用户名: 密码: 验证码:
降低车用柴油机NOx排放的SCR技术控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柴油机由于具有动力性强、耗油率低等优势,在中/重型客、货车上得到了广泛的应用,但柴油机的主要排放物NO_x和PM无法像汽油机排放物那样可以通过采用三效催化转化器有效地解决,因此,在发展现有柴油机机内排放控制新技术的基础上,研究、开发适合于柴油机的先进排气后处理技术是柴油机生存和发展的关键。在商用车满足欧Ⅳ、欧Ⅴ排放法规技术路线中,目前国际上普遍采用如下两种技术路线,一是通过燃烧系统优化降低机内颗粒物的生成量,然后采用选择性催化还原(SCR)后处理技术降低NO_x的排放;其二是通过废气再循环(EGR)降低机内NO_x生成量,然后采用颗粒物后处理技术降低颗粒物的排放。
     以尿素为还原剂的SCR(Selective Catalytic Reduction)技术由于具有可以通过优化缸内燃烧来改善燃油消耗和较强的抗硫中毒能力等优点,作为控制车用柴油机尾气排放的重要手段在欧洲等发达国家和地区已经得到了广泛的应用,对于改善由柴油汽车尾气造成的大气污染发挥了重要作用。由于我国排放法规体系等效采用欧洲法规体系,考虑到我国的国情和技术的移植便利性,我国各主要整车厂和柴油机企业也倾向于采用SCR技术作为满足未来更严格排放要求的主要技术措施。
     目前,虽然国内几家主要车用柴油机企业已经在柴油机领域开展了SCR技术的研究,但基本上以国外技术引进应用为主,核心技术仍主要掌握在国外相关厂家手中,这成为我国该技术推广和应用的主要瓶颈,而我国随着道路运输的快速增长,车用柴油机需求量也正在迅速增加,其污染物的治理刻不容缓,急需成本低廉、性能高效的SCR排气后处理技术和装置。因此,有关SCR技术的国产化研究日益紧迫,对于SCR技术从催化剂性能研究、催化转化器优化设计到尿素喷射系统的控制策略的研究与应用、OBD系统的开发和标定,再到整个系统在整车上的集成和匹配应用的研究非常必要。
     本课题针对SCR技术在WP12系列柴油机上的开发、匹配、标定为基础,采用试验评价、理论分析、数值模拟和试验验证相结合的方法对SCR技术实际应用进行了研究。主要内容包括:SCR催化反应系统的研究、尿素喷射控制策略和尿素喷射量标定的研究、SCR技术OBD系统的开发与标定、SCR系统在寒冷地区使用过程中存在的主要问题和解决措施。
     首先,本文对SCR催化反应系统中DeNO_x效率的影响因素进行了研究,包括载体和催化剂的优化筛选、催化转化器结构的设计和优化、尿素喷射段管路内液滴粒子的分布等三个方面的内容。通过催化剂和载体的对比试验结果表明,规格为400/7的载体虽然压力损失最大,但影响并不明显,从成本和产业化的角度,可以选择其作为试验用催化剂载体;催化剂样品(2)无论在DeNO_x效率还是防止氨气逃逸方面都优于样品(1),且经过老化试验后性能也未明显下降,因此,选择催化剂样品(2)作为下一步试验的催化剂。设计了适用于重型车用发动机的箱式SCR催化转化器,并利用CFD技术进行了优化设计。对几种催化转化器设计方案的计算结果表明,入口管串孔区域长度和开孔区域角度范围分别存在一个最佳长度和角度范围可以使得各载体流量的分配最均匀;另外,在入口管底部设置一多孔式导流板可以消除底部的涡流,有利于改善流动效果,减少压力损失。利用CFD技术对尿素喷嘴的布置位置、角度和排气管直径大小进行了多种方案的对比计算和分析,并根据计算结果确定了合适的喷嘴安装位置和喷嘴安装角度,为SCR排气管段的设计提供了理论指导和参考,也为SCR系统与发动机的匹配试验打下了良好的基础。
     良好的喷射策略不仅可以缩短标定周期,提高工作效率,而且能够在满足排放目标的前提下节省尿素的消耗。本文以SCR系统在WP12柴油机上的开发、匹配和标定为基础,在发动机台架上对SCR技术尿素喷射系统进行了试验研究,实现了通过对尿素喷射量的控制既满足国Ⅳ排放法规要求,又避免过量的氨气逃逸。这对制定科学的尿素喷射控制策略和高效、合理的SCR匹配、标定能够起到积极的促进作用。研究内容包括:尿素喷射的控制策略、尿素喷射量的优化标定、催化转化器动态温度修正等方面。在对尿素喷射策略研究分析的基础上,根据对标定经验的总结,并参照相关技术资料提出了稳态测试条件下尿素喷射量的优化标定方法,并建立了可以在ESC测试循环标定过程中对NO_x综合排放量进行估算的标定估算模型,在SCR尿素喷射量的标定过程中,可以对NO_x的控制有的放矢。实践证明该方法可以明显提高工作效率、节省标定时间、缩短标定周期。通过对尿素喷射策略和催化转化器动态温度修正的研究,及ESC和ETC测试循环试验结果表明,开启动态修正后在保证NO_x排放量满足要求的前提下能够有效减少尿素消耗量;在瞬态工况下,还可以有效降低NH_3逃逸造成的二次污染;同时,稳态工况下的尿素喷射量还需要进一步的合理优化,尽量减少动态修正的比例,提高SCR系统的利用效果。另外,应在优化SCR催化转化器结构的前提下进一步缩小催化剂载体体积,以减小载体的储热总量,提高催化转化器在发动机工况发生变化时对温度的瞬态响应能力。
     由于从国家第Ⅳ阶段开始要求必须安装OBD系统,所以对OBD系统的控制策略和控制算法的研究、系统开发及标定等工作就非常必要。本文根据OBD系统的检测功能原理和检测技术要求,在应用SCR技术的WP12重型车用柴油机上进行了OBD1+NO_x控制阶段的开发和标定,并通过了认证试验,表明所开发的OBD故障诊断和排放监控策略满足对发动机在线监测和诊断的要求。
     最后,由于我国地域辽阔,在寒冷季节南北地区气温相差比较大,北方地区冬季可达到-30℃以下,而尿素溶液在温度低于-11℃时会出现结冰或固态化等现象,导致SCR的尿素供给系统无法正常工作,造成配置SCR系统的车辆在这些地区的使用受到一定的限制。这一问题可以通过对尿素存储单元和流动沿程管路进行有效的加热来解决。为了确保SCR系统在北方地区寒冷季节的正常运行,在对尿素存储单元和尿素沿程管路加热过程中,必须确保加热系统的加热能力合理分配,使尿素溶液保持在结冰点之上,但又不加热过度,以免造成无谓的能量浪费。因此,有必要对SCR系统的加热功能进行理论分析和实际应用状态下的研究。本文利用传热学和热力学等方面的知识,在对尿素流动沿程管路尿素溶液、管路和环境空气之间传热分析的基础上,对尿素管路散热量进行了计算,提出了解决尿素存储单元和尿素管路结冰问题的解决措施,为尿素管路的选型和加热功率的选择提供理论指导;通过在低温试验室内的模拟试验对加热管路进行了不同功率的对比选型;最后将该系统配置在整车上进行了寒冷地区的试验测试,以确保SCR系统能够满足在我国寒冷地区正常使用的要求。研究结果表明,尿素存储单元采用水加热方式、尿素供给单元和尿素管路采用电加热方式可以有效解决SCR系统在寒冷地区使用过程中出现的结冰问题。
     总之,本文研究结果对开发满足国Ⅳ排放商用柴油机具有一定的参考价值,对我国降低商用车柴油机排放、减少大气污染具有现实的社会意义。
