用户名: 密码: 验证码:
鲕状赤铁矿分选行为及磁化焙烧的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国鲕状赤铁矿资源丰富,约占全国铁矿资源总量的1/9,由于鲕状赤铁矿嵌布粒度极细,矿物组成和矿石结构及构造复杂,是国内外公认的最难选的铁矿石类型之一,因此,这部分铁矿资源目前基本没有得到开发利用。随着国内高品位富矿及易选矿资源的日趋枯竭,国内钢铁行业正面临着巨大的原料供应压力,研究鲕状赤铁矿资源的选矿技术,对于我国钢铁行业的持续发展具有重要的战略意义和经济价值。
     本文以我国贵州某地鲕状赤铁矿资源为对象,在系统研究重选、强磁分选及强磁—浮选等物理选矿方法选别鲕状赤铁矿的效果及其制约因素的基础上,重点研究了磁化焙烧—磁选流程对鲕状赤铁矿选别指标和铁精矿脱磷的影响因素及适宜工艺制度,并应用热力学及动力学理论和X射线衍射分析、显微镜矿相分析等测试技术研究了影响磁化焙烧—磁选选别指标的机制,通过研究得出以下结论:
     (1)采用摇床分选、高梯度强磁分选及强磁—浮选流程等物理选矿方法对鲕状赤铁矿进行的分选研究发现,摇床分选指标相对较好,但所获得的铁精矿铁品位仅为54.22%,回收率为33.74%。矿石磨矿过程中易于泥化及含铁矿物嵌布粒度极细是制约鲕状赤铁矿物理选矿分选效果的主要因素。
     (2)磁化焙烧—磁选的研究结果表明,鲕状赤铁矿采取球团方式进行磁化焙烧—磁选与采取粉矿方式相比,获得的铁精矿铁品位可由52.31%提高到54.20%,但回收率基本相当,在80%左右。磁化焙烧过程中配加添加剂能提高铁精矿铁的回收率,但对铁品位基本没有影响。
     (3)对铁精矿进行的酸浸脱磷研究结果表明,酸浸能显著降低铁精矿的磷含量,并可提高铁品位,在适宜的酸浸制度下,铁精矿的磷含量由0.258%降低到0.065%,铁品位由54%左右提高到57%左右。
     (4)磁化焙烧—磁选机制研究表明,磁化焙烧过程中,赤铁矿还原成磁铁矿的反应在热力学上极为容易发生,在动力学上反应速率较快,不会成为赤铁矿还原成磁铁矿反应的制约性因素,但是磁化焙烧过程仅能改变铁的物相而不能改变含铁矿物的粒度及嵌布关系,磁化焙烧矿中含铁矿物的粒度及嵌布关系对原矿具有继承性,这是制约鲕状赤铁矿磁化焙烧—磁选分选效果的内在原因。磁化焙烧过程中配加添加剂对赤铁矿还原成磁铁矿反应速率的影响不大,仅略能改变含铁矿物的粒度及嵌布关系,但作用极为有限,因而对磁化焙烧—磁选分选效果改善不大。鲕状赤铁矿磁化焙烧—磁选分选效果取决于原矿中含铁矿物的粒度及嵌布关系。
     本文在鲕状赤铁矿磁化焙烧—磁选研究过程中,提出了磁化焙烧过程仅能改变铁的物相而不能改变矿石中铁矿物的粒度及嵌布关系,即磁化焙烧矿中含铁矿物的粒度及嵌布关系对原矿具有继承性的观点,揭示了制约鲕状赤铁矿磁化焙烧—磁选分选效果的内在原因。此外,还首次研究了添加剂对鲕状赤铁矿磁化焙烧—磁选分选效果的影响极其机理,上述研究工作,丰富了磁化焙烧—磁选理论,为鲕状赤铁矿磁化焙烧—磁选的工业应用提供理论指导。
The Oolitic hematite is abundant in our country, accounting for1/9of the total iron ore resources. However, this type iron resource has not been widely exploite for its fine particle distribution, complex structure and compostion. With the high comsumption of high grade ore for easy separation continually, steel industry is facing tremendous pressure from raw material supply. The job of exploring and processing the grade and refractory hematite ore is quietly urgent.
