用户名: 密码: 验证码:
面向快速成型的设备控制、工艺优化及成型仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
设备控制是快速成型制造能够顺利实施的基础;工艺优化是提高成型质量,确保快速成型制造正确、高效进行的关键;而成型仿真则是验证快速成型工艺的一种有效手段,也是虚拟制造的关键技术之一。目前,国内外的相关研究还不是十分完善。为此,本文采用理论与实践相结合的方式,对这三个方面进行了较为深入的研究,主要内容及结果如下:
     (1)提出了面向快速成型设备的可重构控制软件体系结构,利用组件技术建立了可重构机制,并依据快速成型设备控制软件相似功能的抽象描述进行了可重构模块的划分。定义了设备控制软件中的关键数据对象,利用COM组件设计了可重构模块,并开发了便于用户进行多任务、多参量设备控制的图形用户界面。通过重构开发,将设备控制软件成功应用于两种不同工艺的快速成型设备。
     (2)提出了面向快速成型设备的可扩展路径规划软件体系结构,利用插件技术建立了可扩展机制,并依据路径规划软件的数据处理流程进行了可扩展模块的划分。定义了路径规划软件中的关键数据对象,利用插件设计了可重构模块,并开发了便于用户进行多任务、多参量路径规划的宿主程序。研究了用于提高路径生成效率的并行算法,并通过对比实验验证了算法的有效性。
     (3)研究了面向快速成型工艺的计算机辅助生产效率优化。通过分析快速成型生产过程的时间消耗,建立了3维零件在3维成型空间中的2.5维排料优化规则。在此基础上,研究了计算机辅助2.5维排料,提出利用3维零件模型在成型方向的投影将2.5维排料转化为2维排料的简化方法,并研究了一种利用切片数据来生成投影的算法。通过对比实验,验证了效率优化是有效的。
     (4)研究了面向快速成型工艺的几何仿真。提出了面向快速成型工艺的通用材料填充模型:离散成型空间模型。根据成型矢量在不同快速成型工艺中的作用,基于该模型分别研究了“添加材料式”快速成型工艺和“去除材料式”快速成型工艺的动态几何仿真。为减少动态仿真时显卡需要处理的数据量,研究了显示数据的动态缩减算法,并以几种常见模型为例验证了算法的有效性。
     (5)研究了面向快速成型设备的浮雕图像处理方法。利用可视化工具库研究了二维浮雕图像的三维化处理和三维浮雕模型的切片轮廓提取方法,并基于可扩展路径规划软件体系结构研究了面向快速成型设备的浮雕数控代码生成方法。针对快速成型工艺的优势,以及浮雕仅需要确保外观质量的特点,提出了空心浮雕的概念,并研究了直接从图像生成空心浮雕数控代码的算法。基于选区激光熔化工艺制造出了金属材料的空心浮雕。
     (6)研究了面向选区激光熔化工艺的计算机辅助成型质量优化。提出了针对成型方向和能量输入的两步优化法。建立了成型方向的优化模型,并通过遗传算法求解模型实现了成型方向的计算机辅助优化。建立了用于能量输入调节的倾斜角静态查找表,实现了能量输入的计算机辅助优化。通过对比实验,验证了成型质量优化是有效的。
Equipment control is basal for successful implementation of the Rapid Prototyping (RP)manufacturing. Process optimization is crucial to the correct and efficient working of RP.Process simulation is an effective means of process validation and one of key technologies forVirtual Manufacturing. At present, the researches on these aspects are incomplete. So, thispaper focuses on these aspects and studies some key technologies. The main contents andresults are as follows:
     (1) A reconfigurable architecture of control software for RP equipment is introduced.Reconfigurable mechanism is established based on component technology. Reconfigurablemodules are divided according to the similar functions of control software. The key dataobjects of control software are defined. The reconfigurable modules are designed as COM(Component Object Model) component. A GUI (Graphic User Interface) for equipmentcontrol with multi-tasks and multi-parameters, is designed. By reconfigurable developing, thecontrol software is successfully applied to two different RP equipments.