As the aggravation of environmental pollution caused by vehicles, a series of legislations are put out to reduce emissions from automobile engines and more stringent. The after-treatment technology is one of the major measures to meet the emerging stringent emission legislation limits. Because of its advantage of higher power performance and lower oil consumption, diesel engines are widely applied in medium/heavy trucks and passenger carriages. However, the NOx and PM, which are the main emissions of diesel, can't be effectively solved for lean burn engines through TWC (Three-Way Catalysts) technology as gasoline engines due to the low NO_x conversion in the presence of oxygen. Thus, it is the time for diesel engines to develop appropriate exhaust after-treatment technology. In all the technology routes studied by diesel engine manufacturers to deal with Euro IV and Euro V standards two methods are concluded, which one is reducing NOx emissions with SCR (Selective Catalytic Reduction) technology on the basis of combustion optimization for diesel engines to reduce PM, and the other to debase NOx emissions with EGR (Exhaust Gas Recirculation) and PM with DPF.
     The Selective Catalytic Reduction (SCR), using urea as reducing agent, because of the advantage of low oil consumption and strong resistibility, is presently considered the most promising technique for the removal of nitrogen oxides from the exhaust of heavy-duty diesel vehicles. It has contributed to control the emissions from vehicles in Europe. Due to our emission standard system is equivalent to the Europe standard system, in view of China's conditions and the convenience of technology explanting, manufacturers of vehicle and diesel engine are inclined to adopting the SCR technology as the major technology to meet the more stringent exhaust emission standards in future.
     However, the study about Urea-SCR technology is not self-dependent currently in our country although the native manufacturers have been starting the application in SCR technology on heavy-duty diesel engines. Due to the key technology and patents for SCR system which are held by manufacturers abroad, they have been becoming the bottle-neck of the SCR techonogy extending and application in China. With the diesel vehicles are increasing significantly in our country, it is very urgent to reduce the pollutants from vehicles, and it has a rapidly increasing demand of the advanved SCR catalysts. Therefore, it is urgent for the domestic research of the relative SCR technology and is necessary to have a totally understand of them to prepare for the further study and domestically manufacture. So, it is more and more necessary to research the SCR technology, from the catalyst, the catalyst box design, the urea dosing control strategy and the OBD system, to the entire system in the vehicle integrating and matching.
     In this paper, it's based on the SCR technology's developing, matching, calibration on diesel engine WP12, and the actually application of the SCR technology is deeply studied with the integration methods of experimental evaluation, theoretical analysis, numerical simulation and the experimental verification. The paper includes: the study of SCR catalyst reaction system, the study of urea dosing control strategy and calibration of urea dosing quality, the development and calibration of OBD system, the main problems and solution measures when the SCR system using in cold area. The following are the brief description and introduce of this paper in writing orders.
