稀土配位化学.北京:科学出版社,1997.5
    [2]徐光宪.稀土(下).第二版.北京:冶金工业出版社,1995.12
    [3]游效曾,孟庆金,韩万书.配位化学进展.北京:高等教育出版社,2000
    [4]洪茂椿. 21世纪的无机化学.北京:科学出版社,2006
    [5] Lehn J M. Supramolecular chemistry - scope and perspectives molecules, supermolecules, and molecular devices (nobel lecture). Angewandte Chemie International Edition, 1988, 27(1): 89-129
    [6] Braga D, Grepioni F, Desiraju G R. Crystal engineering and organometallic architecture. Chemical Reviews, 1998, 98(4): 1375-1406
    [7] Leininger S, Olenyuk B, Stang, P J. Self-assembly of discrete cyclic nanostructures mediated by transition metals. Chemical Reviews, 2000, 100(3): 853-908
    [8] Tian Y Q, Cai C X, Ji Y, et al. [Co5(im)10 2 MB] : A metal-organic open-framework with zeolite-like topology. Angewandte Chemie International Edition, 2002, 41(8): 1384-1386
    [9] Eddaoudi M, Kim J, Rosi N, et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science, 2002, 295(5554): 469-472
    [10] Huang X C, Lin Y Y, Zhang J P, et al. Ligand-directed strategy for zeolite-type metal- organic frameworks : Zinc(II) imidazolates with unusual zeolitic topologies. Angewandte Chemie International Edition, 2006, 45(10): 1557-1559
    [11]高恩君,李浩洋,刘祁涛.配合物[Pd(L-tyr)2]?0.5H2O的晶体结构、稳定性及其与DNA作用研究.化学学报,2005,63(13):1225-1230
    [12]刘光华.稀土材料学.北京:化学工业出版社,2007.8
    [13] Weissman S I. Intramolecular energy transfer the fluorescence of complexes of europium. Journal of chemical physics, 1942, 10(4): 214-217
    [14] Crosby G A, Whan R E, Alire R M. Intramolecular energy transfer in rare earth chelates. Role of the triplet state. Journal of chemical physics, 1961, 34(3): 743-748
    [15] Crosby G A, Whan R E, Freeman J J. Spectroscopic studies of rare earth chelates. Journal of Physical Chemistry, 1962, 66 (12): 2493-2499
    [16] Crosby G A. Luminescent organic complexes of the rare earths. Molecular Crystals, 1966, 1: 37-81
    [17] Sager W F, Filipescu N, Serafin F A. Substituent effects on intramolecular energy transfer. I. Absorption and phosphorescence spectra of rare earthβ-diketone chelates. Journal of Physical Chemistry, 1965, 69 (4): 1092-1100
    [18] Filipescu N, Sager W F, Serafin F A. Substituent effects on intramolecular energy transfer.Ⅱ. Fluorescence spectra of europium and terbiumβ-diketone chelates. Journal of Physical Chemistry, 1964, 68(11): 3324-3346
    [19] Otway D J, Rees W S. Group 2 elementβ-diketonate complexes: synthetic and structural investigations. Coordination Chemistry Reviews, 2000, 210(1): 279–328
    [20] Sun L N, Zhang H J, Fu L S, et al. A new sol-gel material doped with an erbium complex and its potential optical-amplification application. Advanced Functional Materials.2005, 15(6): 1041-1048
    [21] Xu Q H, Li L S, Liu X S, et al. Incorporation of rare-earth complex Eu(TTA)4C5H5NC16H33 into surface-modified Si-MCM-41 and its photophysical properties. Chemistry of Materials, 2002, 14(2): 549-555
    [22] Yuan J, Sueda S, Somazawa R, et al. Structure and luminescence properties of the tetradentate diketonate–europium(III) complexes. Chemistry Letters, 2003, 32(6): 492-493
    [23] Yuan J, Matsumoto K. Synthesis of a new tetradentateβ-diketonate-europium chelate and its application for time-resolved fluorimetry of albumin. Journal of Pharmaceutical and Biomedical Analysis, 1997, 15(9-10): 1397-1403
    [24] Yuan J, Matsumoto K, Kimura H. A new tetradentateβ-diketonate-europium chelate that can be covalently bound to proteins for timeresolved fluoroimmunoassay. Analytical Chemistry, 1998, 70(3): 596-601
    [25] Yuan J, Wang G, Kimura H, et al. Highly sensitive detection of bensulfuron-methyl by time-resolved fluoroimmunoassay using a tetradentateβ-diketonate Europium chelate as a label. Analytical Sciences, 1999, 15(2): 125-128
    [26] Wu F B, Zhang C. A new europiumβ-diketone chelate for ultrasensitive time-resolved fluorescence immunoassays. Analytical Biochemistry, 2002, 311(1): 57-67
    [27] Stanimirov S S, Hadjichristov G B, Petkov I K. Emission efficiency of diamine derivatives of tris[4,4,4-trifluoro-1-(2-thienyl)-1,3-butanediono]europium. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2007, 67(5): 1326-1332
    [28] Uekawa M, Miyamoto Y, Ikeda H, et al. Synthesis and properties of europium complexes withβ-diketone ligands for organic electroluminescent devise. Bulletin of the Chemical Society of Japan, 1998, 71(9): 2253-2258
    [29] Ma D, Wu Y, Zuo X. Rare earth dopedβ-diketone complexes as promising high-density optical recording materials for blue optoelectronics. Materials Letters, 2005, 59(28): 3678-3681
    [30] Zhu W, Jiang Q, Lu Z, et al. Red electroluminescence from a novel europiumβ-diketone complex with acylpyrazolone ligand. Synthetic Metals, 2000, 111-112: 445-447
    [31] Chen B, Xu J, Dong N, et al. Spectra analysis of Nd(DBM)3(TPPO)2 in MMA solution and PMMA matrix. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2004, 60(13): 3113-3118
    [32]马建方,倪嘉缵.稀土羧酸配合物的结构.化学进展,1996,8(4):259-276