     (2) An extendable architecture of tool path planning software for RP equipment isintroduced. Extendable mechanism is established based on plug-in technology. Extendablemodules are divided according to the data processing of tool path planning software. The keydata objects of tool path planning software are defined. The extendable modules are designedas plug-ins. A host program for tool path planning with multi-tasks and multi-parameters, isdeveloped. Parallel algorithm for path generation is studied and verified by experiment.
     (3) Computer-aided production efficiency optimization method for RP process is studied.After analysing the time consumption of RP production process,2.5-D nesting rules areestablished, aimed at arranging the3-D parts on the2-D platform more efficiently. Then,computer-aided2.5-D nesting is studied and a simplified method is presented. The methodcan transform the2.5-D nesting to2-D nesting by projection. At last, an experiment is givento verify the proposed optimization method.
     (4) Geometric simulation for RP process is studied. A common model, namely DiscretedBuilding Space Model, for showing the addition of material in RP process is presented.According to the corresponding roles of building vector in different RP processes, dynamicgeometry simulations of “adding” RP process and “cutting” RP process are studied based onthe model. In order to reduce the graphics processing data, dynamic reduction algorithm fordisplay data is studied. At last, several common models are used to verify the proposedalgorithm.
     (5) Bas-relief image processing methods for RP equipment is studied. The Visual Toolkit(VTK) is used for generating the3-D model from2-D bas-relief image and extracting thecontours from3-D bas-relief model. Then, the NC code generation for bas-relief is studiedbased on the extendable architecture of tool path planning software. Due to the advantages ofRP process and the characteristic of bas-relief, hollow bas-relief is presented to reduce thematerial used in RP process. The method for directly generating NC code for hollow bas-reliefis studied. At last, a hollow bas-relief is fabricated by Selective Laser Melting (SLM) process.
     (6). Computer-aided fabrication quality optimization method for SLM process is studied.A two-step method is proposed for optimizing building orientation and energy input. Anoptimization model for building orientation is established and a solving method based ongenetic algorithms is given. In order to optimize energy input, a static lookup table isestablished. At last, an experiment is carried out to verify the proposed optimization method.
引文
[1]王先逵.制造技术的历史回顾与面临的机遇和挑战[J].机械工程学报,2002(8):1-8
    [2]蒋贵川,杨建华,吴澄.先进制造关键技术:敏捷制造、并行工程与供应链[J].中国机械工程,2001,12(6):637-642
