用户名: 密码: 验证码:
强化褐铁矿磁化焙烧的新工艺及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2008年9月,全球性的次贷危机使我国的钢铁行业面临着巨大的压力,再加上近期三大矿山单方面要求铁矿涨价90%,严峻的国内外形势,使我们更加深刻地认识到加大对国内复杂难选铁矿资源的开发利用力度具有重要的现实意义。褐铁矿与菱铁矿均是公认的低品位难选矿种,储量巨大,长期未能得到有效利用,因此,合理地开发利用褐铁矿与菱铁矿资源迫在眉睫,可以有效地缓解我国钢铁行业所面临的压力。
     褐铁矿原矿铁品位为40.33%,其磁化焙烧的最佳工艺条件为:磁化焙烧温度850℃,还原时间15min,内配煤比例为2%。此条件下得到的焙烧矿铁品位为47.15%、磁化率为2.26;焙烧矿磨矿-磁选的最佳工艺条件为:磨矿细度为-0.074mm 87.35%,磁场强度为61.52kA/m。经磁选管一次选别,得到的精矿铁品位为60.17%,铁回收率为64.76%。
     褐铁矿配加菱铁矿最佳的试验工艺参数如下:磁化焙烧温度850℃,还原时间15min,内配煤比例为1.4%,配加菱铁矿的比例为15%。此条件下得到的焙烧矿铁品位为47.18%、磁化率为2.29;焙烧矿在磨矿细度为-0.074mm 86.50%,磁场强度为61.52kA/m的条件下经磁选管一次选别,得到的精矿铁品位为61.02%,铁回收率为70.20%。
     褐铁矿配加菱铁矿后比褐铁矿单独焙烧的各项指标均有所提高:在相同的磁化焙烧温度下还原相同的时间,加入菱铁矿后内配煤用量从2%降低到1.4%,减少了30%;同时磁选精矿的铁品位从60.17%升高到61.02%,而回收率也从64.76%提高到70.20%。
     褐铁矿以及褐铁矿配加菱铁矿后通过磁化焙烧-磁选工艺后,磁选精矿都可以达到较好的指标,能够为下一道工序提供良好的原料。菱铁矿在磁化焙烧过程中存在一个自身磁铁矿化的过程,其热分解产生的CO2可使FeO转化为Fe3O4,而反应生成的CO又可将试样中的Fe2O3还原成Fe3O4,因此加入菱铁矿后可以降低还原剂的用量。同时,配入菱铁矿后由于菱铁矿的分解是在还原气氛下完成的(混合矿内配煤外配焦粉),分解式为:3FeCO3→Fe3O4+2CO2+CO;还原气氛不仅有助于磁铁矿的稳定,不被氧化且与分解时放出的CO气体一起参与赤铁矿的还原反应,即3Fe2O3+CO→2Fe3O4+CO2。因此,此时磁选精矿的铁品位和回收率均比不配菱铁矿时好。
     由动力学试验结果可知:单一褐铁矿的磁化焙烧反应遵循未反应核模型,反应受内扩散控制,其表观活化能Ea=34.79KJ/mol,速率方程式为k=0.2227e-4186/T;未反应核模型并不适用于混合矿的磁化焙烧反应,通过分析计算得其表观活化能Ea=32.33KJ/mol,速率方程式为k=0.4928e-3888/T。由于配加菱铁矿后菱铁矿热分解产生的气体要向外扩散,导致混合矿的致密度有所降低,此时在团块中必然产生了一定比例的孔隙,原本致密的团块不再是无孔固体,气体扩散的阻力降低,还原反应更易进行,还原剂用量更低。
     焙烧矿球磨磁选后的尾矿中大部分为微细粒矿物,其中有价成分铁的含量依然较高,本试验考虑添加一定比例的较大粒度的天然磁铁矿充当载体,以充分回收微细粒矿物中的有价元素。通过计算可知:当要回收的有价元素的粒度小于38μm时,加入的磁载体的粒度等于或小于100μm时磁团聚力达到最大值,此时吸附效果最佳。
     磁团聚试验的最佳参数条件如下:天然磁铁矿的粒度范围为120~180μm,天然磁铁矿占混合矿的比例为10%,当焙烧矿的磨矿细度为-0.074mm86.50%时,此时扣除天然磁铁矿后的磁选精矿的铁品位为61.81%,铁回收率为74.85%,比不加天然磁铁矿时的铁品位提高了0.79%,铁回收率提高了4.65%。
In september,2008, our steel industry faced adverse conditions because of the global Subprime Crisis, superadded the three mines continues recently claimed to we should pay as much as 90% more for iron ore unilaterally. The severe domestic and international situation made us realized exploiting refractory iron ore resources had important significance in deeper ways. Limonite and siderite were low-grade and hard-to-win ores, although we had a tremendous amount of them, we had not exerted them effectively for a long time. As a result, it was high time that we should use limonite and siderite reasonably, on this condition, the pressure on our steel industry could be relieved effectively.
