用户名: 密码: 验证码:
混沌保密通信系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
信息安全是信息时代的一个重要问题。尽管传统的保密方法保护信息安全行之有效,但是随着计算机技术的发展,加密系统被破译的情况时有发生。这种情况下,迫切需要一个新的保密机制,新的保密途径确保信息安全。混沌系统的特性决定了它能够承担这一重任,混沌保密通信成为近年来信息安全领域研究的热点之一。
    本文重点研究了混沌保密通信的关键技术问题,主要成果如下:
    1. 基于回馈递推(Backstepping)方法,研究了受到外界扰动的不确定性混沌系统的同步,提出了能够抵抗重构吸引子攻击和回归映射攻击的保密通信系统。以统一混沌系统为例,得到了统一混沌系统同步的充分条件,提出了基于回馈递推方法同步的混沌掩盖与混沌调制相结合的保密通信系统;以统一混沌系统为例,研究了基于回馈递推方法的广义同步问题,提出了基于回馈递推方法广义同步的混沌掩盖与混沌调制相结合的保密通信系统;提出了以统一混沌系统为神经元的细胞神经网络,并且研究了基于回馈递推方法的完全同步和广义同步问题,得到了细胞神经网络混沌系统同步的充分条件,并且将细胞神经网络混沌系统同步用于设计保密通信系统,提出了一种安全性高、实时性好和具有并行处理能力的保密通信系统。
    2. 研究了基于观测器的混沌保密通信系统的安全性问题,提出了能够抵抗基于参数辨识的自适应同步攻击和选择密文攻击的混沌保密通信系统。研究了这种保密通信系统在具有鲁棒性的前提下,增强保密通信系统对参数变化的敏感性的方法以及提高混沌序列对参数变化敏感性的方法,得到了安全性高、实时性好的混沌保密通信系统。
    3. 研究了具有结构不确定性和带有外界扰动的模糊混沌系统在保密通信中的应用。在不需要混沌系统的非线性项和不确定项 Lipschitz 连续的情况下,得到了受到外界扰动的具有不确定性的模糊混沌系统同步的充分条件,并且结合传统密码编码学,设计了鲁棒性强、保密性高和实时性好的通信系统。
    4. 研究了不确定时滞混沌系统的时延同步问题,得到了时滞混沌系统时延同步的充分条件,并且基于时延同步提出了包含单级时滞混沌和多级时滞混沌系统的保密通信系统。这种保密通信系统能抵抗重构吸引子攻击和基于参数辨识的优化策略攻击。
    5.研究了基于混沌广义同步的保密通信系统。利用脉冲微分方程理论,得到混沌广义同步的充分条件。提出了基于广义同步的保密通信系统结构,密文信号在一个周期里包含同步脉冲、驱动混沌系统的状态信号和响应混沌系统的状态信号,使得重构吸引子、自适应辨识、优化参数辨识等攻击方法失效,从而增强了系统的安全性。同时,由于控制方法的鲁棒性和实时性,使得保密通信系统具有鲁棒性高、实时性好的特点。
Information security is an important problem in information times. With the development of computer technology, encrypted systems are cracked from time to time although classical cryptography is effect to protect information safety. Now it is urgent to create a new encryption mechanism or a new way to guarantee information safety. Chaotic systems are able to be assume this important task due to its natural. Recently chaotic secure communication is one of hot topics in the field of information security.
    In this dissertation, several key issues in chaotic secure communication are researched and some chaos-based communication schemes are proposed as well, which are detailed as follows:
    1.Backstepping-based synchronization of a disturbed uncertain chaotic system is researched, and chaotic secure communication is proposed which is able to define the attacks of reconstructing attractor and return map. Unified form chaos is taken as an example. Backstepping-based identical chaotic synchronization is established and secure communication scheme is investigated which is combined with chaotic mask and chaotic modulation. Backstepping-based general chaotic synchronization is set up and secure communication basing general synchronization is studied and the plant is put forward which is consists of chaotic mask and chaotic modulation. In order to improve complexity of communication systems, cellular neural network taking unified form chaos as neuro is founded and its identical synchronization and general synchronization are researched. And sufficient conditions of identical synchronization and general synchronization for cellular neural network are achieved via backstepping mechanism. And the cellular neural network chaos is used to design secure communication system with high security, real time property and parallel processing.
    2. Security problem of observer-based chaotic secure communication is researched. The communication scheme with high security is obtained, which defines attacking from adaptive synchronization and ciphertext chosen. Furthermore, the secure communication with robustness is investigated in order to improve communication system’s and chaotic sequence’s sensitivity to parameter changed. The secure communication system with high safety and real time property is set up.