    [3]陈定方,尹念东.国际先进制造技术发展现状[J].黄石理工学院学报,2006,22(4):5-7
    [4]宋天虎.我国快速成形制造技术的发展与展望[J].中国机械工程,2000,11(10):1081-1083
    [5]陈显松.快速成型制造技术及其系统发展研究[J].现代机械,2005,(2):65-67
    [6]王广春.快速原型技术及其应用[M].北京:化学工业出版社,2006:1-12
    [7] Freitag D, Wohlers T, Philippi T. Rapid Prototyping: State of the Art[DB/OL]. http://ammtiac.alionscience.com/technical_files/Rapid.doc,2005-10-10
    [8]颜永年,林峰,张人佶等.快速制造技术的最新进展及其发展趋势[J].电加工与模具,2006,(增刊):12-16,21
    [9]李涤尘,卢秉恒,赵万华.快速成型的未来发展—快速产品制造[J].航空制造技术,2004,5:48-49
    [10]冯涛,李志刚.快速成型与快速制模技术的最新发展—EuroMold’2003考察报告[J].模具工业,2004,278(4):3-5
    [11]张永忠,石力开,章萍芝等.基于金属粉末的激光快速成型技术新进展[J].稀有金属材料与工程,2000,29(6):361-365
    [12] Committee F42on Additive Manufacturing Technologies[EB/OL]. http://www.astm.org/COMMIT/COMMITTEE/F42.htm,2010-11-12
    [13]王占礼.面向虚拟制造的数控加工仿真技术研究[D].长春:吉林大学,2007
    [14] Donald W. Harby, Grant R. Townsend, Troy E. Ollison, et al. SERVICE LEARNING: AComparative Study on the Compression Strength Properties of3D-Printed RapidPrototyped Components Utilizing Various Manufacturing Build Parameters [DB/OL].http://technologyinterface.nmsu.edu/Spring07/07_Ulmer/, Spring2007
    [15]苏旭彬.基于选区激光熔化的功能件数字化设计与直接制造研究[D].广州:华南理工大学,2011
    [16]王广春,赵国群.快速成型与快速模具制造技术及其应用[M].北京:机械工业出版社,2008:12-95
    [17] Stereolithography[EB/OL]. http://www.custompartnet.com/wu/stereolithography,2011-1-10
    [18] Selective Laser Sintering[EB/OL]. http://www.custompartnet.com/wu/selective-laser-sintering,2011-1-10
    [19] Over C, Meiners W, Wissenbach K, Lindemann M, et al. Selective laser melting: a newapproach for the direct manufacturing of metal parts and tools[R].1STInternationalConference on Laser Assisted Net Shape Engineering, Germany: Frankfurt,2001
    [20]沈显峰.多组元金属粉末直接激光烧结过程数值模拟及烧结区域预测[D].成都:四川大学,2005
    [21] Direct Metal Laser Sintering[EB/OL]. http://www.custompartnet.com/wu/direct-metal-laser-sintering,2011-1-10
    [22]颜永年,齐海波,林峰等.三维金属零件的电子束选区熔化成形[J].机械工程学报,2007,43(6):87-92
    [23]姜明,齐海波,林峰等.电子束选区熔化技术的控制系统设计[J].机械设计与制造,2008,(1):189-191
    [24] Joe Hiemenz. Rapid prototypes move to metal components[DB/OL]. http://www.eetimes.com/design/industrial-control/4013703/Rapid-prototypes-move-to-metal-components,2011-1-10
    [25]陈云霞.扫描电子束三维成型的研究[D].上海:上海交通大学,2010
    [26]杨继全,朱玉芳.先进制造技术[M].北京:化学工业出版社,2004
    [27] Laminated Object Manufacturing (LOM)[EB/OL]. http://www.custompartnet.com/wu/laminated-object-manufacturing,2011-1-10
    [28] Solid Ground Curing: An Introduction[EB/OL]. http://www.efunda.com/processes/rapid_prototyping/sgc.cfm,2011-1-10
    [29] Fused Deposition Modeling (FDM)[EB/OL]. http://www.custompartnet.com/wu/fused-deposition-modeling,2011-1-10
    [30]黄卫东,李延民,冯莉萍等.金属材料激光立体成形技术[J].材料工程,2002,(3):40-43,27
    [31]黄凤晓.激光熔覆和熔覆成形镍基合金的组织与性能研究[D].长春:吉林大学,2011
