用户名: 密码: 验证码:
InP基HEMT器件及毫米波单片放大电路研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
InP基高电子迁移率晶体管(HEMT)具有电子迁移率高、噪声低、功耗低及增益高等特点,是毫米波段最具竞争力的半导体器件之一,在高速、高频等应用领域中占据着重要的地位。本文重点围绕InP基HEMT器件关键工艺、器件制备、单片集成电路设计等方面展开工作,取得的主要研究成果如下:
     1.开发了InP基HEMT器件关键工艺:A)通过PMGI/ZEP520A/PMGI/ZEP520A自对准曝光工艺,成功开发出69nm栅线条,避免了两次曝光套刻偏差、减少了曝光时间并提高了抗干法刻蚀能力;B)采用Ti/Pt/Au非合金欧姆接触金属,保证了良好的热稳定性和光滑平整的表面形貌,欧姆接触电阻Rc为0.058Ω·mm;C)开展了InP基HEMT器件功能材料腐蚀和刻蚀实验:调节丁二酸腐蚀溶液配比,实现了InGaAs帽层材料与InAlAs势垒层材料腐蚀选择比大于100;ICP低速低损伤刻蚀InP腐蚀截止层工艺,保证了横向上InP材料对器件的大面积保护及纵向上薄栅沟间距对跨导的有利影响。
     2.对关键工艺进行整合,在自行设计的晶格匹配型外延材料上,研制出高性能InP基HEMT器件,基本满足W波段MMIC设计要求。不带InP截止层HEMT器件,电流增益截止频率(fT)为150GHz,最高振荡频率(fmax)为201GHz;带InP截止层HEMT器件,钝化前:fT=164GHz,fmax=389GHz;钝化后:fT=135GHz,fmax=325GHz。
     3.在InP基HEMT器件工艺的基础上,建立了整套MMIC工艺流程。MMIC整套工艺中集成了InP基HEMT晶体管、TaN薄膜电阻、Si3N4MIM电容、CPW传输线和空气桥,完全满足毫米波集成电路的设计与制作。
     4.根据工艺实验和测试数据结果,分析了横向栅槽腐蚀宽度和钝化工艺对器件交直流特性的影响,从理论上对器件工艺的优化进行指导;其次分析了栅宽对器件增益和功率特性的影响,并对器件频率和噪声性能随着器件偏置的变化关系进行分析,为电路设计挑选出最佳器件尺寸和偏置。
     5.采用原理图与电磁场联合仿真的方法设计了一款W波段单级LNA和一款两级Cascode放大器,并利用开发的InP基HEMT MMIC工艺流程进行流片、测试。W波段单级LNA芯片面积为900μm×975μm, Gain=15.2dB@95GHz,NF=4.3dB@87.5GHz,Psat,out=8.05dBm@88GHz。W波段Cascode放大器芯片面积为1.85mm×0.932mm, Gain=26.2dB@106GHz。级间采用叉指电容进行耦合,提高了电路稳定性。两款MMIC的研制成功,表明了所开发的InP基HEMT工艺对W波段电路的应用潜力。
InP-based high electron mobility transistors (HEMTs) have shown extremely highelectron mobility, superior noise figure, low power consumption and high gainperformance, making them as the competitive candidates for millimeter waveapplications. In this dissertation, critical process, device fabrication and monolithicamplifier circuits for InP-based HEMTs have been studied. The main results aresummarized as follows:
     1. Critical fabrication technologies for InP-based HEMT have been developed: A)69nm T-shapped gate is successfully developed in PMGI/ZEP520A/PMGI/ZEP520Aby self-aligned exposure method, which avoids alignment deviation, decreases exposuretime and improves etch-resistant ability. B) Comparative experiments suggest thatTi/Pt/Au non-alloyed ohimic contact exhibits superior thermal stability and surfacemorphology, and the non-alloyed contact resistance is0.058Ω·mm. C) A series ofetching experiments have been carried out. The gate recess was formed by selective wetchemical etching. Etching selectivity ratio of InGaAs over InAlAs can exceed to100byadjusting the mixing proportion of succinic acid and hydrogen peroxide. The lowdamage dry-etching of InP stopper layer by ICP is explored to decrease gate-channelvertical distance and simultaneously ensure the protective effect of InP layer to theexposed gate-recess region.
     2. Based on the developed critical technologies, InP-based HEMTs have beensuccessfully fabricated on the lattice-matched epitaxial layer designed and optimized byourselves, which are quite suitable for W-band circuits. The current gain cutofffrequency (fT) and the maximum oscillation frequency (fmax) are150GHz and201GHzfor devices without InP etching-stop layer. With regard to ones with InP etching-stopperlayer, fTand fmaxare164GHz and389GHz, but decrease to135GHz and325GHzafter passivation.