     In this paper, the samples samples were high phosphorus Oolitite from Guizhou. Firstly, conventional physical benefication methods which include shaking table, high-intensity magnetic separation and floation were used to separate this Oolitite hematite, mainly to study the constraints of conventional separation. Secondly, magnetic roasting-magnetic separation process was used to separate Oolitite hematite and dephosphorization, to find out the affecting factors and appropriate technology systems of this process. Thermodynamics analysis, kinetic analysis, X-ray diffraction and microstructure annlysis were also used to study the mechanism of magnetic roasting-magnetic separation. The results were as followed:
     (1)The results of physical separation methods indicate that shaking table separation can obtain a relatively good index, with a concentrate of 54.22%Fe grade and 33.74% Fe recovery. Sliming in grinding process and fine particle embedment were the main reasons to restrict Oolitite hematite separation.
     (2)The results of magnetic roasting-separation show that pellet magnetic roast can obtain a higher grade of iron concentrate than that of powder magnetic roasting with TFe 52.31% growing to 54.20%, but the recoveries were almost the same, keeping at about 80%. Additive can improve the iron recovery of concentrate, but has no more effect on iron grade.
     (3) the results of dephosphorization indicate that iron concentrate leached by acid can significantly reduce the phosphorus content and increase the iron grade. Under the appropriate acid leaching process, the P content of iron concentrate can be reduced from 0.258% to 0.065% and the Fe grade increased from 54% to 57%.
     (4) The mechanism research of magnetic roasting-magnetic separation results indicate that the reduction of hematite to magnetite was extremely easy to happen and the Kinetics rate of Magnetic roasting process was fast. So the kinetic was not the restrictive factor of Magnetic roast. However, magnetic roast can only change the phase of iron rather than the microstructure of ore, which means that the magnetic roast ore has the same microstructure to the raw ore. This is the internal reason to restrict magnetic roasting-magnetic separation. Additive can not change the control unit of the reaction, have little effect on the reaction rate of hematite reducing to magnetite, have little effect on the change of the microstructure of ore and promotion of the grain growth and ctystallization of magnetite, so it has little effect to improve the magnetic roasting-magnetic separation. The results of magnetic roasting-magnetic separation depend on the dissemination size and embedment relationship of iron mineral in the ore.
     This paper, on the basis of magnetic roasting-magnetic separation study, presented the view that magnetic roast can only change the phase of iron rather than the microstructure, especially the dissemination size and distribution of the ore, which revealed the underlying reasons to limit the magnetic roasting-magnetic separation. In addition, additive effect on the separation and the mechanism of Oolitite hematite magnetic roast was studied for the frist time. This reaseach project enriched the magnetic roasting-magnetic separation theory and has a good guidance for the industrial applications of Oolitite hematite with the magnetic roasting-magnetic separation.