    [32] Laser Powder Forming[EB/OL]. http://www.additive3d.com/lens.htm,2011-1-10
    [33] iPro9000XL SLA production printer[EB/OL]. http://production3dprinters.com/sla/ipro-9000-xl-sla-production-printer,2011-1-10
    [34]世界最大“立体打印机”亟待推广[EB/OL]. http://www.binhurp.com/news/html/?21.html,2012-1-16
    [35] Aerospace's Demand for Larger ALM Parts Could be Satisfied by Concept LaserTechnology[EB/OL]. http://www.time-compression.com/x/guideArchiveArticle.html?gname=&id=11211,2011-1-10
    [36] Arcam A2: Additive Manufacturing for the Aerospace and Defense industries[EB/OL].http://www.arcam.com/products/arcam-a2/index.aspx,2011-1-10
    [37] Construction of the LOM2030E[EB/OL]. http://lkt.mb.uni-magdeburg.de/html/lom2030/eindex.html,2011-1-10
    [38] Solid Ground Curing[EB/OL]. http://www.eng.nus.edu.sg/LCEL/RP/rpt_sgc.html,2011-1-10
    [39]3D Production System: Fortus900mc[EB/OL]. http://www.fortus.com/Products/Fortus-900mc.aspx,2011-1-10
    [40] LENS Systems[EB/OL]. http://www.optomec.com/Additive-Manufacturing-Systems/Laser-Additive-Manufacturi ng-Systems,2011-1-10
    [41]北京隆源自动成型系统有限公司[EB/OL]. http://www.lyafs.com.cn/,2011-1-10
    [42]刘冰.快速成形工艺软件的若干关键技术研究[D].武汉:华中科技大学,2009
    [43]马雷,李涤尘,卢秉恒等.光固化快速成形中激光扫描方法的研究[J].中国机械工程,2003,14(7):541-544
    [44]邹建锋.光固化成形工艺及制件精度的研究[D].武汉:华中科技大学,2004
    [45]罗声,胥光申,金京等.光固化快速成形工艺中过固化深度的研究[J].机械科学与技术,2009,28(9):1213-1215
    [46]周伟召,李涤尘,陈张伟等.陶瓷浆料光固化快速成形特性研究及其工程应用[J].航空制造技术,2010,(8):38-42
    [47]彭安华,张剑峰,张江林.FDM工艺参数对制件精度影响的实验研究[J].淮海工学院学报(自然科学版),2008,17(1):21-24
    [48]彭安华,王智明.基于灰关联度分析的FDM工艺参数优化研究[J].机械科学与技术,2010,29(5):625-629
    [49] Rehme O, Emmelmann C.Reproducibility for properties of selective laser melting[R].Proceedings of the Third International WLT-Conference on Lasers inManufacturing,2005-6
    [50]王迪,杨永强,吴伟辉.光纤激光选区熔化316L不锈钢工艺优化[J].中国激光,2009,36(12):3233-3239
    [51]赵万华,李涤尘,洪军等.光固化快速成形技术中的精度研究[J].中国机械工程,1997,8(5):35-36
    [52]王会刚,姜开宇.光固化工艺过程中影响成型件精度的因素分析[J].模具制造技术,2005,(11):62-63
    [53]陈鸿,程军.激光快速成型系统中自适应分层算法及实现[J].应用基础与工程科学学报,2003,11(3):329-334
    [54]袁慧羚,周天瑞.光固化快速成型工艺的精度研究[J].南方金属,2009,167(4):24-27
    [55]张永,周天瑞,徐春晖.熔融沉积快速成型工艺成型精度的影响因素及对策[J].南昌大学学报,2007,(4):252-255
    [56]彭安华,张加林.FDM快速成型技术中原理性误差分析[J].机械设计与制造,2008,(4):83-85
    [57] Po-Ting Lan, Shuo-Yan Chou, Lin-Lin Chen, et al. Determining fabrication orientationsfor rapid prototyping with stereolithography apparatus[J]. Computer-Aided Design,1997,29(1):53-62
    [58] S. H. Masood, W. Rattanawong, P. Iovenitti. A generic algorithm for a best partorientation system for complex parts in rapid prototyping[J]. Journal of MaterialsProcessing Technology,2003,139:110-116
    [59] Hong-Seok Byun, Kwan H. Lee. Determining of the optimal build direction for differentrapid prototyping processes using multi-criterion decision making[J]. Robotics andComputer-Integrated Manufacturing,2006,22(1):69-80