     Firstly, the influence factors of DeNOx efficiency of the SCR catalyst reaction system are totally studied, include optimizing screening of substrate and catalyst, designing and optimizing of catalyst box structure and dripping distribution of exhaust pipe where dosing urea. As the result of contrast test to substrate and catalyst shows, through substrate 400/7 has the biggest pressure loss, it's not obviously and can be the substrate of catalyst in the test temporary from the view of cost and mass production; catalyst sample (B) is superior to catalyst sample (A) both in DeNOx efficiency and preventing NH3 disclosure, and after degradation testing its performance does not decrease obviously, therefore, catalyst sample (B) is chosen as the catalyst for the further test. SCR catalyst converters of box-type which are suitable for heavy-duty engines are designed and optimized by CFD. As the calculation result of the design schemes to several catalyst converters shows, there is a optimum length for inlet pipe area with holes and a optimum angle scale for the area with holes at which every substrate have the most even flow distribution; Furthermore, a flow guidance panel at the bottom of inlet pipe can remove the vortex in the base, and is in favor of improving flow effect and reducing pressure loss. CFD technology is used to have contrast calculation and analysis to the position and angle of the urea dosing system, and the diameter of exhaust pipe of different schemes.
     Secondly, good dosing strategy not only can shorten calibration period, improve work efficiency, but also save urea consumption at the premise of satisfying emission limits. This paper has testing study about the SCR urea dosing system on the engine test bench, based on the developing, matching, calibration of SCR system on diesel engine of WP12, and aims at verify the system can satisfy China IV emission standard at the condition of dosing reasonable quality of urea and avoiding excessive NH3 escape. It has positive function for making scientific dosing control strategy and efficient and reasonable SCR matching and calibration. The contents of study include the following: urea dosing control strategy, optimum calibration of urea dosing quantity, catalyst dynamic temperature correction and so on. In the foundation of in-depth studying and analyzing of urea dosing strategy, according to the summary of calibration experience, and referring to relative technical material, the method of optimum calibration of urea dosing quality under steady testing state is put forward, the calibration calculation model estimating synthetical NOx emission during ESC test cycle is also established, which might help to control the NOx with a clear goal during SCR urea dosing quantity calibrating. Practice proved that this method can obviously improve working efficiency, save calibration time. Study of urea dosing strategy and dynamic temperature correction of catalyst converter, and ESC and ETC test result indicate that opening dynamic correction can effectively reduce urea consumption at the premise of satisfying emission limits. Under transient state, the secondary pollution caused by leakage of NH3 can also be effectively reduced. But at the same time, urea dosing quality should be optimized fatherly under steady state, so as to reduce the ratio of dynamic correction and improve the utilization effectiveness of SCR system as far as possible. In addition, the volume of catalyst substrate should be further reduced in order to reduce the total amount of substrate thermal storage and improve the catalyst converser's response ability to temperature change under the transient state.
     Once more, due to the OBD system must be installed during stage IV, the study of control strategy, control algorithm and system development and calibration of OBD system is very necessary and time presses. Based on detection theory and the testing technical requirements of the OBD system, the development and the calibration of OBD1+NOx control stage on the WP12 heavy diesel engine which applied SCR technology is introduced in this paper, and certification test has been passed, which can indicate that the developed OBD fault diagnosis and emission monitoring strategies satisfy the online monitor and diagnosis request to engine.
     At last, because the vast territory of China, the temperature difference is quite large between north and south in winter, and it may achieve -30℃below in north of Yellow River. Urea will freeze when the environment temperature is lower than -11℃, leading to the disable of SCR system urea supplying, resulting in restriction to the use of vehicle which apply the SCR system in these areas. But this problem can be solved effectively by heating the urea storage unit and flowing pipeline. With the purpose of ensuring the normal running of SCR system in north cold area, heating ability of the heating system must be distribute reasonably during the process of heating urea storage unit and pipeline, so as to maintain temperature of urea above the freezing point but not over-heating. Therefore, it is necessary to have a theoretical analysis and study in practical application condition to the heating function of SCR system. First, mathematical model estimating heat dissipating capacity is established by using heat transfer theory and thermodynamics knowledge, and referring to the relative technical material, which provides reference for the selection of urea pipeline and heating power; And then contrast selection under different heating power is done through simulation test in the cooled lab; At last, the whole system in the vehicle is tested in cold area to ensure the normal running request of the system in cold area of China. The study result of urea heating system indicates that urea tank heating by engine cooling water, urea supply module and pipeline heating by electric can solve the freezing problem of SCR system in cold area of China.
     The study results have reference value to develop commercial diesel engine which can satisfy China IV emission limits, and have realistic social meaning to China for reducing commercial automobile diesel engine emissions and air pollution.