    [33] Wang Y, Zhang L, Fan Y, et al. Hydrothermal syntheses, structures and properties of five rare earth coordination polymers with (1,3,4-thiadiazole-2,5-diyldithio)diacetic acid. Inorganica Chimica Acta, 2007, 360(9): 2958-2966
    [34]邢永恒,袁厚群,张元红,等.稀土配合物Sm2(CH3COO)4(NO3)2(phen)2的合成、结构及非等温热分解动力学研究.高等学校化学学报,2006,27(7):1205-1210
    [35]肖焕明,索全伶,郑焱,等.稀土-丙烯酸-8-羟基喹啉三元配合物的合成与表征.稀土,2005,26(1):12-13
    [36] Wang L H, Wang W, Zhang W G, et al. Synthesis and luminescence properties of novel Eu-containing copolymers consisting of Eu(III)- acrylate-β- diketonate complex monomers and methyl methacrylate. Chemistry of Materials, 2000, 12(8): 2212-2218
    [37] Vaidhyanathan R, Natarajan S, Rao C N R. Three-dimensional yttrium oxalates possessing large channels. Chemistry of Materials, 2001, 13(1): 185-191
    [38] Kiritsis V, Michaelides A, Skoulika S, et al. Assembly of a porous three-dimensional coordination polymer: crystal structure of {[La2(adipate)3(H2O)4]6H2O}n. Inorganic Chemistry, 1998, 37(13): 3407- 3410
    [39]王连军,西鹏,赵曙辉,等.稀土钐硝酸盐、2,2二羟甲基丙酸、1,10邻菲咯啉四元配合物的合成及性能表征研究.东华大学学报,2005,31(5):115-118
    [40]西鹏,王连军,黄象安. 2, 2-二羟甲基丙酸与稀土Eu的四元配合物的合成及表征研究.中国稀土学报,2005,23(1):1-5
    [41] Reineke T M, Eddaoudi M, Keeffe M O, et al. A microporous lanthanide- organic framework. Angewandte Chemie International Edition, 1999, 38(17): 2590-2594
    [42] Reineke T M, Eddaoudi M, Fehr M, et al. From condensed lanthanide coordination solids to microporous frameworks having accessible metal sites. Journal of the American Chemical Society, 1999, 121(8): 1651- 1657
    [43] Rosi N L, Kim J, Eddaoudi M, et al. Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units. Journal of the American Chemical Society, 2005, 127(5): 1504-1518
    [44] Kerbellec N, Daiguebonne C, Bernot K, et al. New lanthanide based coordination polymers with high potential porosity. Journal of Alloys and Compounds, 2008, 451(1-2): 377-383
    [45] Thirumurugan A, Natarajan S. Hydrothermal synthesis, structure and luminescent properties of one- dimensional lanthanide benzenedicarboxylates, [M(NO3)M2(C12H8N2)2][(C8H4O4)4]·H2O, (M = La, Pr), possessing infinite M–O–M linkages. Journal of Materials Chemistry, 2005, 15: 4588-4594
    [46] Thirumurugan A, Pati S K, Green M A, et al. Observation of tancoite-like chains in a one-dimensional metal–organic polymer. Journal of Materials Chemistry, 2003, 13: 2937-2941
    [47] Thirumurugan A, Natarajan S. Yttrium coordination polymers with layered structures. Solid StateSciences, 2004, 6(6): 599-604
    [48] Kelly N R, Goetz S, Batten S R, et al. Synthesis and structural characterisation of lanthanide coordination polymers featuring 4,4′,6,6′-tetra- carboxy-2,2′-bipyridine and rare network topology. CrystEngComm, 2008, 10: 1018-1026
    [49] Bu?kamp H, Deacon G B, Hilder M, et al. Structural variations in rare earth benzoate complexes Part I. Lanthanum. CrystEngComm, 2007, 9: 394-411
    [50] Deacon G B, Forsyth C M, Junk P C, et al. Synthesis and structural properties of anhydrous rare earth cinnamates, [RE(cinn)3]. Zeitschrift für anorganische und allgemeine Chemie, 2008, 634(1): 91-97
    [51] Daiguebonne C, Kerbellec N, Gérault Y, et al. A new family of luminescent lanthanide based coordination polymers. Journal of Alloys and Compounds, 2008, 451(1-2): 372-376
    [52] Zhou R S, Cui X B, Song J F, et al. Syntheses, structures and luminescence properties of lanthanide coordination polymers with helical character. Journal of Solid State Chemistry, 2008, 181(8): 2099-2107
    [53] Bo Q B, Sun Z X, Sheng Y L, et al. A novel boat-shaped rare earth complex with a 3-D interlinked structure of Pr(Ⅲ) and 1,2,4,5-benzenetetracarboxylic acid. Journal of Inorganic and Organometallic Polymers and Materials, 2006, 16(3): 241-248
    [54] Zheng X J, Wang Z M, Gao S, et al. Hydrothermal syntheses, structures, and properties of three 3-D lanthanide coordination polymers that form 1-D channels. European Journal of Inorganic Chemistry, 2004, 2004(14): 2968-2973
    [55] Wang Y, Wang Z, Yan C, et al. Hydrothermal synthesis and structure of new lanthanide coordination polymers with dicarboxylic acid and 1,10-phenanthroline. Journal of Molecular Structure, 2004, 692(1-3): 177-186
    [56] Zheng X J, Jin L P, Lu S Z. Hydrothermal syntheses, structures, and properties of first examples of Lanthanide(Ⅲ) 2,3-pyrazinedicarboxylates with three-dimensional framework. European Journal of Inorganic Chemistry, 2002, 2002(12): 3356-3363
    [57] Yang C, Liu L, Gao Y, et al. The influence of preparation conditions on the fluorescence properties of Eu(Sal)3Phen. Luminescence, 2006, 21(2): 98-105
    [58]李丽,陈亚芍,赵丽芳.稀土配合物{La[o-C6H4(NO2)(CO2)]3·(DMF)2}2的晶体结构及其荧光性能.高等学校化学学报,2006,27(2):199-203
    [59] Chen Y, Cai W M. Synthesis and fluorescence properties of rare earth (Eu3+ and Gd3+) complexes withα-naphthylacetic acid and 1,10-phenanthroline. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2005, 62(4-5): 863-868