    [60] W. Cheng, J. Y. H. Fuh, A. Y. C. Nee, et al. Multi-objective optimization of part buildingorientation in stereolithography[J]. Rapid Prototyping Journal,1995,1(4):12-23
    [61]洪军,武殿梁,李涤尘等.光固化快速成型中零件制作方向的多目标优化问题研究[J].西安交通大学学报,2001,35(5):506-509
    [62]赵吉宾,何利英,刘伟军.快速成型制造中零件制作方向的优化方法[J].计算机辅助设计与图形学学报,2006,18(3):456-463
    [63]刘厚才,储爱民.三维打印快速成型零件制作方向的优化研究[J].工程图学学报,2009,(3):41-45
    [64]章文献.选择性激光熔化快速成形关键技术研究[D].武汉:华中科技大学,2008
    [65]许丽敏,杨永强,吴伟辉.选区激光熔化快速成型系统激光扫描路径生成算法研究[J].机电工程技术,2006,35(9):46-47,73
    [66]许丽敏,杨永强,吴伟辉等.选区激光熔化快速成型扫描路径优化算法研究[J].机电工程技术,2007,36(1):46-48
    [67]许丽敏,杨永强,吴伟辉.一种新的用于选区激光熔化快速成型扫描路径的生成算法[J].中国激光,2007,34(Suppl):196-200
    [68]吴伟辉,杨永强.选区激光熔化快速成形系统的关键技术[J].机械工程学报,2007,43(8):175-180
    [69] J. P. Krutha, L. Froyenb, J. Van Vacrenbergha, et al. Selective laser melting of iron-basedpowder[J].Journal of Materials Processing Technology,2004,(149):616-622
    [70] Wang Di, Yang Yongqiang, Su Xubin, et al. Study on energy input and its influences onsingle-track, multi-track, and multi-layer in SLM[J]. Int J Adv Manuf Technol,2012,58(9-12):1189-1199
    [71] Xubin Su, Yongqiang Yang, Jie Liu. Theoretical Study on Overlapping Mechanism inSLM Based on Interlayer-staggered Scan Strategy[J]. Applied Mechanics and Materials,2011,44-47:1482-1486
    [72] Jie Liu, Yongqiang Yang, Jianbin Lu, et al. An Object-Oriented Class Library forScanning Path Generation in SLS/SLM Process[J]. Applied Mechanics and Materials,2011,44-47:3309-3313
    [73]颜永年,齐海波,林峰等.三维金属零件的电子束选区熔化成形[J].机械工程学报,2007,43(6):87-92
    [74]齐海波,林峰,颜永年.316L不锈钢粉末的电子束选区熔化成形[J].清华大学学报(自然科学版),2007,47(11):1941-1944
    [75] Zach M, Kahnert M. The effect of scanning strategies on electron beam sintering[J].Production Engineering,2009,3(3):217-224
    [76] K.K.B. Hon, C. Han, S.P. Edwardson. Investigations on New Scanning Pattern forStereolithography[J]. CIRP Annals-Manufacturing Technology,2006,55(1):217-220
    [77] I. Yadroitsev, L. Thivillon, Ph.bertrand, et al. Strategy of manufacturing components withdesigned internal structure by selective laser melting of metallic powder[J]. Appliedsurface Scicence,2007,254:980-983
    [78]王迪,杨永强,黄延录等.层间扫描策略对SLM直接成型金属零件质量的影响[J].激光技术,2010,34(4):447-451
    [79]王迪.选区激光熔化成型不锈钢零件特性与工艺研究[D].广州:华南理工大学,2011
    [80] J. Yang, H. Bin, X. Zhang, et al. Fractal scanning path generation and control system forselective laser sintering[J]. International Journal of Machine Tools&Manufacture,2003,43:293-300
    [81] Fencheng Liu, Xin Lin, Gaolin Yang, et al. Microstructure and residual stress of laserrapid formed Inconel718nickel-base superalloy[J]. Optics&Laser Technology,2011,43(1):208-213
    [82] LU Wei, LIN Feng, HAN Jiandong, et al. Scan Strategy in Electron Beam SelectiveMelting[J]. TSINGHUA SCIENCE AND TECHNOLOGY,2009,14(S1):120-126