     3. A full set of3inch InP-based HEMT MMIC process has been established,which includes: InP-based HEMT, TaN thin film resistance, Si3N4MIM capacitance,CPW transmission line and airbridges. It is suitable for the design and fabrication ofmillimeter wave integrated circuits.
     4. The impact of gate-recess lateral width and Si3N4passivation process on the DC and RF characteristics of InP-based HEMTs have been discussed to providetheoretical guidance for the optimization of device. The dependence of frequency andnoise characteristics on dimension and bias condition has been investigated to directchoosing the appropriate device and bias condition for millimeter-wave circuit design.
     5. Two chips of W-band monolithic amplifier circuits have been designed andfabricated in InP-based HEMT MMIC technology. The designed W-band low noiseamplifier is realized in cascode configuration and coplanar waveguid topology, leadingto a compact chip-size of0.992mm0.987mm and an excellent small-signal gain of15.2dB at95GHz. The noise figure is4.3dB at87.5GHz, and the saturated outputpower is8.05dBm at88GHz. The two-stage W-band cascode amplifier has a chip-sizeof1.85mm×0.932mm and a small-signal gain of25.7GHz at106GHz. Inter-digitalcoupling capacitor blocks low frequency signal, thus enhancing the stability of amplifier.The successful design experiments indicate that the InP-based HEMT technology has agreat potential for W-band applications.
引文
[1.1] Aksun M I, Peng C K, Ketterson A A, et al. High frequency modulation dopedfield effect transistors in InAlAs/InGaAs/InP material system. Proceedings of theInternational Electron Devices Meeting, Los angeles, CA,1986:822-823.
    [1.2] Aust M, Yonaki J, Nakano K, et al. V-band monolithic two stage HEMTamplifiers. Proceedings of the IEEE Military Communications Conference,Conference Record Bridging the Gap Interoperability, Survivability, Security,Boston, MA,1989:739-743.
    [1.3] Aust M, Yonaki J, Nakano K, et al. A family of InGaAs/AlGaAs V-bandmonolithic HEMT LNAs.1989proceedings of the Gallium Arsenide IntegratedCircuit (GaAs IC) Symposium: Technical Digest, San Diego, CA, USA,1989:95-98.
    [1.4] Smith P, Chao P, HO P, et al. Microwave InAlAs/InGaAs/InP HEMTs: status andapplications. Proceedings of the Second International Indium Phosphide andRelated Materials, Denver, CO, USA,1990:39-43.
    [1.5] Chow P D, Tan K, Streit D C, et al.94GHz InAlAs InGaAs InP HEMTLow-Noise Downconverter. Proceedings of Monolithic Microwave IntegratedCircuits for Sensors, Radar, and Communications Systems, Orlando, FL,1991:48-54.
    [1.6] Wang H, Lai R, Chen T H, et al. A monolithic W-band three-stage LNA using0.1μm InAlAs/InGaAs/InP HEMT technology. Proceedings of the IEEE MTT-SInternational Microwave Symposium Digest, Atlanta, GA, USA,1993:519-522.
    [1.7] Lai R, Wang H, Tan K L, et al. A monolithically integrated120GHzInGaAs/InAlAs/InP HEMT amplifier. IEEE Microwave and Guided Wave Letters.1994,4(6):194-195.
    [1.8] Wang H, Lai R, Lo D C W, et al. A140-GHz monolithic low noise amplifier.IEEE Microwave and Guided Wave Letters.1995,5(5):150-152.
    [1.9] Ng G I, Lai R, Hwang Y, et al. A fully passivated ultra low noise W-bandmonolithic InGaAs/InAlAs/InP HEMT amplifier. Proceedings of the IEEEMicrowave and Millimeter-Wave Monolithic Circuits Symposium: Digest ofPapers, Orlando, FL,1995:63-66.
    [1.10] Radisic V, Pobanz C, Hu M, et al. A high-performance85-119GHz GCPWMMIC low noise amplifier. Proceedings of the IEEE Radio FrequencyIntegrated Circuits (RFIC) Symposium: Digest of Papers, Boston, MA,2000:43-46.
    [1.11] Grundbacher R, Lai R, Barskey M, et al. Enhancement-modeInGaAs/InAlAs/InP high electron mobility transistor with0.1μm gate. JapaneseJournal of Applied Physics Part1-Regular Papers Short Notes&Review Papers.2002,41(2B):1108-1110.
    [1.12] Elgaid K, Mclelland H, Stanley C R, et al. Low noise W-band MMMICamplifier using50nm InP technology for millimeterwave receivers applications.Proceedings of the International Conference on Indium Phosphide and RelatedMaterials, Glasgow, Scotland,2005:523-525.