引文
[1]邹健.世界铁矿矿情[M].北京:中国冶金矿山企业协会,2005.1-10
    [2]袁致涛,高太,印万忠等.我国难选铁矿资源利用的现状及发展方向[J].金属矿山,2007,(1):1-5
    [3]张泾生.我国铁矿资源开发利用现状及发展趋势[J].钢铁,2007,42(2):1-6
    [4]焦玉书.世界采矿技术的发展与中国铁矿增产的途径[M].沈阳:东北大学出版社,1995.1-12
    [5]侯宗林.中国铁矿资源现状与潜力[J].地质找矿论丛,2005,(4)243-247
    [6]中国冶金地质勘查工程总局.我国铁锰铬矿产资源勘查现状[R].北京:中国冶金地质勘查工程总局,2004.88
    [7]柳衡琪,张宏福.国外鲕状赤铁矿石选矿研究现状[J].湖南冶金,1987,(4):45-51
    [8]孙炳泉.近年我国复杂难选铁矿石选矿技术进展[J].金属矿山,2006,(3):11-13
    [9]童雄,黎应书,周庆华等.难选鲕状赤铁矿石的选矿新技术试验研究[J].中国工程科学,2005,(7):324-326
    [10]国外金属选矿编辑部.西德,法国,芬兰选技术考察[M],北京:冶金工业出版社,1974,45
    [11]鞍山黑色冶金矿山设计院.苏联冶金工业概况(选矿部分)[M],鞍山:冶金工业出版社,1985,121-125
    [12]刘殿文.关于鲕状赤铁矿选矿问题的探讨[J].河北理工学院学报,1983,(1):24-32
    [13]刘敏,叶连俊,陈志明等.河北宣龙地区铁质包壳粒及其形成的微生物作用[J].沉积学报,1998,16(2):24-28
    [14]朱世兴.河北宣龙区的铁质叠层石及其意义[J].中国地质科学院院报,天津地质矿产研究所分刊,1980,1(1):70-90
    [15]Thallophyta, PiaJ. Hirmel, Med, HandbuchderPalaeobo-tatanik[J]. International Journal of Mineral Processing,1927, (1):31-36
    [16]Kalkowsky E. Oolith and stromatolith in norddeufschenBuntsandstein[J]. International Journal of Mineral Processing,1908,60(1):68-125
    [17]赵一鸣,毕承思.宁乡式沉积铁矿床的时空分布和演化[J].矿床地质,2000,(4):350-361
    [18]王曰伦,刘祖彝,程裕淇.湖南宁乡铁矿地质[Z].地质汇报,1938.第32号, 1-32
    [19]傅家谟.鄂西宁乡式铁矿的形成和分布规律[J].地质科学,1959,(4):109-115
    [20]傅家谟.鄂西宁乡式铁矿的相与成因[J].地质学报,1961,41(2):112-128
    [21]湖南省地质局414地质队.湘中地区宁乡式铁矿概况[C].北京:地质出版社,1975.28-32
    [22]李桂玲,邹本利.宁乡式铁矿的选矿与利用研究[J].应用技术,2007,(4):191-193
    [23]张锦瑞,胡力可,良银英等.难选鲕状赤铁矿的研究利用现状及展望[J].中国矿业,2007,(7):74-76
    [24]姜涛,郭宇峰,邱冠周等.一种由含磷鲕状赤铁矿制备炼铁用铁精矿的方法.中国专利,200710034838.2,2007-10-17
    [25]赫荣安,陈平,熊大和.SLon强磁机选别鞍山式贫赤铁矿的试验及应用[J].金属矿山,2003,(9):19-23
    [26]文勤.鲕状赤铁矿提铁降磷工艺研究:[硕士学位论文].武汉:武汉理工大学,2006
    [27]牛福生,吴根,白丽梅等.河北某地难选鲕状赤铁矿选矿试验研究[J].中国矿业,2008,17(3):59-68
    [28]王燕民,李明德.鲕状赤铁矿的高梯度磁选[J].矿冶工程,1986,6(8):38-40
    [29]王兢,尚衍波,张覃.鲕状赤铁矿浮选试验初步研究[J].矿冶工程,2004,24(3): 38-40
    [30]刘万峰,陈金中,李成必等.湖北含磷鲕状赤铁矿选矿扩大试验研究[J].有色金属(选矿部分),2008,(2):9-12
    [31]周光俊,胡国英,石云良等.美国蒂尔登铁矿浮选降磷研究[J].矿冶工程,1991,11(2):19-22
    [32]纪军.高磷铁矿石脱磷技术研究[J].矿冶,2003,12(2):33-37