引文
[1].中国汽车工业协会.汽车商用车发动机“十一五”专题规划[R].车用发动机信息,2007,5(3):1-6
    [2].刘巽俊.内燃机排放与控制[M].北京:机械工业出版社,2002
    [3].龚金科.汽车排放污染及控制[M].北京:人民交通出版社,2005
    [4].覃军,吕林,李勤等.国Ⅳ重型柴油机技术路线的研究[J].车用发动机信息,2007,5(4):4-9
    [5].贺泓,翁端,资新运.柴油车尾气排放污染控制技术综述[J].环境科学,2007,28(6):1169-1177
    [6].国家环境保护总局.GB17691-2005:车用压燃式、气体燃料点燃式发动机与汽车排气污染物排放限值及测量方法(中国Ⅲ、Ⅳ、Ⅴ阶段)[S].北京:国家环境保护总局,2005
    [7].国家环境保护总局.GB20890-2007:重型汽车排气污染物排放控制系统耐久性要求及试验方法[S].北京:国家环境保护总局,2007
    [8].环境保护部.HJ437-2008:车用压燃式、气体燃料点燃式发动机与汽车车载诊断(OBD)系统技术要求[S].北京:环境保护部,2008
    [9].环境保护部.HJ438-2008:车用压燃式、气体燃料点燃式发动机与汽车排放控制系统耐久性技术要求[S].北京:环境保护部,2008
    [10].环境保护部.HJ451-2008:环境保护产品技术要求—柴油机排气后处理装置[S].北京:环境保护部,2008
    [11].覃军.降低柴油机NOx排放的SCR系统控制策略研究[D].武汉:武汉理工大学,2007
    [12].林学东,丛春梅,陈雪梅.利用机内和后处理措施改善柴油机的排放特性[J].农业机械学报,2005,36(4):39-41
    [13].周明彪,张伟.中重型柴油机满足欧Ⅲ排放法规的认识与对策[J].汽车科技,2004,8(4):15-18
    [14].董尧清,吴乐欣,刘永祥等.中重型车用柴油机实施欧Ⅳ排放的技术路径[J].汽车技术,2007(3):1-4
    [15].王建昕.汽车排气污染治理及催化转化器[M].北京:化学工业出版社,2000
    [16].宋军,乔信起,黄震等.柴油机电控喷射系统发展现状[J].车用发动机,2003,(3):6-10
    [17].石秀勇.喷油规律对柴油机性能与排放的影响研究[D].济南:山东大学,2008
    [18].董红义,帅石金,李儒龙等.柴油机排气后处理技术的最新进展与发展趋势[J].小型内燃机与摩托车,2007,36(3):87-92
    [19].徐杰.排放法规和尾气后处理技术的发展对柴油机油配方的影响[J].商用汽车,2006,8(4),7-10
    [20].程至远,解建光.内燃机排放与净化[M].北京:北京理工大学出版社,2000
    [21].郭海涛.高压共规喷油系统喷油规律与控制策略的研究[D].上海:上海交通大学,2001
    [22].T.Rente,S.Gjirja,I.Denbratt.Experimental investigation of the effect of needle opening(NOP) pressure on combustion and emissions formation in a heavy duty DI diesel engine[C].SAE paper,2004-01-2921
    [23].Dale R.Tree,Kenth I.Svensson.Soot process in compression ignition engines[J].Progress in Energy and Combustion Science,2007,(33):272-309
    [24].徐家龙.柴油机电控喷油技术[M].北京:人民交通出版社,2004
    [25].麦华志.电控单体泵系统在重型柴油机上的应用[D].济南:山东大学,2006
    [26].黄军,王书义.BOSCH公司共轨燃油喷射系统及其发展[J].车辆与动力技术,2005(1):22-24
    [27].刘宜,周校平,乔信起,等.我国柴油机迎接欧Ⅲ排放限值的技术准备[J].内燃机工程,2005,26(2):54-57
    [28].倪宏杰.外资企业难以长期垄断电控供油系统技术[N].商用汽车新闻,2008-1-14
    [29].马鑫.自主研发的核心技术应获更多支持[N].商用汽车新闻,2008-1-14
    [30].周龙保,刘巽俊,高宗英.内燃机学[M].北京:机械工业出版社,2005
    [31].陆家祥,刘云岗,李国祥.柴油机涡轮增压技术[M].北京:机械工业出版社,2000
    [32].文彤.与众不同的废气净化道路——斯堪尼亚发动机综述[J].汽车与配件,2006(35):44-46
    [33].罗晓岚.斯堪尼亚欧Ⅴ技术平台[J].商用汽车,2007(8):112-112
    [34].罗晓岚.斯堪尼亚正式推出欧Ⅴ发动机[J].商用汽车,2008(3):107-109
    [35].John W.Hoard,Robert H.Hammerle,Christine Lambert,etc.Economic comparison of LNT versus urea SCR for light duty diesel vehicles in US market[R].DEER,2004
    [36].Jim Parks,Matt Swartz,Shean Huff.Infra-catalyst Reductant Chemistry in Lean NOx Traps:A Study on Sulfur Effects[R].DEER,2006
    [37].Mokoto Inomata,Akira Miyamoto,Toshiaki,et al.Activities of V_2O_5/TiO_2 and V_2O_5/Al_2O_3 catalysts for the reduction of NO and NH_3 in the presence of O_2[J].Ind.Eng.Che.Prod Res.Dev.,1982,21(3):424-428
    [38].Akira Miyamoto,Kan Kobayashi,Mokoto Inomata,et al.Nitrogen-15 tracer investigation of the mechanism of the reduction of NO with NH_3 on vanadium oxide catalysts[J].Phys.Chem.,1982,86(15):2945-2950
    [39].In-Sik Nam,John W.Eldridge and J.R.Kittrell.Deactivation of a vanadia-alumina catalyst for NO reduction by NH_3[J].Ind.Deng.Chem.Pro.Res.Dev.,1986,25(2):192-197
    [40].Jean W.Beeckman and L.Louis Hegedus.Design of monolith catalysts for power plant NO_x emission control[J].Ind.Deng.Chem.Res.,1991(30):969-978
    [41].G.Ramis,G.Busca,C.Cristiani,et al.Characterization of tungsta-titania catalysts[J].Langmuir,1992,8(7):1744-1749
    [42].John Marangozis.Comparison and analysis of intrinsic kinetics and effectiveness factors for the catalytic reduction of NO with ammonia in the presence of oxygen[J].Ind.Chem.Pro.Res.,1992,31(4):987-994
    [43].Jiri Svachula,Natale Ferlazzo,Pio Forzatti,et al.Selective reduction of NO_x by NH_3over honeycomb DeNO_xing catalysts[J].Ind.Chem.Pro.Res.,1993,12(6):1053-1060
    [44].C.U.Ingemar Odenbrand,Ana Bahamonde,Pedro Avila,et al.Kinetic study of the selective reduction of nitric oxide over vanadia-tungsta-titania/sepiolite catalyst[J].Applied catalysis B:Environmental,1994(5):117-131
    [45].Luis J.Alemany,Luca Lietti,Natale Ferlazzo,et al.Reactivity and physicochemical characterization of V_2O_5-WO_3-TiO_2 De-NO_x catalysts[J].Journal of Catalysis,1995(155):117-130.