    [1.13] Mei X B, Lin C H, Lee L J, et al. A W-band InGaAs/InAlAs/InP HEMTLow-Noise Amplifier MMIC with2.5dB noise figure and19.4dB gain at94GHz. Proceedings of the20th International Conference on Indium Phosphideand Related Materials, Versailles, France,2008:1-3.
    [1.14] Nakasha Y, Sato M, Tajima T, et al. W-band transmitter and receiver modules for10-Gb/s impulse radio. Proceedings of the IEEE MTT-S InternationalMicrowave Symposium Digest, Boston, MA,2009:553-556.
    [1.15] Deal W R, Leong K, Mei X B, et al. Scaling of InP HEMT Cascode integratedcircuits to THz frequencies. IEEE Symposium on Compound SemiconductorIntegrated Circuit, Monterey, CA,2010:1-4.
    [1.16] William R, Deal K L, Radisic V, et al. Low noise amplifier at0.67THz using30nm InP HEMTs. IEEE microwave and wireless components letters.2011,21(7):368-370.
    [1.17] Nguyen L D, Jelloian L M, Thompson M, et al. Fabrication of a80nmself-aligned T-gate AlInAs/GaInAs HEMT. Proceedings of the InternationalElectron Devices Meeting: Technical Digest, San Francisco, CA, USA,1990:499-502.
    [1.18] Chao P C, Tessmer A J, Duh K H G, et al. W-band low-noise InAlAs/InGaAslattice-matched HEMTs. IEEE Electron Device Letters.1990,11(1):59-62.
    [1.19] Ho P, Kao M Y, Chao P C, et al. Extremely high gain0.15mu m gate-lengthInAlAs/InGaAs/InP HEMTs. IEEE Electronics Letters.1991,27(4):325-327.
    [1.20] Suemitsu T, Ishii T, Yokoyama H, et al.30-nm-gate InAlAs/InGaAs HEMTslattice-matched to InP substrates. Proceedings of the International ElectronDevices Meeting: Technical Digest, San Francisco, CA, USA,1998:223-226.
    [1.21] Endoh A, Yamashita Y, Higashiwaki M, et al. High fT50nm gate lattice-matchedInAlAs/InGaAs HEMTs. Proceedings of the International Conference on IndiumPhosphide and Related Materials, Williamsburg, VA,2000:87-90.
    [1.22] Wojtowicz M, Lai R, Streit D C, et al.0.1μm graded InGaAs channel InPHEMT with305GHz fTand340GHz fmax. IEEE Electron Device Letters.1994,15(11):477-479.
    [1.23] Shinohara K, Yamashita Y, Endoh A, et al. Ultrahigh-speed pseudomorphicInGaAs/InAlAs HEMTs with400GHz cutoff frequency. IEEE Electron DeviceLetters.2001,22(11):507-509.
    [1.24] Yamashita Y, Endoh A, Shinohara K, et al. Pseudomorphic In0.52Al0.48As/In0.7Ga0.3As HEMTs with an ultrahigh fTof562GHz. IEEE Electron DeviceLetters.2002,23(10):573-575.
    [1.25] Shinohara K, Yamashita Y, Endoh A, et al.547GHz ftIn0.7Ga0.3As-In0.52Al0.48AsHEMTs with reduced source and drain resistance. IEEE Electron Device Letters.2004,25(5):241-243.
    [1.26] Matsuzaki H, Maruyama T, Enoki T, et al.3S/mm extrinsic transconductance ofInP-based high electron mobility transistor by vertical and lateral scale-down.Electronics Letters.2006,42(15):883-884.
    [1.27] Lai R, Mei X B, Deal W R, et al. Sub50nm InP HEMT device with fmaxgreaterthan1THz. Proceedings of the IEEE IEDM International Electron DevicesMeeting, Washington, DC,2007:609-611.
    [1.28] Kim D-H and Del ALamo J A.30-nm InAs PHEMTs with fT=644GHz andfmax=681GHz. IEEE Electron Device Letters.2010,31(8):806-808.
    [1.29]刘亮,张海英,尹军舰等.功率增益截止频率为183GHz的In0.53Ga0.47As/In0.52Al0.48As HEMTs.半导体学报.2007,28(12):1860-1863.
    [1.30] Liu Liang, Zhang Haiying, Yin Junjian, et al. Ultrahigh-speed lattice-matchedIn0.53Ga0.47As/In0.52Al0.48As HEMTs with218GHz cutoff frequency. ChineseJournal of Semiconductors.2007,28(12):1864-1867.
    [1.31]高喜庆,高建峰,康耀辉等.栅长90nm的晶格匹配InAlAs/InGaAs/InP HEMT.电子与封装.2009,9(7):34-36.