    [60] Zang S, Su Y, Lin J, et al. Four coordination polymers constructed from a multicarboxylate ligand and metal centers various from Ba2+, Cu2+, Zn2+ to Gd3+: Syntheses, crystal structures and properties. Inorganica Chimica Acta, 2009,362(7): 2440-2446
    [61] Zhang Z H, Liu G X, Okamura T, et al. Syntheses, structures, and magnetic properties of new rare earthcoordination polymers constructed by 1,3,5-benzenetriacetic acid. Structural Chemistry, 2006, 17(1): 3-11
    [62] Bo Q B, Sun Z X. Synthesis, characterization and luminescence properties of a coordination polymer based on self-assembly of PrⅢwith inorganic–organic hybrid bridging ligands. Journal of Coordination Chemistry, 2008, 61(13): 2079-2087
    [63] Wang R, Zheng Z, Jin T, et al. Coordination chemistry of lanthanides at“high”pH: Synthesis and structure of the pentadecanuclear complex of europium(Ⅲ) with tyrosine. Angewandte Chemie International Edition, 1999, 38(12): 1813-1815
    [64] Anghileri L J. On the antitumor activity of gallium and lanthanides. Arzneimittel-Forschung, 1975, 25(5): 793-795
    [65] Sun T S, Xiao Y M, Wang D Q, et al. Synthesis and kinetics of thermal decomposition of complexes of rare earth bromides with glycine. Thermochimica Acta, 1996, 287(2): 299-310
    [66] Gao S L, Yang X W, Ren D H, et al. Thermochemical properties of complexes of rare earth nitrate with glycine. Thermochimica Acta, 1996, 287(1): 177-182
    [67] Yan C, Zhang Y, Li B, et al. Coordination chemistry of scandium-I. Synthesis and crystal structure of scandium six-coordinate glycine complex [Sc2(Gly)6(ClO4)6]n. Polyhedron, 1996, 15(17): 2895-2899
    [68] Gawryszewska P P, Jerzykiewicz L, Sobota P, et al. Spectroscopy and structure of Eu(Ⅲ) complex with N-methylglycine. Journal of Alloys and Compounds, 2000, 300-301: 275-282
    [69] Silber H B, Parker T, Nhi Nguyen. Europium(Ⅲ) complexation with glycine. Journal of Alloys and Compounds, 1992,180: 369-373
    [70] Hu N H, Wang Z L, Niu C J, et al. Tetrakis(μ-DL-alanine-O:O')octaaquadierbium(Ⅲ) hexaperchlorate. Acta Crystallographica Section C: Crystal Structure Communications, 1995, 51(8): 1565-1568
    [71] Wang J P, Hu N H, K Y Yang, et al. Tetra-μ-α-alanine-bis[tetraaquagadolinium(III)] hexaperchlorate. Acta Crystallographica Section C: Crystal Structure Communications, 2003,59(2): m52-m54
    [72] Silber H B, Nguyen Y, Campbell R L. Europium( III) complexation with alanine in water. Journal of Alloys and Compounds, 1997,249(1-2): 99-101
    [73] Demidova E N, Drachev A I, Borshch N A. The study of Gd3+ complexation with 4-dihydroxyboropenyl- alanine in aqueous solutions. Russian Journal of Coordination Chemistry, 2008, 34(10): 789-793
    [74] Hu N H, Wang Z L, Niu C J, et al. Structure of an erbium complex with L-proline. Acta Crystallographica Section C: Crystal Structure Communications, 1993, 49(12): 2086-2089
    [75] Sandhu R S, Kumar R, Kalia R K. Complexation reaction of metal ions with peptide systems. Part IV. A potentiometric study of rare earth complexes of glycyl-L-proline. Thermochimica Acta, 1979, 30: 355-358
    [76] Zieliński S, Lomozik L, Wojciechowska A. Potentiometric studies on the complex formation of lanthanides with proline and hydroxyproline. Monatshefte für Chemie, 1981,112(11): 1245-1252
    [77] Mohamed A A A, Bakr M F, Abd El-Fattah K A. Thermodynamic studies on the interaction between someamino acids with some rare earth metal ions in aqueous solutions. Thermochimica Acta, 2003, 405(2): 235-253
    [78] Martins T S, Matos J R, G. Vicentini G, et al. Synthesis, characterization, spectroscopy and thermal analysis of rare earth picrate complexes with L-leucine. Journal of Thermal Analysis and Calorimetry, 2006,86(2): 351-357
    [79] Xu H, Chen L. Study on the complex site of L-tyrosine with rare-earth element Eu3+. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2003, 59(4): 657-662
    [80] Refat M S, El-Korashy S A, Ahmed A S. Preparation, structural characterization and biological evaluation of L-tyrosinate metal ion complexes. Journal of Molecular Structure, 2008, 881(1-3): 28-45
    [81] Sandhu R S, Kalia R K. Complexation reaction of metal ions with peptide systems. Part II. Potentiomettic studies of the complexes of glycyl-DL-valine with Gd3+, Dy3+, Er3+ and Yb3+. Thermochimica Acta, 1979, 30: 351-354
    [82] Rodriguez E, Martin-Liorente J M, Manzano J L, et al. Synthesis and characterization of lanthanide complexes derived of DL-valine: R[C13H20NO4]3·3H2O. Journal of Alloys and Compounds, 1997, 249(1-2): 106-110
    [83] Ma B Q, Zhang D S, Gao S, et al. The formation of Gd4O4 cubane cluster controlled by L-valine. New Journal of Chemistry, 2000, 24: 251-252
    [84]吕雪川.稀土氨基酸配合物的合成和热化学性质研究[Dissertation].大连:中国科学院大连化学物理研究所,2006
    [85] Kremer C, Morales P, Torres J, et al. Novel lanthanide–iminodiacetate frameworks with hexagonal pores. Inorganic Chemistry Communications, 2008, 11(8): 862-864