    [46].L.Lietti,J.L.Alemany,P.Fonzatti,et al.Reactivity of V_2O_5-WO_3/TiO_2 catalysts in the seleclive catalytic reduction of nitric oxide by ammonia[J].Catalysis today,1996(29):143-148
    [47].J.A.Dumesic,N.-Y.Topsφe,H.Topsφe,et al.Kinetics of selective catalytic reduction of nitric oxide by ammonia over vanadia/titania[J].Journal of catalysis,1996(163):409-417
    [48].E.Tronconi,L.Lietti,P.Forzatti,et al.Experimental and theoretical investigation of the dynamics of the SCR-DeNO_x reaction[J].Chemical Engineering Science,1996,51(11):2965-2970
    [49].G.Ramis,Li Yi,G.Busca.Ammonia activation over catalysts for the selective catalytic reduction of NO_x and the seleclive catalytic oxidation of NH_3:an FT-IR study[J].Catalysis Today,1996(28):373-380
    [50].Ana Bahamonde,Alessandra Beretta,Pedro Avila,et al.An experimental and theoretical investigation of the behavior of a monolithic Ti-V-W-Sepiolite catalyst in the reduction of NO_x with NH_3[J].Ind.Eng.Chem.Res.,1996(35):2516-2521.
    [51].R.Willi,B.Roduit,R.A.Koeppel et al.Selective catalytic reduction of NO by NH_3over vanadia-based commercial catalyst:parametric sensitivity and kinetic modeling [J].Chemical Engineering Science,1996(11):2897-2902.
    [52].Michael D.Amiridis,Robert V.Duevel and Israel E.Wachs.The effect of metal oxide addictive on the activity of V_2O_5/TiO_2 catalysts for the selective catalytic reduction of nitric oxide by ammonia[J].Applied catalysis B:Environmental,1999(20):111-122
    [53].M.Koebel,M.Elsener,and M.Kleemann.Urea-SCR:a promising technique to reduce NO_x emissions from automotive diesel engines[J].Catalysis Today,2000(59):335-345
    [54].Ioannis Gekas,P(a|¨)r Gabrielsson and Keld Johansen,et al.Performance of a Urea SCR system combined with a PM and fuel optimized heavy-duty diesel engine able to achieve the Euro V emission limits[C].SAE paper,2002-01-2885
    [55].Rinie van Helden,Marcel van Genderen,and Marc van Aken,et al.SCR-system for heavy-duty truck engines[C].SAE paper,2002-01-0286
    [56].C.M.Sch(a|¨)r,C.H.Onder,H.P.Geering.Control of a Urea SCR catalytic converter system for a mobile heavy duty diesel engine[C].SAE paper,2003-01-0776
    [57].Christian Winkler,Peter Fl(o|¨)rchinger,M.D.Patil.Modeling of SCR DeNO_x catalyst—looking at the impact of substrate attributes[C].SAE paper,2003-01-0845
    [58].Dieter H.E.Seher,Michael Reichelt and Stefan Wickert.Control strategy for NO_x emission reduction with SCR[C].SAE paper,2003-01-3362
    [59].T.Maunula,R.Lylykangas.NO_x reduction by urea in the presence of NO_2 on metal substrated SCR catalysts for heavy-duty vehicles[C].JSAE paper,20030191
    [60].Tinghong Tao,Yuming Xie,and Steven Dawes.Diesel SCR NO_x reduction and performance on washcoated SCR catalysts[C].SAE paper,2004-01-1293
    [61].Kiminobu Hirata,Nobuhiko Masaki,and Hiroki Ueno.Development of Urea-SCR system for heavy-duty commercial vehicles[C].SAE paper,2005-01-1860
    [62].C.Scott Sluder,John M.E.Storey,Samuel A.Lewis,et al.Low temperature urea decomposition and SCR performance[C].SAE paper,2005-01-1858
    [63].Ming Chen and Shazam Williams.Modelling and optimization of SCR-exhaust aftertreatment systems[C].SAE paper,2005-01-0969
    [64].Carlo Orsenigo,Alessandra Beretta,Pio Forzatti.Theoretical and experimental study of the interaction between NO_x reduction and SO_2 oxidation over DeNO_x-SCR catalysts[J].Catalysis Today,1996(27):15-21
    [65].Carlo Orsenigo,Alessandra Beretta,Pio Forzatti.Theoretical and experimental study of the interaction between NO_x reduction and SO_2 oxidation over DeNO_x-SCR catalysts[J].Catalysis Today,1996(27):15-21
    [66].P.Ciambelli,M.E.Fortuna,D.Sannino and A.Baldacci.The influence of sulphate on the catalytic properties of V_2O_5-TiO_2 and WO_3-TiO_2 in the reduction of nitric oxide with ammonia[J].Catalysis Today,1996(29):161-164
    [67].Pio Forzatti,Isabella Nova,Alessandra Beretta.Catalytic properties in DeNO_x and SO_2-SO_3 reactions[J].Catalysis Today,2000(56):431-441
    [68].许允,刘忠长,姜伟等.催化转化器对降低柴油机微粒排放的影响[J].吉林大学学报(工学版),2007,37(1):65-68
    [69].何喜朝.柴油机氧化催化转化器的研制[D].武汉:武汉理工大学,2005
    [70].朱天乐,郝吉明,傅立新等.柴油机排气控制的研究进展[J].环境科学与技术,2003,27(4):38-41.