    [1.32] Huang Jie, Guo Tianyi, Zhang Haiying, et al. Fabrication of a120nmgate-length lattice-matched InGaAs/InAlAs InP-based HEMT. Journal ofSemiconductors.2010,31(9):094008-1-094008-4
    [1.33]刘永强,曾志,刘如青等.宽带W波段低噪声放大器的设计与制作.半导体技术.2009,34(6):579-581.
    [1.34] Wang J, Cen Y, Xiao J C. S-band PHEMT monolithic frequency variablereceiver front-end. Proceedings of the International Conference on Microwaveand Millimeter Wave Technology Proceedings, Beijing, China,1998:234-237.
    [2.1]施敏,伍国珏.半导体器件物理(第三版).西安:西安交通大学出版社,2008:104-106.
    [2.2] Spicer W E, Chye P W, Garner C M, et al. The surface electronic structure ofIII-V compounds and the mechanism of Fermi level pinning by oxygen(passivation) and metals (Schottky barriers). Surface Science.1979,86(0):763-788.
    [2.3] Spicer W E, Chye P W, Skeath P R, et al. New and unified model for Schottkybarrier and III-V insulator interface states formation. Journal of Vacuum Scienceand Technology.1979,16(5):1422-1433.
    [2.4] Spicer W E, Lindau I, Skeath P R, et al. Unified mechanism for Schottky-Barrierformation and III-V oxide interface states. Physical Review Letters.1980,44(6):420-423.
    [2.5] Padovani F A and Stratton R. Field and thermionic-field emission in Schottkybarriers. Solid-State Electronics.1966,9(7):695-707.
    [2.6] Crowell C R and Rideout V L. Normalized thermionic-field (T-F) emission inmetal-semiconductor (Schottky) barriers. Solid-State Electronics.1969,12(2):89-105.
    [2.7] Chang C Y, Fang Y K, and Sze S M. Specific contact resistance ofmetal-semiconductor barriers. Solid-State Electronics.1971,14(7):541-550.
    [2.8] Anderson R L. Experiments on Ge-GaAs heterojunctions. Solid-State Electronics.1962,5(5):341-351.
    [2.9]赵毅强,姚素英,解晓东.半导体物理与器件(第三版).北京:电子工业出版社,2007:248-250.
    [2.10]虞丽生.半导体异质结物理(第二版).北京:科学出版社,2006:130-132.
    [2.11] Delagebeaudeuf D and Linh N T. Metal-(n) AlGaAs-GaAs two-dimensionalelectron gas FET. IEEE Transactions on Electron Devices.1982,29(6):955-960.
    [2.12] Das M B and Roszak M L. Design calculations for submicron gate-lengthAlGaAs/GaAs modulation-doped FET structures using carrier saturationvelocity/charge-control model. IEEE Journal of Solid-State Circuits.1985,28(10):997-1005.
    [2.13] William L. Fundamentals of III-V Devices: HBTs, MESFETs, and HFETs/HEMTs. USA: Wiley-Interscience,1999.
    [2.14] Yi-Ching P and Harris J S. Physical origin of the high output conductance inIn0.52Al0.48As/In0.53Ga0.47As/InP HEMTs. Proceedings of the Third InternationalConference Indium Phosphide and Related Materials, Cardiff, Wales,1991:344-348.
    [2.15] Nguyen L D, Larson L E, and Mishra U K. Ultra-high speed modulation-dopedfield-effect transistors: a turorial review. Proceedings of the IEEE.1992,80(4):494-518.
    [2.16] Bahl S R and Del Alamo J A. Physics of breakdown in InAlAs/n+-InGaAsheterostructure field-effect transistors. Proceedings of the Fifth InternationalConference on Indium Phosphide and Related Materials, Paris, France,1993:243-246.
    [2.17] Dickmann J, Schildberg S, Riepe K, et al. Breakdown mechanisms inpseudomorphic InAlAs/InxGa(1-x)As high electron mobility transistors on InP.Japanese Journal of Applied Physics.1995,34(4A):1805-1808.
    [2.18] Dickmann J, Schildberg S, Geyer A, et al. Breakdown mechanisms in theon-state mode of operation of InAlAs/InxGa(1-x)As pseudomorphic HEMTs.Proceedings of the Sixth International Conference on Indium Phosphide andRelated Materials, Santa Barbara, CA,1994:335-338.
    [2.19] Somerville M H, Blanchard R, Del Alamo J A, et al. A new gate currentextraction technique for measurement of on-state breakdown voltage in HEMTs.IEEE Electron Device Letters.1998,19(11):405-407.
    [2.20] Hulsmann A, Bronner W, Kohler K, et al. The problem of breakdown inMODFETs. Proceedings of the Third International Workshop on IntegratedNonlinear Microwave and Millimeterwave Circuits. Duisburg, Germany,1994:149-152.