    [86] Du W X, Zhang J J, Hu S M, et al. Synthesis and crystal structure of a heptanuclear trigonal prismatic cluster {PrCu6} with glycine and imidazole as ligands. Chinese Journal of Structural Chemistry, 2005, 24(2): 226-230
    [87] Zhang H, Yu H, Xu H, et al. Structural diversity of lanthanide–amino acid complexes under near physiological pH conditions and their recognition of single-stranded DNA. Polyhedron, 2007, 26(18): 5250-5256
    [88] Deacon G B, Forsyth M, Junk P C, et al. Synthesis and structural diversity of rare earth anthranilate complexes. Polyhedron, 2006, 25(2): 379-386
    [89] Flemig H, Pantenburg I, Meyer G. Two 3-aminobenzoates of praseodymium, Pr(OOC-Ph-NH2)3(H2O) and Pr(OOC-Ph-NH2)(OOC-Ph-NH). Journal of Alloys and Compounds, 2008, 451(1-2): 429-432
    [90]黄妙龄,梁福沛,郁开北.稀土-对氨基苯甲酸配合物的合成及结构研究.化学研究与应用,2006,10(3):245-251
    [91] Petoud S, Cohen S M, Bünzli J C G, et al. Stable lanthanide luminescence agents highly emissive in aqueous solution: Multidentate 2-Hydroxyisophthalamide complexes of Sm3+, Eu3+, Tb3+, Dy3+. Journalof the American Chemical Society, 2003, 125(44): 13324-13325
    [92]刘胜利,祁素素. 1-(2-羟基苯基)-3-苯基-1,3-丙二酮及其铕(Ⅲ)配合物的合成和发光研究.中国稀土学报,2005,23(5):560-563
    [93] Evan G. Moore E G, Xu J, Jocher C J, et al.“Cymothoe sangaris”: An extremely stable and highly luminescent 1,2-Hydroxypyridinonate chelate of Eu(Ⅲ). Journal of the American Chemical Society, 2006, 128(33): 10648-10649
    [94] Wang B D, Yang Z Y, Zhang D W, et al. Synthesis, structure, infrared and fluorescence spectra of new rare earth complexes with 6-hydroxy chromone-3-carbaldehyde benzoyl hydrazone. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2006, 63(1): 213-219
    [95] Xi P, Gu X H, Chen C F, et al. Synthesis, characterization and luminescent properties of new highly luminescent organic ligand and complexes of trivalent rare earth. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2007, 66(3): 667-671
    [96] Tarasenko M S, Naumov N G, Naumov D Y, et al. A series of three-dimensional coordination polymers with general formula [{Ln(H2O)n}{Re6Te8(CN)6}]·xH2O (Ln = Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb; n = 3, 4, x = 0, 2.5). Polyhedron, 2008, 27(11): 2357-2364
    [97] Siemensmeyer K, Flachbart K, Gabánib S, et al. Magnetic structure of rare-earth dodecaborides. Journal of Solid State Chemistry, 2006, 179(9): 2748-2750
    [98] Nowak D, Wo?nicka E, Ku?niar A, et al. Magnetism of the lanthanides(Ⅲ) complexes with some polihydroxyflavones. Journal of Alloys and Compounds, 2006, 425(1-2): 59-63
    [99] Yu C, Zhang L, Ni X, et al. Ring-opening polymerization of L-lactide by rare-earth Tris(4-tert-butylphenolate) single-component initiators. Journal of Polymer Science: Part A: Polymer Chemistry, 2004, 42(24): 6209-6215
    [100] Ling L, Shen Z, Zhu W. Synthesis, characterization, and mechanism studies on novel rare-earth calixarene complexes initiating ring-opening polymerization of 2,2-dimethyltrimethylene carbonate. Journal of Polymer Science: Part A: Polymer Chemistry, 2003, 41(9): 1390-1399
    [101] Wang Z M, Lin H K, Zhu S R, et al. Spectroscopy, cytotoxicity and DNA-binding of the lanthanum(III) complex of an L-valine derivative of 1,10-phenanthroline. Journal of Inorganic Biochemistry, 2002, 89(1-2): 97-106
    [102] Song Y M, Xu J P, Ding L, et al. Syntheses, characterization and biological activities of rare earth metal complexes with curcumin and 1,10-phenanthroline-5,6-dione. Journal of Inorganic Biochemistry, 2009, 103(3): 396-400
    [103] Wolf N E, Pressley R J M. Optical maser action in an Eu3+-containing organic matrix. Applied Physics Letters, 1963 ,2 (8): 152-154
    [104] Kai J, Parra D F, Brito H F. Polymer matrix sensitizing effect on photoluminescence properties of Eu3+-β-diketonate complex doped into poly-β-hydroxybutyrate (PHB) in film form. Journal of MaterialsChemistry, 2008, 18: 4549-4554
    [105] Li X F, Lau K T, An Y, et al. Luminescent and mechanical properties of the epoxy composites doped with europium complex. Materials Letters, 2008, 62(29): 4434-4436
    [106] Pogreb R, Finkelshtein B, Shmukler Y, et al. Low-density polyethylene films doped with europium(III) complex: their properties and applications. Polymers for Advanced Technologies, 2004, 15(7): 414-418
    [107] Pogreb R, Finkelshtein B, Shmukler Y, et al. Polyethylene films doped with Eu(III) complex,their optical properties and technological applications. Proceedings of SPIE, 2004, 5351: 230-236
    [108] Pogreb R, Popov O, Lirtsman V, et al. Optical properties of the Eu(Ⅲ)-La(Ⅲ)-complex-doped polyolefine film and rod samples. Proceedings of SPIE, 2005, 5723: 236-242
    [109] Pogreb R, Popov O, Lirtsman V, et al. Luminescent properties of PP and LDPE films and rods doped with the Eu(Ⅲ)-La(Ⅲ) complex. Polymers for Advanced Technologies, 2006,17(1): 20-25
    [110]刘力,张秀娟,金日光,等.原位反应法制备丙烯酸钐/丁腈橡胶复合材料及其荧光性能研究.高等学校化学学报,2004,25(3):570-574
    [111] Liu L, Lu Y L, He L, et al. Novel europium-complex/nitrile-butadiene rubber composites. Advanced functional material, 2005, 15(2): 309-314.