    [83]刘杰,杨永强,苏旭彬等.多零件选区激光熔化成型效率的优化[J].光学精密工程,2012,20(4):699-705
    [84] Mavroidis, C., DeLaurentis, K.J., and Won, J. Fabrication of non-assembly mechanismsand robotic system using rapid prototyping[J]. Transaction of the ASME,2001,123,516-524
    [85] Lipson, H., Moon, F. C., and Hai, J.3-D printing the history of mechanisms[J]. Journalof Mechanical Design,2005,127,1029-1033
    [86] Park, K., Kim, Y. S., and Kim, C. S. Integrated application of CAD/CAM/CAE and RPfor rapid development of humanoid biped robot[J]. Journal of Materials ProcessingTechnology,2007,187,609-613
    [87] Rajagopalan, S. and Cutkosky, M. Error analysis for the in-situ fabrication ofmechanisms[J]. Journal of Mechanical Design,2003,125,809-822
    [88] Yonghua Chen, Zhezheng Chen. Major Factors in rapid prototyping of mechanisms[J].Journal of Key Engineering materials,2010,443,516-521
    [89] Yongqiang Yang, Di Wang, Xubin Su, et al. Design and rapid fabrication ofnon-assembly mechanisms[C].2010International Conference on ManufacturingAutomation, Hong Kong,2010,61-63
    [90] Y Yang, X Su, D Wang, et al. Rapid fabrication of metallic mechanism joints by selectivelaser melting[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journalof Engineering Manufacture,2011,225(12):2249-2256
    [91] Masoud Alimardani, Ehsan Toyserkani, Jan P. Huissoon. A3D dynamic numericalapproach for temperature and thermal stress distributions in multilayer laser solidfreeform fabrication process[J]. Optics and Lasers Engineering,2007,45(12):1115-1130
    [92] L. Dong, A. Makradi, S. Ahzi, et al. Three-dimensional transient finite element analysisof the selective laser sintering process[J]. Journal of Materials Processing Technology,2009,209(2):700-706
    [93] Pei-kang BAI, Jun CHENG, Bin LIU, et al. Numerical simulation of temperature fieldduring selective laser sintering of polymer-coated molybdenum powder[J]. Transactionsof Nonferrous Metals Society of China,2006,16(S2): s603-s607
    [94] A.V. Gusarov, I. Yadroitsev, Ph. Bertrand, et al. Heat transfer modeling and stabilityanalysis of selective laser melting[J]. Applied Surface Science,2007,254(4):975-979
    [95] E. Koleva, K Vutova, G Mladenov. The role of ingot-crucible thermal contact inmathematical modelling of the heat transfer during electron beam melting[J]. Vacuum,2001,62(2-3):189-196
    [96] P.D. Lee, P.N. Quested, M. Mclean. Modelling of Marangoni effects in electron beammelting[J]. The Royal Socity,1998,356:1027-1043
    [97]姚化山,史玉升,章文献等.金属粉末选区激光熔化成形过程温度场模拟[J].应用激光,2007,27(6):456-460
    [98]康进武,马继宇,胡围围等.激光熔覆成形过程热应力数值模拟[C].第五届全国快速成形与制造学术会议,西安,2011:126-133
    [99]刘斌,岳潼雁,吴明星.微型挤出过程中熔体流变行为的模拟分析[J].塑料工业,2011,39(2):37-40,44