    [2.21] Meneghesso G, Neviani A, Oesterholt R, et al. On-state and off-state breakdownin GaInAs/InP composite-channel HEMT's with variable GaInAs channelthickness. IEEE Transactions on Electron Devices.1999,46(1):2-9.
    [2.22] Dambrine G, Cappy A, Heliodore F, et al. A new method for determining theFET small-signal equivalent circuit. IEEE Transactions on Microwave Theoryand Techniques.1988,36(7):1151-1159.
    [2.23] Tasker P J and Hughes B. Importance of source and drain resistance to themaximum fTof millimeter-wave MODFETs. IEEE Electron Device Letters.1989,10(7):291-293.
    [2.24] Das M B. A high aspect ratio design approach to millimeter-wave HEMTstructures. IEEE Transactions on Electron Devices.1985,32(1):11-17.
    [2.25] Yi-Ching P, Nishimoto C, Riaziat M, et al. Impact of surface layer onIn0.52Al0.48As/In0.53Ga0.47As/InP high electron mobility transistors. IEEE ElectronDevice Letters.1990,11(7):312-314.
    [3.1] Loh W M, Saraswat K, Dutton R W. Analysis and scaling of Kelvinresistors for extraction of specific contact resistivity. IEEE Electron DeviceLetters.1985,6(3):105-108.
    [3.2] Reeves H and Harrison H. Obtaining the specic contact resistance fromtransmission line model measurements. IEEE Electron Device Letters.1982,3(5):111-113.
    [3.3] Lijadi M, Pardo F, Bardou N, et al. Floating contact transmission line modelling:An improved method for ohmic contact resistance measurement. Solid-StateElectronics.2005,49(10):1655-1661.
    [3.4] Murrmann H, Widmann D. Current crowding on metal contacts to planar devices.IEEE Transactions on Electron Devices.1969,16(12):1022-1024.
    [3.5] Braslau N. Alloyed ohmic contacts to GaAs. Journal of Vacuum Science andTechnology.1981,19(3):803-807.
    [3.6] Patrick W, Mackie W S, Beaumont S P, et al. Low temperature annealed contactsto very thin GaAs epilayers. Applied Physics Letters.1986,48(15):986-988.
    [3.7] Baca A G, Ren F, Zolper J C, et al. A survey of ohmic contacts to III-V compoundsemiconductors. Thin Solid Films.1997,308-309(0):599-606.
    [3.8] Heedt C, Gottwald P, Buchali F, et al. On the optimization and reliability of ohmicand Schottky contacts to InAlAs/InGaAs HFET. Proceedings of the FourthInternational Conference on Indium Phosphide and Related Materials, Newport,RI, USA,1992:238-241.
    [3.9] Yamashita Y, Endoh A, Shinohara K, et al. Ultra-short25-nm-gate lattice-matchedInAlAs/InGaAs HEMTs within the range of400GHz cutoff frequency. IEEEElectron Device Letters.2001,22(8):367-369.
    [3.10] Chen K J, Enoki T, Maezawa K, et al. High-performance InP-basedenhancement-mode HEMTs using non-alloyed ohmic contacts and Pt-basedburied-gate technologies. IEEE Transactions on Electron Devices.1996,43(2):252-257.
    [3.11] Hong W, Geok-ing N, Hong Y, et al. Understanding the degradation ofInP/InGaAs heterojunction bipolar transistors induced by silicon nitridepassivation. Proceedings of the IPRM IEEE International Conference On IndiumPhosphide and Related Materials, Nara, Japan,2001:252-255.
    [3.12]李效白.砷化镓微波功率场效应晶体管及其集成电路(第二版).北京:科学出版社,1998:49-50.
    [3.13] Nalamasu O, Cheng M, Kometani J, et al. Development of a chemically ampliedpositive resist material for single-layer deep-UV lithography. Proceedings ofAdvances in Resist Technology and Processing VII, San Jose, United States,1990:32-48
    [3.14] Khoury M and Ferry D K. Effect of molecular weight on poly(methylmethacrylate) resolution. Journal of Vacuum Science&Technology B:Microelectronics and Nanometer Structures.1996,14(1):75-79.
    [3.15] Endoh A, Yamashita Y, Shinohara K, et al. Fabrication technology and deviceperformance of sub-50-nm-gate InP-based HEMTs. Proceedings of the IEEEIPRM International Conference On Indium Phosphide and Related Materials,Nara, Japan,2001:448-451.
    [3.16] KIM S C, Lim B O, Lee H S et al. Sub-100nm T-gate fabrication using apositive resist ZEP520/P(MMA-MAA)/PMMA trilayer by double exposure at50kV e-beam lithography. Material Science in Semiconductor Processing.2004,7(1-2):7-11.
    [3.17]龙世兵,李志刚,陈宝钦等. ZEP520正性电子抗蚀剂的工艺研究.微细加工技术.2005,1:8-11.