    [112] Liu L, Zhang W, Li X, et al. Preparation and luminescence properties of Sm(TTA)3phen/NBR composites. Composites Science and Technology, 2007,67(10): 2199-2207
    [113] Yang C, Liu L, Lu Y, et al. Preparation of Tb(Pht)3Phen/rubber composites and characterization of their fluorescent properties. Journal of Applied Polymer Science, 2005, 96(1): 20-28
    [114] Zhang W, Liu L, Wen S P, et al. Eu (TTA)2( phen) ( UAH) /SiR fluorescence materials prepared by in-situ reaction method. Journal of Rare Earths, 2006, 24(1): 9-13
    [115] Wen S, Hu S, Zhang X, et al. Physical dispersion state and fluorescent property of Eu-complex in the Eu-complex/silicon rubber composites. Journal of Rare Earths, 2008,26(5): 626-632
    [116]刘力,吴小飞,范丽,等.氧化钐/热塑性聚氨酯复合材料的防辐射性能及流变性能.合成橡胶工业,2008,31(1):54-57
    [117] Zhao S H, Zhang L P, Li W G, et al. Preparation and fluorescent property of Eu(TTA)3Phen incorporated in polycarbonate resin. Polymer Journal, 2006, 38(6): 523-526
    [118]赵曙辉,李文刚,刘军,等.稀土配合物Eu(TTA)3phen掺杂的PMMA树脂的制备及其发光性能研究.化工新型材料,2003,31(4):20-25
    [119] Bonzanini R, Girotto E M, Gon?alves M C, E. Radovanovic, E.C. Muniz, A.F. Rubira. Effects of europium (III) acetylacetonate doping on the miscibility and photoluminescent properties of polycarbonate and poly(methyl methacrylate) blends. Polymer, 2005, 46(1): 253-259
    [120] Jiu H, Ding J, Sun Y, et al. Fluorescence enhancement of europium complex co-doped with terbium complex in a poly(methyl methacrylate) matrix. Journal of Non-Crystalline Solids, 2006, 352(3): 197-202
    [121] Zhao H, Hu J, Zhang Q, et al. Local microstructure characterization of rare earth-doped PMMA withlow-ion content by fluorescence EXAFS. Journal of Applied Polymer Science, 2006, 100(2): 1294-1298
    [122] Ding J J, Jiu H F, Bao J, et al. Combinatorial study of cofluorescence of rare earth organic complexes doped in the poly(Methyl Methacrylate) matrix. Journal of Combinatorial. Chemistry, 2005, 7(1): 69-72
    [123] Lu J, Yu K, Wang H, et al. Optical properties of Nd(TTA)3(TPPO)2 doped polymer and its potential laser application. Optical Materials, 2008, 30(10): 1531-1537
    [124] Nie Z, Lee H, Shin H, et al. Optical properties and spectroscope parameters of Sm(DBM)3Phen-doped poly(methyl methacrylate). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2009, 72(3): 554-560
    [125]江涛,曾繁涤.聚8,8’-二羟基-5,5-偶氮苯二喹啉金属螯合的合成及荧光性质.应用化学,2000,17(3): 334-336
    [126]凌启淡,章文贡.稀土高分子荧光材料研究综述.高分子通报,1998,(1):48-55
    [127] Pan Y, Zheng A, Hu F, et al. Copolymers of styrene with a quaternary europium complex. Journal of Applied Polymer Science, 2006, 100(2): 1506-1510
    [128]潘远凤,郑安呐,胡福增,等.稀土铕苯甲酸丙烯酸邻菲罗啉四元配合物与苯乙烯共聚物的研究.华东理工大学学报(自然科学版),2006,32(1):65-68
    [129] Pan Y, Zheng A, Xiao H, et al. Preparation and characterization of rare earth complex europium3+- acrylate-1,10-phenanthroline grafted onto polypropylene. Journal of Applied Polymer Science, 2006, 102(2): 1547-1552
    [130]潘远凤,胡福增,郑安呐.稀土配合物Eu(AA)3phen熔融接枝聚丙烯的制备及其性能研究.功能材料,2005,36(11):1772-1775
    [131] Pan Y, Zheng A, Xiao H, et al. Study on PP grafted with ULP containing rare earth. Materials Letters, 2006,60(11): 1383-1386
    [132] Pan Y, Zheng A, Cai P. Preparation and characterization of polypropylene grafted with ULP containing europium as photoluminescence films. Polymer Bulletin, 2006, 56(4-5): 313-320
    [133] Ling Q, Song Y, Ding S J, et al. Non-volatile polymer memory device based on a novel copolymer of N-vinylcarbazole and Eu-complexed vinylbenzoate. Advanced Materials, 2005, 17(4): 455-459
    [134] Du C, Xu Y, Ma L, et al. Synthesis and fluorescent properties of europium-polymer complexes containing naphthoate ligand. Journal of Alloys and Compounds, 1998, 265(1-2): 81-86
    [135] Qiu G M, Dai S J, Zhang M, et al. Modification research on polypropylene with acrylic-Silicon oil lanthanum. Journal of Rare Earths, 2007, 25(1): 46-48
    [136]张明,陈晓松,严长浩,等.聚氯乙烯接枝丙烯酸稀土的研究.中国稀土学报,2003,21(2):143-146
    [137]严长浩,王庭慰,张明,等.羧酸稀土配合物共聚反应的研究.中国稀土学报,2003,21(2):170-173
    [138]唐洁渊,章文贡.聚丙烯酸—铕—二苯甲酰甲烷配合物及其荧光性质的研究.高分子学报,2001,(4):480-484
    [139]王文,林美娟,凌启淡,等.多功能含铕共聚物的制备及光致发光性能研究.分子科学学报,2007,23(5):344-348
    [140]林美娟,王文,章文贡,等.配位键合Re(OPri)(TTA)2的发光有机玻璃的制备.应用化学,2006,23(8):845-849
    [141]索全伶,肖焕明,王一兵,等.稀土铕三元配合物-甲基丙烯酸甲酯共聚物的合成和荧光性能研究.中国稀土学报,2005,26(3):654-658
    [142]索全伶,时建伟,吕芳,等.三元稀土配合物RE(NTA)2AA的合成、共聚反应性及荧光性能研究.无机化学学报,2007,23(8):1463-1468
    [143] Banks E, Okamoto Y, Ueba Y. Synthesis and characterization of rare earth metal-containing polymers. I. Fluorescent properties of ionomers containing Dy3+, Er3+, Eu3+, and Sm3+ . Journal of Applied Polymer Science, 1980, 25(3): 359-368
    [144] Okamoto Y, Ueba Y, Dzhanibekov N F, et al. Rare earth metal containing polymers. 3. Characterization of ion-containing polymer structures using rare earth metal fluorescence probes. Macromolecules, 1981, 14(1): 17-22