     The grade of raw limonite was 40.33% and the best technological conditions of magnetizing roasting were as follows:magnetizing roasting temperature was 850℃, reducing time was 15min and blending coal proportion was 2%. Upon these conditions, we could get roasted ore which contained 47.15% TFe、2.26 magnetic susceptibility; while the best processconditions of grinding-magnetic separation were:grinding fineness was -0.074mm 87.35% and magnetic density was 61.52kA/m. By magnetic separation process, a concentrate with 60.17% TFe and 64.76% recovery was obtained.
     The best processconditions of limonite adding siderite by magnetizing roasting were:magnetizing roasting temperature was 850℃, reducing time was 15min and blending coal proportion was 1.4%. On these conditions, we could get roasted ore which contained 47.18% TFe、2.29 magnetic susceptibility; while the best technological conditions of grinding-magnetic separation were as follows:grinding fineness was-0.074mm 86.50% and magnetic density was 61.52kA/m. By magnetic separation process, a concentrate with 61.02% TFe and 70.20% recovery was obtained.
     The various index sign of limonite adding siderite was better than limonite roasting alone:at the same magnetizing roasting temperature and reducing time, the blending coal proportion decreased from 2% to 1.4% after adding siderite, decrease by 30%; meanwhile the Fe content of magnetic concentrate increased to 61.02% from 60.17%, and the recovery upgraded to 70.20% from 64.76%.
     By magnetizing roasting of limonite and limonite adding side-rite, the magnetic concentrate we got was so perfect that it could offer a good raw material for next workstage. In the course of mag-netizing roasting, siderite could be self-magnetized, the CO2 came from thermal decomposition could translate FeO into Fe3O4,theFe2O3 was reduced to Fe3O4 under the chemically-formed CO, so thedosage of reducing agent dropped after adding siderite. Meanwhile, because siderite resolved under reducing atmosphere, the decomposetion was: 3FeCO3→Fe3O4+2CO2+CO; the reducing condition not only kept the magnetite stable, not oxy-genated but also the ejective gas CO by resolving could reduce hematite, namely 3Fe2O3+CO→2Fe3O4+ CO2. For these reasons, the Fe content and recovery of magnetic concentrate were better than without siderite.
     The magnetizing roasting of limonite alone followed unreacted core model, it was controlled by the internal diffusion and its apparent activation energy Ea=34.79KJ/mol while the rate equation was k=0.2227e-4186/T; However, unreacted core model was not applicable to mixed ore,through analyzing and calculating the magnetizing roasting of mixed ore,we got that its apparent activation energy Ea=32.33KJ/mol, meanwhile the rate equation was k= 0.4928e-3888/T.Because of the gas which came from siderite's thermal decomposition wanted to diffuse outwards,the consistency of the mixed ore reduced. At the same time,there were some small opening,as a result,the resistance of gas diffusion dropped,while the reductant dosage also decreased.
     Most tailings after grinding-magnetic separation was fine-particle mineral, the valuable component Fe was still high, so this paper considered to add some natural coarse-grained magnetite as carrier to recover the valuable element from fine-particle mineral adequately.
     We found that through calculating: if we wanted to recover the valuable element, the granularity of the magnetic carrier must be equal or less than 100μm, this moment the magnetic agglomeration forces could be the maximum.
     The best processconditions of magnetic agglomeration test were as follows:natural magnetite's granularity was 120~180μm, the proportion of natural magnetite was 10%, when the grinding fineness was-0.074mm86.50%, we could get magnetic concentrate which had the Fe content 61.81% and recovery 74.85% expect natural magnetite, while the Fe content increased 0.79% and the recovery increased 4.65%.