    [3.18] Liu D M. Fabrication and Characterization of InAlAs/InGaAs/InAsP compositechannel HEMTS. the Degree Doctor of Philosophy in the Graduate School ofThe Ohio State University.2008:121-123.
    [3.19] Tong M, Ketterson A A, Nummila K, et al. Selective wet etching forInGaAs/InAlAs/InP heterostructure field-effect transistors. Proceedings of theFourth International Conference on Indium Phosphide and Related Materials,Newport, RI, USA,1992:298-301.
    [3.20] Mahadeva B K, Sai S G, Vyas H P, et al. Study of selective gate recess etching ofInGaAs/InAlAs/InGaAs metamorphic HEMT structures using succinic acidbased etchant. Proceedings of the IWPSD International Workshop on Physics ofSemiconductor Devices, Mumbai, India,2007:469-471.
    [3.21] Kim T-W, Kim D-H, Park S-D, et al. A two-step-recess process based on atomiclayer etching for high-performance In0.52Al0.48As/In0.53Ga0.47As p-HEMTs. IEEETransactions on Electron Devices.2008,55(7):1577-1584.
    [4.1] Bahl S R and Del alamo J A. A new drain-current injection technique for themeasurement of off-state breakdown voltage in FETs. IEEE Transactions onElectron Devices.1993,40(8):1558-1560.
    [4.2] Packard H. Automating the HP8410B microwave network analyzer. Appl Note221A.1980.
    [4.3] Eul H J and Schiek B. Thru-Match-Reflect: One result of a rigorous theory forde-embedding and network analyzer calibration. Proceedings of the18th EuropeaMicrowave Conference, Stockholm, Sweden,1988:909-914.
    [4.4] Davidson A, Jones K, and Strid E. LRM and LRRM calibrations with automaticdetermination of load inductance. Proceedings of the36th ARFTG ConferenceDigest-Fall, Monterey, CA, USA,1990:57-63.
    [4.5] Koolen M C A M, Geelen J A M, and Versleijen M P J G. An improvedde-embedding technique for on-wafer high-frequency characterization.Proceedings of the Bipolar Circuits and Technology Meeting, Minneapolis, MN,1991:188-191.
    [4.6] Engen G F and Hoer C A. Thru-Reflect-Line: An improved technique forcalibrating the dual six-port automatic network analyzer. IEEE Transactions onMicrowave Theory and Techniques.1979,27(12):987-993.
    [4.7] OSullivan T. Design of Millimeter-wave power amplifiers using InPheterojunction bipolar transistors. Doctor of Philosophy, Electrical Engineering.2009.
    [4.8] Sischka F. RF measurements and modeling with special emphasis on teststructures. IEEE International Conference on Microelectronic Test Structures,Guoman Port Dickson Resort,2000.
    [4.9] Rollett J M. Stability and power-gain invariants of linear twoports. IRETransactions on Circuit Theory.1962,9(1):29-32.
    [4.10] Lane R Q. The determination of device noise parameters. Proceedings of theIEEE.1969,57(8):1461-1462.
    [4.11] Giuseppe C and Sannino M. Computer-aided determination of microwavetwo-port noise parameters. IEEE Transactions on Microwave Theory andTechniques.1978,26(9):639-642.
    [4.12] Manual O. Automated Tuner System. Maury Microwave Corporation, Documentnumber MT993-2.
    [4.13] Zhou G G, Fischer-Colbrie A, Miller J, et al. High output conductance ofInAlAs/InGaAs/InP MODFET due to weak impact ionization in the InGaAschannel. Proceedings of the International Technical Digest Electron DevicesMeeting, Washington, DC, USA,1991:247-250.
    [4.14] Kruppa W and Boos J B. Low-frequency transconductance dispersion inInAlAs/InGaAs/InP HEMT's with single-and double-recessed gate structures.IEEE Transactions on Electron Devices.1997,44(5):687-692.
    [4.15] Somerville M H, Del Alamo J A, and Hoke W. Direct correlation betweenimpact ionization and the kink effect in InAlAs/InGaAs HEMTs. IEEE ElectronDevice Letters.1996,17(10):473-475.
    [4.16] Spicer W E, Chye P W, Garner C M, et al. The surface electronic structure ofIII-V compounds and the mechanism of Fermi level pinning by oxygen(passivation) and metals (Schottky barriers). Surface Science.1979,86(0):763-788.
    [4.17] Spicer W E, Chye P W, Skeath P R, et al. New and unified model for Schottkybarrier and III-V insulator interface states formation. Journal of Vacuum Scienceand Technology.1979,16(5):1422-1433.
    [4.18] Spicer W E, Lindau I, Skeath P, et al. Unified Mechanism for Schottky-BarrierFormation and III-V Oxide Interface States. Physical Review Letters.1980,44(6):420-423.
