用户名: 密码: 验证码:
鲕状赤铁矿降磷降铝工艺与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢铁工业是国民经济的重要基础产业,随着国民经济的快速增长,冶金技术得到了长足的发展,对铁精矿质量的要求也越来越高。同时国内铁矿石供应已不能满足我国钢铁工业发展的需要,导致我国对进口铁矿石的依赖度显著增加,国际铁矿石价格快速攀升。为了保证我国钢铁行业的稳定持续发展,迫切需要对国内现有铁矿资源进行充分开发利用,尤其是目前受到技术限制而没有被开发利用的铁矿石,高磷鲕状赤铁矿就是其中重要的一部分。
     赫章铁矿为低品位鲕状赤铁矿,通过化学多元素分析和矿物学分析可知,该矿石性质复杂,除硅之外,磷和铝含量也较高。针对以上特点,本文采用焙烧-磁选-反浮选和直接还原-磁选工艺对其进行试验研究,以期达到提高铁品位同时降低磷含量和铝含量的目标。
     焙烧-磁选-反浮选试验研究表明:该矿石的最优焙烧条件为焙烧温度750℃,还原剂用量9%,焙烧时间80min;适宜磁选条件为将焙烧后矿石磨矿至-0.043mm占93.31%,磁选磁场强度200kA/m;磁选精矿再磨后进行反浮选,矿浆pH值为11,抑制剂淀粉用量为1750g/t,活化剂氧化钙用量800g/t,捕收剂R1B用量800g/t。通过焙烧-磁选-反浮选工艺,可以获得铁品位55.47%,磷含量为0.44%,铝含量为6.94%,铁回收率78.34%的铁精矿。
     红外光谱分析表明,试验中使用的改性油酸和捕收剂R1B主要由烃基和羧基组成。两种捕收剂均可在浮选尾矿表面发生化学吸附,相同条件下捕收剂R1B在尾矿表面的化学吸附能力比改性油酸强。
     根据赫章地区铁矿资源特点,对该地区赤铁矿和菱铁矿进行混合试验表明,赤铁矿与菱铁矿混合为6:4,焙烧温度750℃,还原剂用量8%,焙烧时间80min,焙烧后磨矿至-0.043mm占90%,以200kA/m磁场强度进行磁选,可以获得精矿铁品位58.87%,磷含量0.29%,铝含量5.21%,铁回收率为87.69%的铁精矿。
     通过直接还原-磁选试验研究,得到该赤铁矿的最佳还原条件为:还原温度1150℃,还原剂用量为50%,还原碱度0.6,还原时间120min;再将直接还原矿石磨矿至-0.043mm占92.18%,以150kA/m磁选磁场强度进行磁选。通过直接还原-磁选工艺,可以获得铁品位72.75%,磷含量为0.43%,铝含量为6.14%,铁回收率达到92.04%的铁精矿。
The steel industry is an important basic industry of national economy, with the rapid growth of the national economy, metallurgical technology has a great development,the quality of iron concentrates on higher requirements. While domestic iron ore supply can not meet the needs of the development of steel industry, the dependence on imported iron ore significantly increased,and the international iron ore prices rose rapidly. In order to ensure the stable and sustainable development of steel industry, the exploitation of existing domestic iron ore resources is urgent need, especially the iron ore without development that being limited by technical now, high phosphorus oolitic hematite is an important part of it.
     Hezhang iron ore is low grade oolitic hematite, the rearch result shows that the properties of the ore are complex, and the contents of phosphorus and aluminium are higher as well as silicon by using chemical component analysis and mineralogy analysis. In view of the above characteristics, in this paper the roasting-magnetic separation-reverse flotation and direct reduction-magnetic separation technology were utilized in order to improve the grade of iron and reduce the contents of phosphorus and aluminum.
     The results of roasting-magnetic separation-reverse flotation show that the optimum conditions of roasting and magnetic separation are roasting temperature 750℃, the dosage of reductant 9%, roasting time 80min,grind granularity -0.043mm about 93.31%, magnetic field intensity 200kA/m, respectively.Reverse flotation based on regrinding of magnetic separation concentrate was carried out under the condition of pH 11,the dosage of depressor 1750g/t, activator 800g/t, collector R1B 800g/t. Through the above method, the grade of iron concentrate 55.47% with 78.34% recovery were obtained, as well as the content of 0.44% phosphorus and 6.94% aluminum, respectively. Infrared spectrum analysis shows that modified oleic acid and collector R1B mainly composed by hydroxyl and carboxyl. Two kinds of collectors can occur chemical adsorption on the surface of the tailings and in the same conditions chemical adsorption ability of collector R1B is stronger than modified oleic acid.
     According to the iron ore resources characteristics of Hezhang, the tests of hematite and siderite mixed roasting show that when the mixed proportion of hematite and siderite is 6:4, roasting temperature 750℃, the dosage of reductant 8%, roasting time 80min,grind granularity -0.043mm about 90%, magnetic field intensity 200kA/m, the grade of iron concentrate 58.87% with 87.69% recovery were obtained, as well as the content of 0.29% phosphorus and 5.21% aluminum, respectively.