    [71].Klaus Rusch,Lothar Hofmann and Juergen Zuerbig,et al.PM-reduction by SCR-catalyst[C].SAE paper,2003-01-0777
    [72].Ray Conway,Sougato Chatterjee,Alex Beavan,et al.Combined SCR and DPF technology for heavy duty diesel retrofit[J].SAE paper,2005-01-1862
    [73].孙志强,王虹.同时去除柴油机排气中碳颗粒物和NOx的催化技术[J].北京石油化工学院学报,2007,15(2):60-64
    [74].刘光辉,黄震,上官文峰等.利用微粒过滤器同时催化去除柴油机微粒和NO_x[J].科学通报,2002,47(21):1620-1623.
    [75].姜大海,张春润,资新运.柴油机排气微粒捕集器废气再生可行性研究[J].车用发动机,2002,8(4):51-53
    [76].何国本.柴油机的微粒排放及处理措施[J].车用发动机,2002,10(5):43-46
    [77].Brian Scarnegie,William R.Miller.Recent DPF/SCR results targeting US2007 and Euro 4/5 HD emissions[C].SAE paper,2003-01-0774
    [78].Conway,Sougato Chatterjee,Alex Beavan,et al.NO_x and PM reduction using combined SCR and DPF technology in heavy duty diesel applications[C].SAE paper,2005-01-3548
    [79].Guy R.Chandler,Barry J.Cooper,James P.Harris,et al.An integrated SCR and Continuously Regenerating Trap system to meet future NO_x and PM legislation[C].SAE paper,2000-01-0188
    [80].Andrew P.Walker,Ronny Allansson,Philip G.Blakeman,et al.The development and performance of the compact SCR-Trap system:a 4-way diesel emission control systemiC].SAE paper,2003-01-0778
    [81].刘光辉.催化过滤器同时去除柴油机微粒和氮氧化物的基础研究[D].上海:上海交通大学,2002
    [82].裴梅香.等离子体/催化同时去除氮氧化物和微粒的基础研究[D].上海:上海交通大学,2004
    [83].王伟,杜传进.车用柴油机四效催化转化装置的研究与进展[J].交通科技,2006(1):82-90
    [84].崔振福.柴油机尾气净化装置(DPF,DPNR)的开发研究[D].济南:山东建筑大学,2007
    [85].裴梅香,黄震,上官文峰.柴油机排放NO_x催化还原技术研究进展[J].工业催化,2003,11(10):33-37
    [86].辛健诚.SCR——达到欧4、欧5的最佳选择[J].商用汽车,2003(8):73-73
    [87].董尧清,吴乐欣,刘永祥等.我国中重型车用柴油机实施欧Ⅳ排放技术路线的思考[C].2006年APC联合学术年会论文集,2007(3):76-82
    [88].Michael D.Kass,John F.Thomas,Samuel A.Lewis,et al.Selective catalytic reduction of NO_x emissions from a 5.9 liter diesel engine using ethanol as a reductant[C].SAE paper,2003-01-3244
    [89].侯玉春,王丽,唐凯宁.柴油机EGR中的微粒过滤器应用[J].山东内燃机,2002(3):15-18
    [90].郑伟,申立中,胡大志,等.不同大气压下增压柴油机的EGR试验研究[J].车用发动机,2006(1):22-24
    [91].田永海.EGR对共轨柴油机燃烧和排放的影响[D].长春:吉林大学,2008
    [92].黄鹏.国外车用柴油机SCR技术的应用研究[J].车用发动机,2005,157(3):5-7
    [93].余景宏.卡特彼勒满足欧4和欧5排放标准的商用发动机[J].商用汽车,2007(4):106-107
    [94].庄严.部分国外重型卡车企业数据分析[J].商用汽车,2007(3):53-56
    [95].Shinichi Saito,Ritsuko Shinozaki,Akira Suzuki,et al.Development of Urea-SCR system for commercial vehicle-basic characteristics and improvement of NO_x conversion at low load operation[C].SAE paper,2003-01-3248
    [96].文彤.用于SCR催化转化器的尿素添加剂[J].汽车与配件,2006,26(6):40-43
    [97].Nicole Fritz,Wieland Mathes and Juergen Zuerbig Raimund Mueller.On-road demonstration of NO_x emission control for diesel trucks with SINO_x Urea-SCR system[C].SAE paper,1999-01-0111
    [98].C.J.Brodrick,M.Farsh-chi,H.A.Dwyer,et al.Urea-SCR system demonstration and evaluation for heavy-duty diesel trucks[C].SAE paper,1999-01-3722
    [99].John L.Calabrese,Joseph A.Patchett.The influence of injector operating conditions on the performance of a urea-water selective catalytic reduction(SCR) system[C]. SAE paper,2000-01-2814
    [100].J.Gieshoff,A.Sch(a|¨)fer-Sindlinger.Improved SCR systems for heavy duty applications[C].SAE paper,2000-01-0189
    [101].William R.Miller,John T.Klein Raimund Mueller and Winfried Doelling,et al.The development of Urea-SCR technology for US heavy duty trucks[C].SAE paper,2000-01-0190
    [102].Masahiko Hori and Makoto Oguchi.Feasibility study of Urea SCR systems on heavy duty commercial vehicles[C].SAE paper,2004-01-1944
    [103].Paul Tennison,Christine Lambert and Michael Levin.NO_x control development with Urea SCR on a diesel passenger car[C].SAE paper,2004-01-1291
    [104].Michael Block,Nigel Clark,Scott Wayne,et al.An investigation into the emissions reduction performance of an SCR system over two years' in-use heavy-duty vehicle operation[C].SAE paper,2005-01-1861