    [4.19] Zimmer T, Ouro Bodi D, Dumas J M, et al. Kink effect in HEMT structures: Atrap-related semi-quantitative model and an empirical approach for SPICEsimulation. Solid-State Electronics.1992,35(10):1543-1548.
    [4.20] Hori Y and Kuzuhara M. Improved model for kink effect in AlGaAs/InGaAsheterojunction FET’s. IEEE Trans Electron Devices.1994,41(12):2262-2267.
    [4.21] Suemitsu T, Enoki T, Sano N, et al. An analysis of the kink phenomena inInAlAs/InGaAs HEMT's using two-dimensional device simulation. IEEETransactions on Electron Devices.1998,45(12):2390-2399.
    [4.22] Somerville M H, Ernst A, and Del Alamo J A. A physical model for the kinkeffect in InAlAs/InGaAs HEMTs. IEEE Transactions on Electron Devices.2000,47(5):922-930.
    [4.23] Suemitsu T, Yokoyama H, Ishii T, et al.30-nm two-step recess gate InP-BasedInAlAs/InGaAs HEMTs. IEEE Transactions on Electron Devices.2002,49(10):1694-1700.
    [4.24] Dae-Hyun K and Del Alamo J A.30-nm InAs pseudomorphic HEMTs on an InPsubstrate with a current-gain cutoff frequency of628GHz. IEEE ElectronDevice Letters.2008,29(8):830-833.
    [4.25] Zhong Yinghui, Wang Xiantai, Su Yongbo, et al. An88nm gate-lengthIn0.53Ga0.47As/In0.52Al0.48As InP-based HEMT with fmaxof201GHz. Journal ofSemiconductors.2012,33(7):39-42.
    [4.26] Oh J-H, Sul W-S, Han H-J, et al. Effects of silicon-nitride passivation on theelectrical behavior of0.1μm pseudomorphic high-electron-mobility transistors.Journal of the Korean Physical Society.2004,44(4):899-903.
    [4.27] Yi-Ching P, Harris J S. Physical origin of the high output conductance inIn0.52Al0.48As/In0.53Ga0.47As/InP HEMTs. Proceedings of the Third InternationalConference Indium Phosphide and Related Materials, Cardiff, Wales,1991:344-348.
    [4.28] Hong W, Geok-ing N, Hong Y, et al. Understanding the degradation ofInP/InGaAs heterojunction bipolar transistors induced by silicon nitridepassivation. Proceedings of the IEEE International Conference On IndiumPhosphide and Related Materials, Nara, Japan,2001:252-255.
    [4.29] Yeon S-J, Seong J, Park M, et al. High performance50nmIn0.65Al0.35As/In0.75Ga0.25As metamorphic HEMTs with Si3N4passivation on thinInGaAs/InP layer. The International Conference on Solid State Devices andMaterials, Tsukuba, Japan,2007:514-515.
    [4.30] Medjdoub M, Maher H, Ladner C, et al. Silicon nitride passivation of doublechannel InP HEMTs using inductively coupled plasma-enhanced chemical vapordeposition. Proceedings of the Symposium on High Performance ElectronDevices for Microwave and Optoelectronic Applications, London, The UnitedKingdom of Great Britain and Northern Ireland,1999:33-36.
    [4.31] Chertouk M, Dammann M, K hler K, et al.0.15μm passivated InP-basedHEMT’s MMIC technology with high thermal stability in hydrogen ambient.IEEE Electron Device Letters.2000,21(3):97-99.
    [4.32] Boudrissa M, Delos E, Wallaert X, et al. A0.15-μm60-GHz high-powercomposite channel GaInAs/InP HEMT with low gate current. IEEE ElectronDevice Letters.2001,22(6):257-259.
    [4.33] Yoon H S, Lee J H, Shin J Y, et al. DC and RF characteristics ofInAlAs/InGaAs/InP Pseudomorphic HEMTs recessed by succinic acid/H2O2.Journal of Korean Physical Society.2004,45(1):594-597.
    [4.34] Kim S and Adesida I.0.15-μm-gate InAlAs/InGaAs/InP E-HEMTs utilizingIr/Ti/Pt/Au gate structure. IEEE Electron Device Letters.2006,27(11):973-976.
    [4.35] Mei X B, Farkas D, Luo W B, et al. InGaAs/InAlAs/InP power HEMT with animproved ohmic contact and an extremely high operating voltage. IEEEInternational Conference on Indium Phosphide&Related Materials, NewportBeach, CA,2009:204-206
    [4.36] Osman M N, Awang Z, Yaakob S, et al. The Impact of multiple-gated layout onthe drain-source current of pseudomorphic-HEMTS. Proceedings of theInternational RF and Microwave Conference, Putra Jaya, Malaysia,2006:201-204.