    [33]赫先耀,戴惠新,赵志强.高磷铁矿石降磷的研究现状与存在问题探讨[J].金属矿山,2007,(1):7-11
    [34]B.D.Sparks, A.F. Sirianmi. Benefication of aphoaphoriferous iron ore by agglomeration metaods. International Journal of Mineral Processing,1974,1(3): 231-241
    [35]林祥辉,罗仁美,刘增等.鄂西难选铁矿的选矿与药剂研究新进展[J].矿冶工程,2007(6):28-29
    [36]张洪恩.红铁矿选矿[M].北京:冶金工业出版社,1983.41-47
    [37]《黑色金属矿石选矿试验》编写组.黑色金属矿石选矿试验[M].北京:冶金 工业出版社,1978.187-194
    [38]任亚峰,余永富.难选红铁矿磁化焙烧技术现状及发展方向[J].金属矿山,2005,(11):20-23
    [39]朱家骥.中国铁矿选矿技术[M].北京:冶金工业出版社,1990.345-349
    [40]王成行,童雄,孙吉鹏.某鲕状赤铁矿磁化焙烧—磁选试验研究[J].金属矿山,2009,(5):57-59
    [41]李光涛,张宗华,张昱等.四川某高磷鲕状赤褐铁矿石选矿试验研究[J].金属矿山,2008,(4):43-55
    [42]沈慧庭,周波,黄晓毅等.难选鲕状赤铁矿焙烧—磁选和直接还原工艺的探讨[J].矿冶工程,2008,28(5):33-43
    [43]愈变延.用赫格纳斯法生产海绵铁和还原铁粉[J].粉末冶金工程,1997,7(3):31-39
    [44]陈述文,曾永振,陈启平.贵州赫章鲕状赤铁矿直接还原磁选试验研究[J].金属矿山,1997,(11):13-31
    [45]周继程,薛正良,李宗强等.高磷鲕状赤铁矿直接还原过程中铁颗粒长大特性研究[J].武汉科技大学学报(自然科学版),2007,30(5):458-460.
    [46]Forssberg.R.Asolfsson.G. Dephoshorisstion of high-phosphorus iron ores by means of acid leaching.Erzmetal[J]. Hydrometallurgy,1981, (34):316-322.
    [47]Mamoun Muhammed, zyu Zhang. A hydrometallurgical process for the dephosphorization of iron ore[J]. Hydrometallurgy,1989,21(3):277-322
    [48]C. Y.Cheng, V.N.Misra, J.Clough. Dephosphorisstion of western Australian iron ore by hydrometallurgical process[J]. Minerals Engineering,1999,12(9):1083-1092
    [49]Yu Z. Manoun M.The removal of phosphorus from iron ore by leaching with nitric acid[J]. Hydrometallurgy,1989,21(3):255-275
    [50]卢尚文.宁乡式鲕状赤铁矿降磷试验报告[R].南方冶金学院,1994,0-15
    [51]罗绍尧.钛铁矿精矿的选择性浸出法降磷[J].有色金属(选矿部分),1994(2)20-23
    [52]何良菊,胡芳仁,魏德州.梅山高磷铁矿石微生物脱磷研究[J].矿冶,2000,(3):31-35
    [53]姜涛,金勇士,李骞等.氧化亚铁硫杆菌浸出铁矿石脱磷技术[J].中国有色金属学报,2007,(10):1718-1722
    [54]罗立群,高志,孙洁.难选铁矿石微生物脱磷技术[J].金属矿山,2008,(8):58-60
    [55]黄剑朎,杨云妹,谢洪.溶磷剂与硫杆菌协同对铁矿石脱磷的研究[J].南京林 业大学学报,1994(2):25-29
    [56]张锦瑞.利用鲕状赤铁矿生产氧化铁红颜料的研究[J].金属矿山,2000,(1):52-57
    [57]黄希祜.钢铁冶金原理[M].北京:冶金工业出版社,2005.284-288
    [58]郭宇峰.钒钛磁铁矿固态还原强化剂综合利用研究:[博士学位论文].长沙:中南大学,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700