    [100]周进,宾鸿赞,马良.基于分形扫描的选择性激光烧结过程动态几何仿真[J].现代制造工程,2007,(1):57-59,33
    [101]周进.选择性激光烧结加工过程动态几何仿真[D].武汉:华中科技大学,2007
    [102] Choi SH, Samavedam S. Visualization of rapid prototyping[J]. Rapid Prototyping J,2001,7(2):99-114
    [103] S.H. Choi, A.M.M. Chan. A virtual prototyping system for rapid product development[J]. Computer-Aided Design,2004,36:401-412
    [104] S.H.Choi, A.M.M. Chan. A layer-based virtual prototyping system for productdevelopment [J]. Computer in Industry,2003,51:237-256
    [105] S.H. Choi, H.H. Cheung. A multi-material virtual prototyping system [J].Computer-Aided Design,2005,37:123-136
    [106]陈曾胜.基于可重构理论的智能仪器设计[D].合肥:合肥工业大学,2002
    [107]陈友东,陈五一,王田苗.基于组件的开放结构数控系统[J].机械工程学报,2006,(6):188-198
    [108]对COM/DCOM、CORBA和Java Beans的全面比较[DB/OL]. http://developer.51cto.com/art/200610/32893.htm,2011-1-10
    [109] IUnKnown接口[DB/OL]. http://baike.baidu.com/view/2009591.htm,2011-1-10
    [110] Dale Rogerson. COM技术内幕[M].北京:清华大学出版社,1999:1-6
    [111] Don Box. COM本质论[M].北京:中国电力出版社,2001:18-26
    [112]卢建斌,杨永强,王迪等.选区激光熔化成型悬垂面质量的影响因素分析[J].激光技术,2011,35(2):148-151
    [113] JavaBeans[DB/OL]. http://en.wikipedia.org/wiki/JavaBean,2011-1-10
    [114]王克宏,李京华,陈文光.JAVA虚拟机规范[M].北京:清华大学出版社,1996:1-4
    [115]杨建军,陈小枫.过程控制中的一种新技术OPC[J].测控技术,1999,18(11):56-57
    [116]于谨涛,郑成焕.对GUI设计原则的探究与浅析[J].艺术与设计(理论),2009,(04):150-151
    [117] http://www.adtechcn.com/download/product/s/ADT-856.pdf
    [118] http://www.raylase.com/media/r_downloads_en/datei/3_manual_commands_en.pdf
    [119]李现勇.Visual C++串口通信技术与工程实践[M].北京:人民邮电出版社,2002:89-145
    [120] MCP0814使用手册[DB/OL]. http://www.step-motor.com/Soft/UploadSoft/MCP0814/MCP0814.pdf
    [121] http://www.scanlab.de/link/en/49461
    [122]三菱Mx Component Ver3编程手册[DB/OL]. http://www.mitsubishi-automation.com,2011-11-05
    [123] Software for the Rapid Prototyping and Manufacturing Professional [EB/OL]. http://www.materialise.com/Magics,2011-11-05
    [124]插件[EB/OL].http://zh.wikipedia.org/wiki/Plug-in,2011-11-05
    [125]陈国栋.试谈计算机软件中的插件技术[J].电脑编程技巧与维护,2010,(16):19-20,24
    [126] Erich Gamma, Richard Helm, Ralph Johnson, et al. Design Patterns: Elements ofReusable Object-Oriented Software[M].Boston:Addison-Wesley,1994:108-119
    [127]动态链接库[OL]. http://baike.baidu.com/view/887.htm,2011-11-11
    [128] David J. Kruglinski, Scot Wingo, George Shepherd. Pogramming Visual C++6.0技术内幕(第五版)[M].北京:北京希望电子出版社,2002:509-538
    [129] LoadLibrary function[DB/OL]. http://msdn.microsoft.com/en-us/library/windows/desktop/ms684175(v=vs.85).aspx
    [130] GetProcAddress function[DB/OL]. http://msdn.microsoft.com/en-us/library/windows/desktop/ms683212(v=vs.85).aspx
    [131]张林波,迟学斌,莫则尧等.并行计算导论[M].北京:清华大学出版社,2006:3-62
    [132]张英杰.二维计算机排料与数控自动编程[D].北京:华北电力大学,2004