    [145] Ueba Y, Zhu K J, Banks E, et al. Rare-earth-metal-containing polymers. 5. Synthesis, characterization, and fluorescence properties of Eu3+-polymer complexes containing carboxylbenzoyl and carboxyl- naphthoyl ligands. Journal of Polymer Science: Polymer Chemistry Edition, 1982, 20(5): 1271-1278
    [146] Mwaura J K, Thomsen III D L, Phely-Bobin T, et al. Luminescent rare-earth multilayer chelates from segmented poly(urethane ureas). Journal of American Chemical Society, 2000, 122(11): 2647-2648
    [147] Zheng P, Sun W, Shen Z. Synthesis and magnetic properties of novel complexes of poly(N-2-thiazolyl- methacrylamide) with Nd(Ⅲ), Pr(Ⅲ) and Sm(Ⅲ). Journal of Applied Polymer Science, 2006, 100(2): 1289-1293
    [148] Cong Y, Fu J, Cheng Z, et al. Self-organization and luminescent properties of nanostructured europium (III)-block copolymer complex thin films. Journal of Polymer Science Part B: Polymer Physics, 2005, 43(16): 2181-2189
    [149] Liu P, Liang D, Tong Z, et al. Synthesis and luminescence properties of novel europium and terbium complexes with triblock copolymer ligand. Macromolecules, 2002, 35(5): 1487-1488
    [150] Wang D, Zhang J, Lin Q, et al. Lanthanide complex/polymer composite optical resin with intense narrow band emission, high transparency and good mechanical performance. Journal of Materials Chemistry, 2003, 13: 2279-2284
    [151]王冬梅.含稀土配合物聚合物透明材料的设计合成与发光性质研究[Dissertation].长春:吉林大学博士论文,2004
    [152] Zhao L M, Yan B. Novel polymer-inorganic hybrid materials fabricated with in situ composition and luminescent properties. Journal of Non-Crystalline Solids, 2007, 353(52-54): 4654-4659
    [153] Zhou D, Zhu X, Zhu J, et al. Synthesis and characterization of novel copolymer containing pyridylazo- 2-naphthoxyl group via reversible addition-fragmentation chain transfer (RAFT) polymerization. Polymer, 2008, 49(13-14): 3048-3053
    [154] Liu D, Wang Z. Novel polyaryletherketones bearing pendant carboxyl groups and their rare earth complexes, Part I: Synthesis and characterization. Polymer, 2008,49(23): 4960-4967
    [155] Rempp P F, Franta E. Macromonomers: Synthesis, characterization and applications. Advances in Polymer Science, 1984, 58: 1-53
    [156] Waack R, Doran M A. Reactivities of organo-lithium compounds as polymerization initiators. Poly, 1961,(2):365-366
    [157] Vogl O. Developments in radical polymerization. Journal of Polymer Science: Polymer Symposia, 1978, 64(1): 1-16
    [158] Schulz G O, Milkovich R. Graft polymers with macromonomers. I. Synthesis from methacrylate- terminated polystyrene. Journal of Applied Polymer Science, 1982, 27(12): 4773-4786
    [159] Schulz G O, Milkovich R. Graft polymers with macromonomers. II. Copolymerization kinetics of methacrylate-terminated polystyrene and predicted graft copolymer structures. Journal of Polymer Science: Polymer Chemistry Edition, 1984, 22(7): 1633-1652
    [160] Harris H, Voigtl?nder H J, Gavat O, et al. Towards new hybrid star-shaped or crosslinked materials based on macromonomer and silsesquioxanes. Polymer Preprints, 2008, 49(1): 129-130
    [161] Nikopoulou A, Iatrou H, Lohse D J, et al. Anionic homo- and copolymerization of styrenic triple-tailed polybutadiene macromonomers. Journal of Polymer Science: Part A: Polymer Chemistry, 2007, 45(16): 3513-3523
    [162] Lien L T N, Kikuchi M, Narumi A, et al. Synthesis of oligo(oxyethylene) methacrylate-ended poly(n- hexyl isocyanate) rodlike macromonomers and their radical copolymerization behavior with methyl methacrylate. Polymer Journal, 2008, 40(11): 1113-1120
    [163] Vihola H, Marttila A K, Pakkanen J S, et al. Cell–polymer interactions of fluorescent polystyrene latex particles coated with thermosensitive poly(N-isopropylacrylamide) and poly(N-vinylcaprolactam) or grafted with poly(ethylene oxide)-macromonomer. International Journal of Pharmaceutics, 2007, 343(1-2): 238-246
    [164] Elmér A M, Jannasch P. Polymer electrolyte membranes by in situ polymerization of poly(ethylene carbonate-co-ethylene oxide) macromonomers in blends with poly(vinylidene fluoride-co-hexafluoropropylene). Journal of Polymer Science: Part B: Polymer Physics, 2007, 45(1): 79-90
    [165] Koutalas G, Iatrou H, Lohse D J, et al. Well-defined comb, star?comb, and comb-on-comb poly- butadienes by anionic polymerization and the macromonomer strategy. Macromolecules, 2005, 38 (12): 4996-5001
    [166] Ohno S, Matyjaszewski K. Controlling grafting density and side chain length in poly(n-butyl acrylate) by ATRP copolymerization of macromonomers. Journal of Polymer Science: Part A: Polymer Chemistry, 2006, 44(19): 5454-5467
    [167] Rose J M, Mourey T H, Slater L A, et al. Poly(ethylene-co-propylene macromonomer)s: Synthesis and evidence for starlike conformations in dilute solution. Macromolecules, 2008, 41 (3): 559-567
    [168] Kaneyoshi H, Matyjaszewski K. Synthesis of a linear polyethylene macromonomer and preparation of polystyrene-graft-polyethylene copolymers via grafting-through atom transfer radical polymerization. Journal of Applied Polymer Science, 2007, 105(1): 3-13