    [105].辛健成.欧洲商用汽车专家谈SCR技术[J].商用汽车,2003(8):70-70
    [106].张少华.欧洲SCR选择性催化还原技术的发展状况[J].汽车与配件,2005,30(7):44-45
    [107].周惠琴.重型车满足未来排放法规的解决方案[J].汽车科技,2005(1):44-48
    [108].Albert Flotho,J(u|¨)rgen Stein.中型/重型发动机的排气排放如何满足未来的中国排放标准[R].北京:内燃机可持续发展论坛,2006:1-17
    [109].文彤.2007年低排放发动机的技术要点[J].汽车与配件,2007,13(3)40-43
    [110].申宝武.排放法规变化对重负荷柴油机油规格标准的影响[J].国际石油经济,2006,(8):54-56
    [111].王宇.谁为未来的清洁空气买单—从美国EPA2007看中国的排放法规[J].交通世界,2007(5):14-21
    [112].卢继东.SCR技术在国内车用柴油机上的应用[J].动力工程,2007,27(4):80-81
    [113].李锋.以纳米TiO_2为载体的燃煤烟气脱硝SCR催化剂的研究[D].南京:东南大学,2007
    [114].田柳青.氨选择性还原脱除氮氧化物工业催化剂研究[D].广州:华南理工大学,2002
    [115].Luis J.Alemany,Francesco Berti,Guido Busca,et al.Characterization and composition of commercial V_2O_5-WO_3-TiO_2 SCR Catalysts[J].Applied Catalysis B:Environmental,1996(10):299-311.
    [116].Maria Cristina Paganini,Lorenzo Dall,Acqua,Elio Giamello,et al.An EPR study of the surface chemistry of the V_2O_5-WO_3/TiO_2 catalyst:redox behavior and state of Ⅴ(Ⅳ)[J].Journal of catalysis,1997(166):195-205
    [117].Carlo Orsenigo,Luca Lietti,Enrico Troconi,et al.Dynamic investigation of the role of the surface sulfates in NO_x reduction and SO_2 oxidation over V_2O_5-WO_3/TiO_2catalysts[J].Ind.Eng.Chem.Res.,1998(37):2350-2359.
    [118].B.Roduit,A.Baiker,F.Bettoni,et al.3-D modeling of SCR of NO_x by NH_3 on vanadia honeycomb catalysts[J].AIChE.Journal,1998,44(12):2731-2744
    [119].Luca Lietti,Isabella Nova,Gianguido Ramis,et al.Characterization and reactivity of V_2O_5-MoO_3/TiO_2 De-NO_x SCR catalysts[J].Journal of Catalysis,1999(187):419-435
    [120].M.Angeles Larrubia,Gianguido Ramis,Guido Busca.An FT-IR study of the adsorption of urea and ammonia over V_2O_5-MoO_3/TiO_2 SCR catalysts[J].Applied catalysis B:environmental,2000(27):1145-1151
    [121].R.Q.Long,R.T.Yang.Seleclive catalytic reduction of NO with ammonia over V_2O_5doped TiO_2 clay catalysts[J].Applied catalysis B:Environmental,2000(24):13-21
    [122].Yoshihide Watanabe,Akihiko Asano,Koji Banno.Application of numerical modeling of selective NO_x reduction by hydrocarbon under diesel transient conditions in consideration of hydrocarbon adsorption and desorption process[J].Catalysis Today,2001(69):209-216
    [123].Qingwen Song,George Zhu.Model-based closed-loop control of urea SCR exhaust aftertreatment system for diesel engine[C].SAE paper,2002-01-0287
    [124].S.Ogunwumi,R.Fox,M.D.Patil,et al.In-situ NH_3 generation for SCR NO_x applications[C].SAE paper,2002-01-2872
    [125].Bj(o|¨)rn Westerberg,Christian K(u|¨)nkel C.U.Ingemar Odenbrand.Transient modelling of a HC-SCR catalyst for diesel exhaust aftertreatment[J].Chemical Engineering Journal,2003(92):27-39
    [126].Cristian Ciardelli,Isabella Nova,Enrico Tronconi,et al.SCR-DeNO_x for diesel engine exhaust aftertreatment unsteady-state kinetic study and monolith reactor modeling[J].Chemical Engineering Science,2004(59):5301-5309
    [127].H.Servati,S.Petreanu,S.Marshall,et al.A NO_x reduction solution for retrofit applications:a simple urea SCR technology[C].SAE paper,2005-01-1857
    [128].Ikuhisa Hamada,Yasuyoshi Kato,Naomi Imada,et al.A unique titania-based SCR NO_x catalyst for diesel exhausts emission control[C].SAE paper,2005-01-1859
    [129].Sezen Soyer,Alper Uzun,Selim Senkan,et al.A quantum chemical study of nitric oxide reduction by ammonia(SCR reaction) on V_2O_5 catalyst surface[J].Catalysis Today,2006(118):268-278
    [130].Giuseppe Salvatore Madia,Measures to enhance the NO_x conversion in urea-SCR systems for automotive applications[D].University of Calabria(Italy),2002
    [131].Isabella Nova,Cristian Ciardelli,Enrico Tronconi.NH_3-NO/NO_2 chemistry over V-based catalysts and its role in the mechanism of the fast SCR reaction[J].Catalysis Today,2006(114):3-12.