     Experimental study shows that the optimum conditions of direct reduction-magnetic separation are reduction temperature 1150℃, the dosage of reductant 50%, reduction basicity 0.6, reduction time 120min, grind granularity -0.043mm about 92.18%, magnetic field intensity 150kA/m, respectively. According to this flow sheet, the grade and recovery of iron concentrate were 72.75% and 92.04% respectively, while the phosphorus grade and aluminum content were 0.43% and 6.14% respectively.
引文
[1]张泾生.我国铁矿资源开发利用现状及发展趋势[J].钢铁, 2000(4): 1-5.
    [2]谢承祥,李厚民,王瑞等.中国已查明的铁矿资源的结构特征[J].地质通报, 2009, 28(1): 80-83.
    [3]松权衡,刘忠.国内外铁矿资源简介[J].吉林地质, 2008, 27(3): 5-12.
    [4]袁志安,黄志伟,姚振巩.论我国铁矿资源可持续发展战略[J].采矿技术, 2006, 6(3): 67-69.
    [5]张久铭,王贵成,何亚丽.我国铁矿资源的秉赋特征与可持续开发利用研究[J].中国矿业, 2007, 16(7): 36-39.
    [6]高世成,薛全君.超低品位铁矿资源的勘查与开发[J].资源发展, 2008, (6): 17-19.
    [7]刘树臣,马建明.国内外铁矿资源供需形势[J].国土资源情报, 2008, (3): 33-35.
    [8]孙克己.弱磁性铁矿石脱磷工艺及理论[D].北京:北京科技大学, 2000.
    [9]姚敬劬.应重新规划开发宁乡式铁矿[J].国土资源科技管理. 2005, (5): 13-16.
    [10]左倩,王一,田赋等.鄂西某鲕状赤铁矿焙烧磁选试验研究[J].金属矿山, 2008, (8): 36-38.
    [11]惠士成,戴惠新.铁矿降磷的现状及展望[J].云南冶金, 2008, 37(6): 16-19.
    [12]萧光关.于开发利用我国宁乡式铁矿资源的探讨[J].矿产综合利用, 1984, (3): 91-92.
    [13]毕学工.周进东高磷铁矿脱磷工艺研究现状[J].河南冶金, 2007, 15(6): 3-4.
    [14]刘竹林.炼铁原料[M].北京:化学工业出版社, 2007:14-39.
    [15]黄晓毅,王景双,周波.高磷铁矿降磷技术进展[J].矿产保护与利用, 2009 (2): 50-54.
    [16]方启学.微细粒弱磁性铁矿分散与复合聚团理论及分选工艺研究[D].长沙:中南工业大学,1996.
    [17]张阎,朱家骥.细粒弱磁性铁矿石铁矿石选矿技术的新进展[J].金属矿山, 2000, (6):11-14.
    [18] George Asimellis, Aggelos Giannoudakos, Michael Kompitsas. Phosphate ore beneficiation via determination of phosphorus-to-silicaratios by Laser Induced Breakdown Spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2006, (61): 1253-1259.
    [19]林祥辉,罗仁美,刘等.鄂西难选铁矿的选矿与药剂研究新进展[J].矿冶工程, 2007, 27(3): 28-29.
    [20]王秋林,陆小苏,彭泽友等.高磷鲕状赤铁矿焙烧-磁选-反浮选试验研究[J].湖南有色金属, 2009, 25(4): 12-15.
    [21]衣德强.梅山选矿降磷工艺研究及应用[J].宝钢技术, 2003, (1): 13-17.
    [22]鞠会霞.惠民铁矿还原焙烧同步脱磷工艺与机理研究[D].北京:北京科技大学, 2008.
    [23]艾光华,余新阳,魏宗武.某难选高磷赤褐铁矿提铁降磷选矿试验研究[J].矿冶工程, 2009, 29(2): 43-45.
    [24]余永富,程建国,陈泉源.磁浮新工艺流程选别白云鄂博中贫氧化矿的研究[J].矿冶工程, 1989, 9(4): 25-29.
    [25]何姜毅,周平,庄故章.某高磷铁矿提质降磷工艺研究[J].矿业工程, 2008, 6(2): 68-72.
    [26] Mamoun Muhammed, Yu Zhang. A hydrometallurgical Process for the dephosphorization of iron ore[J]. Hydrometallurgy, 1989, 21(3): 277-292.
    [27]郝先耀,戴惠新,赵志强.高磷铁矿石降磷的现状与存在问题探讨[J].金属矿山, 2007, (1): 7-11.
    [28] JIN Yong-shi, JIANG Tao, YANG Yong-bin. Removal of phosphorus from iron ores by chemical leaching[J]. J. Cent. South Univ. Technol., 2006, 13(6): 673-677.
    [29]卢尚文,刘云派.乌石山铁矿石酸式浸矿脱磷研究及其意义[J].江西冶金, 1993, 13(4): 23-26.
    [30] P. Delvasto, A. Valverde, A. Ballester. Diversity and activity of phosphate bioleaching bact- eria from a high-phosphorus iron ore[J]. Hydrometallurgy, 2008, (92): 124-129.