    [169] Chiefari J, Jeffery J, Krstina J, et al. Binary copolymerization with catalytic chain transfer. A method for synthesizing macromonomers based on monosubstituted monomers. Macromolecules, 2005, 38 (22): 9037-9054
    [170] Yang W, Kaneko T, Liu X Y, et al. Bulk synthesis of poly(tert-butyl methacrylate) long macromonomer with narrow distribution by atom transfer radical polymerization and nucleophilic substitution. Chemistry Letters, 2006, 35(2): 222-223
    [171] Choe Y, Park S, Kim W, et al. Photopolymerization of thermoplastic polyurethane/acrylate blends. Korean Journal of Chemical Engineering, 2005, 22(5): 750-754
    [172] Jiang M, Zhao X, Ding X, et al. A novel approach to fluorinated polyurethane by macromonomer copolymerization. European Polymer Journal, 2005, 41(8): 1798-1803
    [173] Zhang H, Duan L, Chen L, et al. Stability and copolymerization of concentrated emulsion of styrene and butyl acrylate in the presence of polyurethane macromonomer. Journal of Applied Polymer Science, 2007, 103(3): 1992-1999
    [174] Kim S Y, Lee K, Jung H, et al. Effect of polyurethane-based macromonomers in the dispersion polymerization of styrene. Journal of Applied Polymer Science, 2008, 109(4): 2656-2664
    [175] Song K, Jung H, Lee K, et al. Nano-sized polystyrene prepared using bifunctional vinyl urethane macromonomer in emulsion polymerization. Current Applied Physics, 2008, 8(6): 742-745
    [176] Hutchings L R, Roberts-Bleming S J. DendriMacs. Well-defined dendritically branched polymers synthesized by an iterative convergent strategy involving the coupling reaction of AB2 macromonomers. Macromolecules, 2006, 39 (6): 2144-2152
    [177] Costa L I, Kas?mi E, Storti G, et al. Dendronized polymers via macromonomer route in supercritical carbon dioxide. Macromolecular Rapid Communications, 2008, 29(19): 1609-1613
    [178] Johnson J A, Finn M G, Koberstein J T, et al. Synthesis of photocleavable linear macromonomers by ATRP and star macromonomers by a tandem ATRP-click reaction: precursors to photodegradable model networks. Macromolecules, 2007, 40(10): 3589-3598
    [179] Driva P, Lohse D J, Hadjichristidis N. Well-defined complex macromolecular architectures by anionic polymerization of styrenic single and double homo/miktoarm star-tailed macromonomers. Journal ofPolymer Science: Part A: Polymer Chemistry, 2008, 46(5): 1826-1842
    [180] Shim S E, Jung H, Lee K, et al. Dispersion polymerization of methyl methacrylate with a novel bifunctional polyurethane macromonomer as a reactive stabilizer. Journal of Colloid and Interface Science, 2004, 279(2): 464-470
    [181] Kim S Y, Lee K, Jung H, et al. Macromonomers having different molecular weights of polyethylene glycol and end group functionalities in dispersion polymerization of styrene. Polymer, 2005, 46(19): 7974-7981
    [182] Jung H, Song K, Lee K, et al. Reaction and stabilizing mechanism of the cross-type macromonomers in the dispersion polymerization of styrene. Journal of Colloid and Interface Science, 2007, 308(1): 130-141
    [183] Lee K, Jung H, Kim S Y, et al. Synthesis and characterization of cross-type vinylurethane macro- monomer (C-VUM) and their application in the dispersion polymerization of styrene. Polymer, 2006, 47(6): 1830-1836
    [184] Baron A, Cloutet E, Cramail H, et al. Relationship between architecture and adhesive properties of macromolecular materials1: Study of comb-like polyurethane-based copolymers. Macromolecular Chemistry and Physics, 2003, 204(13): 1616-1620
    [185] Zhang H, Chen L, Duan L, et al. Thin layer concentrated emulsion copolymerization of PUASi/styrene/ methyl methacrylate. Journal of Applied Polymer Science, 2008, 107(6): 3993-3999
    [186] Zhang L C, Pan M W, Tai H W, et al. Synthesis, properties, and morphology based on polyurethane and polymethyl methacrylate AB-crosslinked copolymers. Journal of Applied Polymer Science, 1994, 54(12): 1947-1854
    [187]潘明旺,台会文,张留成.甲基丙烯酸氨基甲酸酯/甲基丙烯酸甲酯热固性透明材料合成、性能与形态结构表征.中国塑料,1995,9(4):21-26
    [188]台会文,潘明旺.甲基丙烯酸氨基甲酸酯共聚物透明材料的研究.高分子材料科学与工程,1995,11(2):138-143
    [189] Fang S M, Gao L J, Zhou L M, et al. Synthesis and characterization of excellent transparency poly(urethane-methacrylate). Journal of Applied Polymer Science, 2009, 111(2): 724-729
    [190] Fang S M, Zhou L M, Gao L J, et al. Preparation and characterization of nanocomposite material based on polyurethane acrylate macromonomer. Polymer Composites, 2009, DOI: 10.1002/pc.20605
    [191]方少明,周立明,张留成,等. IPDI/HEMA/PEG大分子单体及其聚合物的制备.高分子材料科学与工程,2004,20(5):109-112
    [192]周立明,方少明,赵清香,等.新型丙烯酸酯透明材料的合成.合成树脂与塑料. 2005,22(2):42-45
    [193]方少明,周立明,陈志军,等.新型两亲性聚氨酯丙烯酸酯大单体的研究与合成.精细石油化工,2005,(3):26-29
    [194]方少明,王明花,张宏忠,等.两亲聚合物改性聚偏氟乙烯膜及其渗透性能研究.华东理工大学学报(自然科学版),2006,32(2):193-196
    [195]周立明,方少明,高丽君,等.光固化法制备新型透明高分子材料.合成树脂及应用,2007,24(1):35-39
    [196]方少明,周立明,高丽君,等. PLA嵌段的聚氨酯丙烯酸酯大单体的合成及聚合物的制备.高分子材料科学与工程,2005,21(2):85-88
    [197] Imai Y, Kamon K, Murata K, et al. Preparation of a spontaneous resolution chiral fluorescent system using 2-anthracenecarboxylic acid. Organic & Biomolecular Chemistry, 2008, 6: 3471–3475