    3. The problem of fuzzy chaotic chaos with structure uncertainty and external disturbance applied to communication is researched. Synchronization conditions are attained, which is high robust and does not need nonlinear terms in chaotic systems being Lipschitz continuous. Then secure communication scheme combined with traditional cryptography is brought forward, which can define attacking from attractor reconstructed and optimal strategy parameter- identification-based.
    4. Lag synchronization of uncertain time-delayed chaotic systems is studied. Sufficient conditions of lag synchronization in time-delayed chaotic systems are attained. And secure communication schemes basing lag synchronization comprising single chaotic system and
    several chaotic systems are established. The schemes resist attacks of reconstructing attractor and optimal strategy parameter-identification-based.
    5.Generalized synchronization based chaotic communication is studied. By use of impulsive differential equation theory, sufficient conditions for generalized synchronization are obtained. The structure of generalized synchronization based chaotic communication is proposed, where ciphertext contains synchronization impulse, drive chaos state and response chaos state during a periodic so that some attack methods are invalid, such as reconstructing attractor, adaptive identification and optimization-based identifying parameters, etc. Therefore system security is improved. At same time, due to robustness and real time property of control method, secure communication system is characterized by high robustness and good real time property.
    6. Chaotic cryptographic is researched and chaotic map-based encryption/decryption algorithm for image is proposed. Use standard
引文
1. Giuseppe Grassi, Saverio Mascolo. Nonlinear Observer Design to Synchronize Hyperchaotic System via a Scalar Signal [J]. IEEE Transaction on Circuits and Systems I, 1997, 44 (10): 1011-1014.
    2. Xingzhe Fan, Murat Arcak. Nonlinear Observer Desing for Systems with Multivariable Monotone Nonlinerities [C]. Proceedings of the 41st IEEE Conference on Decision and Control, Las Vegas, Nevada USA, 2002.
    3. JinHu Lü,Tianshou Zhou, Suochun Zhang. Chaos synchronization between linearly coupled chaotic systems [J]. Chaos, Solitons and Fractals, 2002, 14: 529-541.
    4. L. Pecora, T. Carrol. Synchronization in chaotic systems [J]. Physical Review Letters, 1990, 64 (8): 821-823.
    5. L. Pecora, T. Carrol, G. Johnson et al. Fundamentals of synchronization in chaotic systems, concepts and applications [J]. Chaos, 1997, 7 (4): 520-543.
    6. Xiaohui Tan, Jiye Zhang, Yiren Yang. Synchronization chaotic systems using backstepping design [J]. Chaos, Solitons and Fractals, 2003, 16: 37-45.
    7. C. Wang, S. S. Ge. Synchronization of two uncertain chaotic systems via adaptive backstepping [J]. International J. Bifurcation and Chaos, 2001, 11 (6): 1743-1751.
    8. Shinbrot T, Otte E., Crebogic T. Using chaos to direct trajectories to targets [J]. Physics Review Letter, 1990, 65 (26): 3215-3218.
    9. Paskota M, Mees A I, Teo K L. Directing orbits of chaotic dynamical systems [J]. Int. J. Bifurcation and Chaos, 1995, 5 (2): 573-583.
    10. Richter H., Reinschke K J. Optimization of local control chaos by an evolution algorithm [J]. Physica D, 2000, 144 (2): 309-334.
    11. 杨涛,绍惠鹤.基于遗传算法混沌系统同步研究[J].控制理论与应用, 2002, 19 (5):789-792.
    12. Yeong-Chan Chang. A robust tracking control for chaotic Chua’s circuits via fuzzy approach [J]. IEEE Transaction on Circuits and System I, 2001, 48 (7): 889-895.
    13. Gang Chen, Guanrong Chen, Rui J. P. de Figueiredo. Feedback control of unknown chaotic dynamical systems based on time-series data [J]. IEEE Transaction on Circuits and Systems I, 1999, 46 (5): 640-644.
    14. Jinhu Lü, Junan Lu. Controlling uncertain Lü system using linear feedback [J]. Chaos, Solitons and Fractals, 2003, 17: 127-133.
    15. Chang-Woo Park, Chang-Hoon Lee, Mignon Park. Design of an adaptive fuzzy model based controller for chaotic dynamics in Lorenz systems with uncertainty [J]. Information Sciences, 2002, 147: 245-266.