    [31] P. Delvasto, A. Ballester, Mobilization of phosphorus from iron ore by the bacterium Burk- holderia caribensis FeGL03[J]. Minerals Engineering Minerals Engineering, 2009, (22):1-9.
    [32]黄剑胯,杨云妹,谢洪.溶磷剂与硫杆菌协同对铁矿石脱磷的研究[J].南京林业大学学报, 1994, 18(2): 25-27.
    [33]何良菊,胡芳仁,魏德洲.梅山高磷铁矿矿石微生物脱磷研究[J].矿冶, 2000, 9(1): 31-35.
    [34]罗立群,高志,孙洁.难选铁矿石微生物脱磷技术[J].金属矿山, 2008, (8): 58-60.
    [35]李成秀,文书明.浅谈铁矿降磷的现状[J].国外金属矿选矿, 2004, (8): 6-8.
    [36] TIAN Zhi-hong, LI Ben-hai. Double Slag Operation Dephosphorization in BOF for Produc- ing Low Phosphorus Steel[J]. Journal of iron and Steel Research International, 2009,16(3): 06-14.
    [37] Chukwulebe B O, Kuznetsov C V. Utilization of high phosphorous hot metal in BOF stelm- aking[J]. AIS Tech. Proceedings, 2006, (1): 613-622.
    [38]郝旭东,李建新,张临峰等.转炉脱磷工艺的发展[J].钢铁研究, 2008, 36(5): 52-55.
    [39]小川雄司.转炉连续脱磷脱碳工艺的开发[J].世界钢铁, 2001, (6): 44-47.
    [40]周继程,薛正良,张海峰等.高磷鲕状赤铁矿脱磷技术研究[J].炼铁, 2007, 26(2): 40-43.
    [41]张一敏.固体物料分选理论与工艺[M].北京:冶金工业出版社, 2007: 166-168.
    [42]张洪恩.红铁矿选矿[M].北京:冶金工业出版社, 1983: 39-62.
    [43]《黑色金属矿石选矿试验》编写组.黑色金属矿石选矿试验[M].北京:冶金工业出版社, 1978: 186-195.
    [44] CHANG Yong-feng, ZHAI Xiu-jing, FU Yan. Phase transformation in reductive roasting of laterite ore with microwave heating[J].Trans.Nonferrous Met. Soc. China, 2008,(18): 969- 973.
    [45] Chao Li, Henghu Sun, Jing Bai. The recovery of iron from iron ore tailings using magnetic separation after magnetizing roasting[J]. Journal of Hazardous Materials, 2010, (174): 71- 77.
    [46]П.Е.奥斯塔平科.铁矿石选矿[M].北京:冶金工业出版社, 1978: 186-195.
    [47] F. O’Connor, W.H. Cheung, M. Valix. Reduction roasting of limonite ores: effect of dehydroxylation[J]. Int. J. Miner. Process, 2006, (80): 88-99.
    [48] NASR M I, YOUSSEF M A. Optimization of Magnetizing Reduction and Magnetic Separ- ation of kon Ores by Experimental Design[J]. ISIJ International, 1996, 36(6): 631-639.
    [49] M. A. Youssef, M. B. Morsi. Reduction roast and magnetic separation of oxidized iron ores for the production of blast furnace feed [J]. Canadian Metallurgical Quarterly, 1998, (37): 419-428.
    [50]秦民生.直接还原与熔融还原[M].北京:冶金工业出版社, 1988: 1-10.
    [51]杜俊峰,哀守谦.积极发展直接还原铁生产技术应对21世纪电炉废钢紧缺的挑战《[J].履及工业加热, 2002, (2): 1-4.
    [52]陈宏. HYLⅢ海绵铁生产技术[J].钢铁, 1999, 34(11): 64-67.
    [53]Gui-su Liu, Vladimir Strezov, John A. Lucas. Thermal investigations of direct iron ore reduction with coal[J]. ScienceDirect Thermochimica Acta, 2004, (410): 133-140.
    [54] Daniel R. Parisi, Miguel A. Laborde Modeling of counter current moving bed gas-solid reactor used in direct reduction of iron ore[J]. Chemical Engineering Journal, 2004, (104): 35-43.
    [55]罗巧云.我国铁矿石贸易现状及对[J].策供应链, 2009, (8): 63-67.
    [56]王骏,杨波,余子鹏.中国铁矿石供需战略分析[J].经济学家, 2005, (4): 40-43.
    [57]王秋林,陈雯,余永富等.难选铁矿石磁化焙烧机理及闪速磁化焙烧技术[J].金属矿山, 2009, (12): 74-76.
    [58]朱玉霜,朱建光.浮选药剂的化学原理[M].长沙:中南工业大学出版社, 1987: 59-60.
    [59]Ю.С.尤斯芬等.铁矿原料金属化工艺理论[M].北京:冶金工业出版社, 1991: 81-93.
    [60]黄希古.钢铁冶金原理[M].北京:冶金工业出版社, 2007: 282-299.
    [61]郭汉杰.冶金物理化学教程[M].北京:冶金工业出版社,2006:114-123.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700