    [4.37] Dambrine G, Cappy A, Heliodore F, et al. A new method for determining theFET small-signal equivalent circuit. IEEE Transactions on Microwave Theoryand Techniques.1988,36(7):1151-1159.
    [4.38] Zhong Yinghui, Wang Xiantai, Su Yongbo, et al. Impact of the lateral width ofthe gate recess on the DC and RF characteristics of InAlAs/InGaAs HEMTs.Journal of Semiconductors.2012,33(5):61-65.
    [4.39] Ando Y and Itoh T. DC, small-signal, and noise modeling for two-dimensionalelectron gas field-effect transistors based on accurate charge-controlcharacteristics. IEEE Transactions on Electron Devices.1990,37(1):67-78.
    [4.40] Bergamaschi C, Patrick W, and Baechtold W. Determination of the noise sourceparameters in AlInAs/GaInAs HEMT heterostructures based on measured noisetemperature dependence on the electric field. proceedings of the SixthInternational Conference on Indium Phosphide and Related Materials, SantaBarbara, CA,1994:21-24.
    [5.1] Smulders P. Exploiting the60GHz band for local wireless multimedia access:prospects and future directions. IEEE Communications Magazine.2002,40(1):140-147.
    [5.2] Pfeiffer U R, Reynolds S K, and Floyd B A. A77GHz SiGe power amplifier forpotential applications in automotive radar systems.2004Radio FrequencyIntegrated Circuits (RFIC) Symposium: Digest of Papers, Fort Worth ConventionCenter, Fort Worth, TX,2004:91-94.
    [5.3] Floyd B A, Reynolds S K, Pfeiffer U R, et al. SiGe bipolar transceiver circuitsoperating at60GHz. IEEE Journal of Solid-State Circuits.2005,40(1):156-167.
    [5.4] Li W, Kraemer R, and Borngraeber J. An Improved Highly-Linear Low-PowerDown-Conversion Micromixer for77GHz Automotive Radar in SiGeTechnology. IEEE MTT-S International Microwave Symposium Digest, SanFrancisco, CA,2006:1834-1837.
    [5.5] Vizard D R and Doyle R. Advances in millimeter wave imaging and radarsystems for civil applications. IEEE MTT-S International Microwave SymposiumDigest, San Francisco, CA,2006:94-97.
    [5.6]池保勇,余志平,石秉学. CMOS射频集成电路分析与设计.北京:清华大学出版社,2006:156-170.
    [5.7]陈贵灿,程军,张瑞智等.模拟CMOS集成电路设计(第一版).西安:西安交通大学出版社,2003:70-75.
    [5.8] Schlechtweg M, Haydl W H, Bangert A, et al. Coplanar millimeter-wave ICs forW-band applications using0.15μm pseudomorphic MODFETs. IEEE Journal ofSolid-State Circuits.1996,31(10):1426-1434.
    [5.9] Tessmann A, Haydl W H, Hulsmann A, et al. High-gain cascode MMICs incoplanar technology at W-band frequencies. IEEE Microwave and Guided WaveLetters.1998,8(12):430-431.
    [5.10] Sato M, Hirose T, Ohki T, et al.94-GHz band high-gain and low-noise amplifierusing InP-HEMTs for passive millimeter wave imager. Proceedings of theIEEE/MTT-S International Microwave Symposium, Honolulu, HI,2007:1775-1778.
    [5.11] Tessmann A, Leuther A, Schwoerer C, et al. A coplanar94GHz low-noiseamplifier MMIC using0.07μm metamorphic cascode HEMTs. Proceedings ofthe IEEE MTT-S International Microwave Symposium Digest, PennsylvaniaConvention Center, Philadelphia, Pennsylvania,2003:1581-1584.
    [5.12] Pyu K-K, Kim S-C, An D. High-performance CPW MMIC LNA usingGaAs-based metamorphic HEMTs for94-GHz applications. Journal of theKorean Physical Society.2010,56(5):1509-1513.
    [5.13] Elgaid K, Mclelland H, Stanley C R, et al. Low noise W-band MMMICamplifier using50nm InP technology for millimeterwave receivers applications.Proceedings of the International Conference on Indium Phosphide and RelatedMaterials, Glasgow, Scotland,2005:523-525.
    [5.14] Archer J W and Lai R. Ultra-low-noise InP-MMIC amplifiers for85-115GHz.Proceedings of the Asia-Pacific Microwave Conference, Sydney, NSW,2000:173-176.
    [5.15] Radisic V, Pobanz C, Hu M, et al. A high-performance85-119GHz GCPWMMIC low noise amplifier. Proceedings of the IEEE Radio FrequencyIntegrated Circuits Symposium: Digest of Papers, Boston, MA,2000:43-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700