    [132].Enrico Tronconi,Isabella Nova,Cristian Ciardelli.Redox features in the catalytic mechanism of the "Standard" and "Fast" NH_3-SCR of NO_x over a V-based catalyst investigated by dynamic methods[J].Journal of Catalysis,2007(245):1-10.
    [133].N.-Y.Topsoe,J.A.Dumesic,H.Topsφe.Vanadia/Titania catalysts for selective catalytic reduction of nitric oxide by ammonia[J].Journal of catalysis,1995(151):241-252
    [134].Lietti L,Nova I,Ramis G.,et al.Characterization and Reactivity of V_2O_5-MoO_3/TiO_2De-NO SCR Catalysts[J].Journal of Catalysis,1999(187):419-435
    [135].M.Koebel,M.Elsener,and G.Madia.Reaction pathways in the selective catalytic reduction process with NO and NO_2 at low temperatures[J].Ind.Eng.Chem.Res.,2001(40):52-59
    [136].Angel Martinez-Hernandez,Gustavo A.Fuentes.Redistribution of cobalt species in Co-ZSM5 during operation under wet conditions in the reduction of NO_x by propane[J].Applied Catalysis B:Environmental,2004(57):167-174
    [137].Hiroto Imai,Toshiyuki Ogawa,Kazuo Sugimoto,et al.Comparison of activities in selective catalytic reduction of NO_x by C_3H_8 over Co/MFI,Fe/MFI,and H/MFI zeolite catalysts[J].Applied Catalysis B:Environmental,2005(55):259-265
    [138].Natthaya Kiattisirikul,Choowong Chaisuk,Piyasan Praserthdam.Nature of the surface species on Ag/Al_2O_3 catalyst in SCR of NO by propene under lean-burn condition through temperature programmed technique[J].Catalysis Today,2004(97):129-135
    [139].K.Krishna,M.Makkee.Coke formation over zeolites and CeO_2-zeolites and its influence on selective catalytic reduction of NO_x[J].Applied Catalysis B:Environmental,2005(59):35-44
    [140].Zhaoliang Zhang,Haoran Geng,Lisheng Zheng,et al.Characterization and catalytic activity for the NO decomposition and reduction by CO of nanosized CO_3O_4[J].Journal of Alloys and Compounds,2005(392):317-321
    [141].徐建平.美国第2代及欧洲汽车微机故障诊断系统[J].汽车电器,2003(6):45-48
    [142].王旭斌,王生昌,李茂月.车载自诊断的原理及使用[J].汽车电器,2006(12):31-34
    [143].贺泓,张长斌,余运波,等.柴油机氮氧化物催化净化研究新进展[J].石油化 工,2004,33,1284-1286
    [144].王建华.V_2O_5-WO_3-SiO_2/TiO_2和Ag/Al_2O_3催化剂选择性催化还原(SCR)氮氧化物的试验研究[D].杭州:浙江大学,2005
    [145].戴华.新型钒氧化物脱氮催化剂的抗SO_2活性抑制研究[D].广州:华南理工大学,2005
    [146].李敏.氨选择性催化还原(SCR)氮氧化物的V_2O_5/TiO_2基催化剂活性及动力学研究[D].南京:东南大学,2005
    [147].刘清雅,刘振宇,李成岳.NH_3在选择性催化还原NO过程中的吸附与活化[J].催化学报,2006,27(7):636-646
    [148].Shijin Shuai,Jianxin Wang,Rulong Li,Performance evaluation and application of diesel NO_x-SCR catalyst by ethanol reductant[C].SAE paper,2005-01-1089
    [149].帅石金,张文娟,董红义等.柴油机尿素SCR催化器优化设计[J].车用发动机,2007,167(1):44-47
    [150].朱炳辰.化学反应工程(第四版)[M].北京:化学出版社,2007:56-88
    [151].陶建忠.利用选择性催化还原反应(SCR)降低车用柴油机氮氧化物的技术研究[D].济南:山东大学,2008
    [152].陶建忠,李国祥,佟德辉.基于V-W/Ti基催化剂的NH_3选择性催化还原NOx的实验研究[J].内燃机工程,2008,29(2):22-25
    [153].Johann C.Wurzenberger,Roland Wanker.Multi-scale SCR modeling,1D kinetic analysis and 3D system simulation[C].SAE paper,2005-01-0948:1-9
    [154].Daniel Chatterjee,Thomas Burkhardt,Brigitte Bandl-Konrad et al.Numerical simulation of ammonia SCR-catalytic converters:model development and application[C].SAE paper,2005-01-0965
    [155].俞佐平,陆煜.传热学[M].北京:高等教育出版社,1995:92-122
    [156].沈维道,郑佩芝,蒋淡安.工程热力学[M].北京:高等教育出版社,1983:106-125
    [157].郭汉贤.应用化工动力学[M].北京:化学工业出版社,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700