引文
[1]韩跃新,袁致涛,李艳军等.我国金属矿山选矿技术进展及发展方向[J].金属矿山,2006(1):34-52
    [2]孙炳泉.我国复杂难选铁矿石选矿技术进展[J].金属矿山,2005(8):31-34
    [3]东乃良,朱俊士.中国冶金百科全书选矿卷[M].北京:冶金工业出版社,1992:33
    [4]Arinez M, Bisonard E, Flores H,etc.Beneficiation of Low-Grade Iron Ores by a Reducing Roast and Magnetic Separation[J].Revista de Metalurgia,1982, 18 (1):45-55
    [5]刘万灵.缺氧磁化焙烧技术用于处理硫砷金精矿[J].黄金,2000,21(12):26-28
    [6]张洪恩.红铁矿选矿[M].北京:冶金工业出版社,1983:47-49
    [7]东北工学院选矿教研室主编.磁电选矿[M].冶金工业出版社,1981,3,133-137
    [8]潘永信,林缅,郝锦倚.菱铁矿热转变过程中岩石磁学性质基本特征[J].地球物理学报,1999,42(6),756-761
    [9]朱家骥,朱俊士.中国铁矿选矿技术[M].北京:冶金工业出版社,1994:328-329
    [10]东北工学院选矿教研室主编.磁电选矿[M].冶金工业出版社,1981,3,141-153
    [11]全宏东.矿物化学处理[M].冶金工业出版社,1984,49-50
    [12]Nasr M I,Youssef M A. Optimization of magnetizing reduction and magne-tic separation of iron ores by experimental design [J]. ISIJ International, 1996,36 (6):631-639
    [13]Kawahara M, Mitsuo T, Shirane Y,etc. Dilute sulphuric-acid leaching of garnierite ore after magnetic-roasting the ore mixed with iron power[J].Inter national Journal of Mineral Processing,1985,19(7):285-296
    [14]Ei-Tawil S Z, Morsi I M. Alkali Reductive roasting of ilmenite ore [J]. Canadian Metallurgical Quarterly,1996,35(1):31-37
    [15]Uwadiale G G O O. Magnetizing Reduction of iron ores [J]. Mineral Pro-cessing and Extractive Metallurgy Review,1992,11(1):1-19
    [16]东北工学院选矿教研室主编.磁电选矿[M].冶金工业出版社,1981,3:137-140
    [17]曾学昌.磁化焙烧竖炉风路系统的改造[J].鞍钢技术,2003:31-37
    [18]孙庆和.开拓奋进的鞍山黑色冶金矿山设计研究院[J].钢铁,1991,26(4):83
    [19]姜华.不断改进的酒钢选矿厂竖炉焙烧工艺[J].金属矿山,2006,7:44-46
    [20]孙忠信.酒钢焙烧铁矿石磁选特性[J].金属矿山,1992,10:36-40
    [21]张卯均,胡为柏,童国光等.选矿手册第三卷第三分册[M].北京:冶金工业出 版社,1991:59-64
    [22]张乃庚.矿石粒度对磁化焙烧均匀性的影响[J].鞍钢技术,1964,9:54-55
    [23]吕士魁,靳明月用粉煤沸腾磁化焙烧贫氧化锰的工业试验[J].金属矿山,1978,6:38-41
    [24]Youssef M A and Morsi M B. Reduction Roast and Magnetic Separation of Oxidized Iron Ores for the Production of Blast Furnace Feed[J].Cana-dian Metallurgical Quarterly,1998,37(5):419-428
    [25]Thurnhofer A,Schachinger M,Winter E,etc.Iron Ore Reduction in a Labora-tory-Scale Fluidized Bed Reactor-Effect of Pre-Reduction on Final Reduc-ti on Degree[J].ISIJ International,2005,45(2):151-158
    [26]Abdouni H, Modaressi A and Heizmann J J. Chemical Reaction[J]. Reativity Solids,1988,(5):108
    [27]Adam F,Dupre B,Gleitzer C. Cracking of Hematite Crystals during Their Low Temperature Reduction into Magnetite[J].Solid State Ionics,1989,1(32):330-333
    [28]Et-Tabirou M,Dupre B,Gleitzer C.Hematite Single Crystal Reduction into Magnetite with CO-CO2[J].Metallurgical Transactions B,1988,(4):311-317
    [29]Nasr M I,Omar A A,Khadr M H,etc. Analysis of Solid-State Reduction of Iron Ore from a Couple of Experimental Measurements[J]. Scandinavian Journal of Metallurgy,1994,(6):119-125