    [133] BADU R A, BADU N R. A generic approach for nesting of2-D parts in2-D sheetsusing genetic and heuristic algorithms [J]. Computer-Aided Design,2001,33:879-891
    [134] HECKMANN R, LENGAUER T. A simulated annealing approach to the nestingproblem in the textile manufacturing industry [J]. Annals of Operations Research,1995,57:103-133
    [135] EGEBLAD J, NIELSEN B K, ODGAARD A. Fast neighborhood search for two-andthree-dimensional nesting problems [J]. European Journal of Operational Research,2007,183:1249-1266
    [136] COMMON LAYER INTERFACE (CLI) VERSION2.0[EB/OL]. http://www.forwiss.uni-passau.de/~welisch/papers/cli_format.html,2011-1-11
    [137]张洪才. ANSYS有限元网格划分的基本原则[DB/OL]. http://pera.e-works.net.cn/document/200904/article7759.htm,2009-4-3
    [138]和平鸽工作室. OpenGL高级编程与可视化系统开发[M].北京:中国水利水电出版社,2003:5-7
    [139] Richard S. Wright, Nicholas Haemel, Graham Sellers, et al. OpenGL SuperBile:Comprehensive Tutorial and Reference (5th Edition)[M]. Boston: Addison-Wesley,2010:79-123
    [140]朱宁.传统工艺美术融入现代艺术设计教育的几点思考[DB/OL]. http://www.wybylw.com/art/painting/craft/201202/76199.html,2012-2-15
    [141]颜永年,张人佶.快速成形制造技术在工艺美术创作中的应用[C].第五届全国快速成形与制造学术会议,西安,2011:17-21
    [142]徐小燕,刘胜兰,李博等.基于曲率特征的三维模型浮雕压缩算法[J].计算机与现代化,2010,(5):1-5
    [143]何会珍,杨勋年.曲面浮雕生成[J].计算机辅助设计与图形学学报,2010,22(7):1132-1137
    [144]刘杰,杨永强,宋长辉.基于SLM从图像直接制造金属浮雕的方法[J].华南理工大学学报(自然科学版),2011,39(76):13-17
    [145]刘杰,杨永强.基于SLM的空心金属浮雕快速制造研究[J].电加工与模具,2011,(5):38-41
    [146]吴文国,余莉,金小刚等.曲面光顺方法的改进[J].中国图象图形学报,2003,8(特刊):512-516
    [147] Kitware. VTK5.6.1Documentation[DB/OL]. http://www.vtk.org/doc/release/5.6/html,2010-03-26
    [148]判断点是否在多边形内[EB/OL]. http://blog.csdn.net/subo86/article/details/5537005,2010-04-27
    [149]苏旭彬,杨永强,王迪等.免装配机构的选区激光熔化直接成型工艺研究[J].中国激光,2011,38(6):0603021
    [150] J. P. Kruth, P.Mercelis, V. Vaerenbergh, et al. Feed back control of selective lasermelting[DB/OL]. https://lirias.kuleuven.be/bitstream/123456789/185342/1/krufcs.pdf,2008-02-17
    [151] M. S. Ali, Z. H. Hou, Mohammad N. Noori. Stability and Performance of FeedbackControl Systems with Time Delays[J]. Computers and Structures,66(2-3):241-248
    [152]吴伟辉,杨永强,王迪.选区激光熔化成型过程的球化现象[J].华南理工大学学报(自然科学版),2010,38(5):110-115
    [153] A. Simchi. Direct laser sintering of metal powders: Mechanism, kinetics andmicrostructural features [J]. Materials Science&Engineering,2006,428:148-158.
    [154] E. Yasa, T. Craeghs, M. Badrossamay, et al. Rapid Manufacturing Research at theCatholic University of Leuven[DB/OL]. http://iweb.tntech.edu/rrpl/rapidtech2009/yasa.pdf,2009-07-04
    [155]孙家广,杨长贵.计算机图形学:新版[M].北京:清华大学出版社,1995:344-348.
    [156]王小平,曹立明.遗传算法:理论、应用与软件实现[M].西安:西安交通大学出版社,2002:25-28
    [157]黄平.最优化理论与方法[M].北京:清华大学出版社,2009:189-201
    [158]刘杰,杨永强,王迪等.选区激光熔化成型悬垂结构的计算机辅助工艺参数优化研究[J].中国激光,2012,39(5):0503001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700