    [198] Liu C S, Wang J J, Yan L F, et al. Copper(II), cobalt(II), and nickel(II) complexes with a bulky anthracene-based carboxylic ligand: Syntheses, crystal structures, and magnetic properties. Inorganic Chemistry, 2007, 46 (16): 6299-6310
    [199] Liu C S, Chang Z, Wang J J, et al. A photoluminescent 3D silver(I) coordination polymer with mixed ligands anthracene-9,10-dicarboxylate and hexamethylenetetramine, showing binodal 4-connected (43·63)2(42·62·82)3 topology. Inorganic Chemistry Communications, 2008, 11(8): 889-892
    [200] Wang J J, Liu C S, Hu T L, et al. Zinc(II) coordination architectures with two bulky anthracene-based carboxylic ligands: crystal structures and luminescent properties. CrystEngComm, 2008, 10: 681-692
    [201]赵国利,吴英,叶俊伟,叶开其.一维链状[Mn(9-AC)2(4,4′-bpy)(H2O)2]n配位聚合物的合成及晶体结构.高等学校化学学报,2008,29(4):686-689
    [202] Liu C S, Guo L Q, Yan L F, et al. Tetrakis(μ-anthracene-9-carboxylato)-k4O:O′; k3O,O′:O′; k3O:O,O′- bis- [(anthracene-9-carboxylato- k2O,O′)- (1,10-phenanthroline- k2N,N′)-erbium(III)]: effects of a noncoordinating anthracene ligand ring system on the final structure of a coordination complex. Acta Crystallographica Section C: Crystal Structure Communications, 2008, 64(8): m292-m295
    [203] Kusrini E, Adnan R, Saleh M I, et al. Synthesis and structure of dimeric anthracene-9-carboxylato bridged dinuclear erbium(III) complex, [Er2(9-AC)6(DMF)2(H2O)2]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2009, 72(4): 884-889
    [204] Hilder M, Junk P C, Kynast U H, et al. Spectroscopic properties of lanthanoid benzene carboxylates in the solid state: Part 1. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 202(1): 10-20
    [205]孙光辉.基于丙烯酸酯类聚氨酯稀土高分子材料的制备及性能研究[Dissertation].郑州:郑州轻工业学院硕士学位论文,2008
    [206] Herrmann U, Tuemmler B, Maass G, et al. Anthracenoyl crown ethers and cryptands as fluorescent probes for solid-phase transitions of phosphatidylcholines: syntheses and phospholipid membrane studies. Biochemistry, 1984, 23(18): 4059-4067
    [207] Jones S, Atherton J C C, Elsegood M R G, et al. Dimethyl 9,10-anthracenedicarboxylate: a centrosy- mmetric transoid molecule. Acta Crystallographica Section C: Crystal Structure Communications, 2000, 56(7): 881-883.
    [208] Bruker, SMART (Version 5.051), SAINT (Version 5.01), SADABS (Version 2.03) and SHELXTL(Version 6.1), Bruker AXS Inc., Madison, Wisconsin, USA, 1998
    [209] Bruker AXS, SAINT Software Reference Manual, Madison, WI, 1998
    [210] Sheldrick, G. M. SHELXTL NT Version 5.1. Program for Solution and Refinemen of Crystal Structures; University of G?ttingen: Germany, 1997
    [211]连锡山,盛慧,刘占梅.苯甲酸稀土(Eu,La)配合物的红外和荧光光谱研究.光谱学与光谱分析,1999,(4):562-565
    [212] Flores M, Caldi?o U, Córdoba G, et al. Luminescence enhancement of Eu3+-doped poly(acrylic acid) using 1,10-phenanthroline as antenna ligand. Optical Materials, 2004, 27(3):635-639
    [213] Parra D F, Mucciolo A, Duarte D G, et al. Characterization and photoluminescence properties of diglycidyl methacrylic resin doped with the Eu3+ -β-diketonate complex. Journal of Applied Polymer Science, 2006, 100(1): 406-412
    [214] Flores M, Rodríguez R, Arroyo R. Synthesis and spectroscopic characterization of Eu3+ -doped poly(acrylic acid). Materials Letters, 1999, 39(6): 329-334
    [215] Shen Q Y, Lu C H, Ji Q, et al. Heptaaquabis(hydrogen maleato-kO)europium(III) hydrogen maleate monohydrate. Acta Crystallographica Section E: Structure Reports Online, 2007, E63(5): m1419-m1420
    [216] Qiao X, Yan B. Molecular construction and photophysics of luminescent covalently bonded hybrids by grafting the lanthanide ions into the silicon-oxygen networks and carbon chains. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 199(2-3): 188-196
    [217] Hilder M, Junk P C, Lezhnina M M, et al. Rare earth functionalized polymers. Journal of Alloys and Compounds, 2008, 451(1-2): 530-533
    [218] Yin M C, Ai C C, Yuan L J, et al. Synthesis, structure and luminescent property of a binuclear terbium complex [Tb2(Hsal)8(H2O)2 ][(Hphen)2 ]·2H2O. Journal of Molecular Structure, 2004, 691(1-3): 33-37
    [219] Xu H, Li Y. The organic ligands as template: the synthesis,structures and properties of a series of the layered structure rare-earth coordination polymers. Journal of Molecular Structure, 2004, 690(1-3): 137-143
    [220] Li X, Jin L P, Zheng X J, et al. Synthesis, structure and luminescence property of the three ternary and quaternary europium complexes. Journal of Molecular Structure, 2002, 607(1): 59-67
    [221] Marappan M, Narayanan V, Kandaswamy M. Synthesis, spectral and electrochemical properties of a new series of unsymmetrical bis(phenoxo) bridged macrocyclic binuclear manganese (Ⅲ) complexes. Journal of the Chemical Society, Dalton Transactions, 1998, 3405-3409
    [222]陈冬梅,杨一心,赵天成,等.硝酸镧咪唑配合物的光谱性质.西北大学学报(自然科学网络版),2007,5(1):0225

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700