    [3O]El-Geassy A A, Nasr M I,.Yousef M A,etc.Behaviour of Manganese Oxi-des during Magnetizing Reduction of Baharia Iron Ore by CO-CO2 Gas Mixture [J].Ironmaking and Steelmaking,2000,27,(2):117-112
    [31]李思导.傅菊英.大冶混合型铁矿综合开发研究[J].维普资讯,1995
    [32]刘启贤.菱、褐、赤混合型铁矿石的保磁还原焙烧制.中国专利,98114198.6,1998-7-30
    [33]陈雯,严小虎,余永富等.一种菱铁矿、褐铁矿及菱褐铁矿共生矿等弱磁性铁矿的选矿方法.中国专利,200610031735.6,2006-5-30
    [34]王秋林,陈雯,余永富.綦江铁矿焙烧-磁选-阴离子反浮选试验研究[J].矿冶工程,2006,6:32-34
    [35]舒西刚,赖维远.铁矿石焙烧工艺方法.中国专利,200710092427.9,2007-7-13
    [36]赵云程.綦江铁矿选矿方法技术经济评价[J].四川冶金,1987,3:9-13
    [37]任志民.綦江铁矿合理选矿流程探讨[J].矿冶工程,1984,1:21-24
    [38]重钢技术科.利用天然气竖炉焙烧綦江式贫赤·菱铁矿试验及实践[J].金属矿山,1979,3:53-56
    [39]张卯均,胡为柏,童国光等.选矿手册第三卷第三分册[M].北京:冶金工业出版社,1991,1:324-332
    [40]蒋朝澜.磁选理论及工艺[M].北京:冶金工业出版社,1994,1:175-188
    [41]陈甲斌,许敬华.国内外铁矿石市场形势分析[J].江苏地质,2007,(2):151-156
    [42]张径生.我国铁矿资源开发利用现状及发展趋势[J].中国冶金,2007,17(1):1-6
    [43]王新继.武钢大冶铁矿尾矿旋流器-浓密机混凝沉降工艺试验[J].武钢矿业文集,1998:185
    [44]贺政权.应用SLon脉动高梯度磁选机回收大冶铁矿尾矿泥的试验研究[J].江西有色金属,1997,11(3):31
    [45]王亚平,张明晨.人工矿床的研究·以大冶铜绿山为例[J].矿产综合利用,2000,5:34-35
    [46]李文丽,姜立峰.包钢选矿厂再磨再选工艺生产实践探讨[J].包钢科技,2008,34(5):11
    [47]贾艳,印彩霞.包钢外购铁精矿提质降杂的试验研究[J].矿业快报,2008,5:38-39
    [48]熊大和.SLon磁选机在包钢选厂的试验与应用[J].金属矿山,2007,10:55
    [49]王中明,杨仕勇.俄罗斯某铁矿的选矿工艺研究[J].国外金属矿选矿,2005,9:32
    [50]薛伟.关于江西某褐铁矿选矿工艺的探讨[J].中国矿业,2007,6:76
    [51]李广涛,张宗华.某高磷鲕状赤褐铁矿的焙烧-磁选试验研究[J].矿业快报,2008,1:28-29
    [52]张汉泉.难选赤褐铁矿焙烧-磁选试验研究[J].中国矿业,2006,5:46-48
    [53]张桂兰,李桂芹.难选低品位褐铁矿石的选矿试验[J].河北理工学院学报,1999,5:7-8
    [54]郑志良.浅谈选别褐铁矿[J].江西冶金,1998,6:37-38
    [55]谢富良.铁坑褐铁矿选矿新工艺研究[J].冶金矿山设计与建设,1996,522-23
    [56]刘卫强,张宗华.云南某褐铁矿的选矿工艺研究[J].云南冶金,2006,3:20
    [57]任亚峰,余永富.难选红铁矿磁化焙烧技术现状及发展方向[J].金属矿山,2005,11:20-23
    [58]刘明宝.菱铁矿选矿研究现状及其应用[J].中国非金属矿工业导刊,2007:14-15
    [59]罗立群.菱铁矿的选矿开发研究与发展前景[J].金属矿山,2006,1:69-72
    [60]邓强.贵州某难选褐铁矿选矿试验研究[J].金属矿山,2009,2:69-70
    [61]曾克文.蒙古某难选赤、褐铁矿选矿选矿试验研究[J].金属矿山,2009,1:57-58
    [62]李广涛.四川某高磷鲕状赤褐铁矿石选矿试验研究[J].金属矿山,2008,4:44-46
    [63]胡定保.某褐铁矿两种选别流程试验研究[J].金属矿山,2006,8:198-199
    [64]姚培慧.中国铁矿志[M].北京:冶金工业出版社,1993:153
    [65]张卯均.选矿手册.第三卷,第三分册[M].北京:冶金工业出版社,1991:46
    [66]Nogueita R C, Ogasawara T. Purificacao De Minerio De Ferro Atraves A Spearacao Magnetica No Estado Parcialmente Reduzido. Left Bracket Purification of Partially Reduced Iron Ore By Magnetic Separation Right Bracket[J]. In:33rd Congresso ABM(Proc.Conf.),Portugu:Rio de Janerio,1978:17-18
    [67]张平民.工科大学化学[M].湖南:湖南教育出版社,2002:188-200,364-370
    [68]张卯均,胡为柏,童国光等.选矿手册,第3卷,第3分册[M].北京:冶金工业出版社,1991:44
    [69]黄希祜.钢铁冶金原理[M].北京:冶金工业出版社,2004:78-87
    [70]莫鼎成.冶金动力学[M].湖南:中南工业大学出版社,1987:247-250
    [71]林潮,孙传尧.强磁性粒子间磁团聚力的研究[J].矿冶,2000,3:27-29
    [72]张达宋.物理学教程[M].北京:高等教育出版社,1989:102
    [73]劳兰P,考森DR.电磁场与电磁波[M].北京:人民教育出版社,1980:47-55

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700