    16. Xinghuo Yu, Guanrong Chen, Yanxing Song et al. A generalized OGY method for controlling higher order chaotic systems [C]. Proceedings of the 39th IEEE Conference on Decision and Control, Sydney, Australia, December, 2000: 2054-2059.
    17. Guoping Jiang, Weixing Zheng. Chaos control for a class of chaotic systems using PI-type observer approach [J]. Chaos, Solitons and Fractals, 2004, 21: 93-99.
    18. Ahmad M. Harb, Bassam A. Harb. Chaos control of third-order phase-locked loops using backstepping nonlinear controller [J]. Chaos, Solitons and Fractals, 2004, 20: 719-723.
    19. Keun Bun Kim, Jin Bae Park, Yoon Ho Choi et al. Control of chaotic dynamical systems using radial basis function network approximators [J]. Information Sciences, 2000, 130: 165-183.
    20. Changchun Hua, Xinping Guan. Robust control of time-delay chaotic systems [J]. Physics Letters A, 2003, 314: 72-80.
    21. 樊春霞,姜长生.基于变结构的不确定混沌系统时滞反馈控制[J].吉林大学学报(理学版), 2004, 42 (2): 238-241.
    22. Nganga-Kouya, D., Saad M., Lamarche L. et al. Backstepping adaptive position control for robitic manilpulators [C]. Proceedings of American Control Conference, June 25-27, 2001,1: 25-17.
    23. Alrifai M. T., Chow J. H., Torrey D. A. Backstepping nonlinear speed controller for switched-reductance motros [C]. IEE Proceedings of Electric Power Applications, March, 2003: 193-200.
    24. Lin F. J, Shen P. H., Hsu S. P. Adaptive backstepping sliding mode control for linear induction motor drive [C]. IEE Proceedings of Electric Power Applications, May 2002: 184-194
    25. Praly L. Asymptotic stabilization via output feedback lower triangular systems with output dependent incremental rate [J]. IEEE Transaction on Automatic Control, 2003, 48 (6): 1103-1108.
    26. Jian Zhang, Chunguang Li, Hongbin Zhang et al. Chaos synchronization using variable feedback based on backstepping method [J]. Chaos, Solitons and Fractals, 2004, 21 (5): 1183-1193.
    27. Samuel Bowong, F. M. Moukanm Kankmeni. Synchronization of uncertain chaotic systems via backstepping approach [J]. Chaos, Solitons and Fractals, 2004, 21 (4): 999-1011.
    28. Yuping Tian, Xinghuo Yu. Robust learning control for a class of nonlinear systems with periodic and a periodic uncertainties [J]. Automatica, 2003, 39 (11): 1957-1966.
    29. Maoyin Chen, Donghua Zhou, Yun Shang. Nonlinear feedback control of Lorenz systems [J]. Chaos, Solitons and Fractals, 2004, 21 (2): 295-304.
    30. Tao Yang, Xiaofeng Li, Huihe Shao. Chaotic synchronization using backstepping method with application to the Chua’s circuits and Lorenz system [C]. Proceedings of the American Control Conference, Arlington, VA, June 25-27, 2001: 2299-2300.
    31. Chen Guanrong, Yu Xinghuo. On time-delayed feedback control of chaotic systems [J]. IEEE Transaction Circuits and Systems I, 1999, 45: 767-772..
    32. Yu Xinghuo. Tracking inherent periodic orbits in chaotic dynamic systems via adaptive variable structure time-delayed self control [J]. IEEE Transaction Circuits and Systems I, 1999, 46:1408-1411
    33. Song Yanxing, Yu Xinghuo, Chen Guanrong et al. Time delayed repetitive control for control for chaotic systems [J]. International J. Bifurcation and Chaos, 2002, 12: 1057-1065.
    34. Tao Yang, Chai Wah Wu, Leon O. Chua. Cryptography based on chaotic systems [J]. IEEE Transaction Circuits and Systems I, 1997, 44 (5): 469-472.
    35. The-Lu Liao, Nansheng Huang. An observer-based approach for chaotic synchronization with application to secure communication [J]. IEEE Transaction on Circuits and Systems I, 1999, 46 (9): 1144-1150.
    36. The-Lu Liao, Nansheng Huang. Chaotic secure communication systems design via nonlinear state observer technique [C]. Proceedings of ICSP’98: 201-204.
    37. Moes Feki, Bruno Robert. Observer-based chaotic synchronization in the presence of unknown inputs [J]. Chaos, Solitons and Fractals, 2003, 15: 831-840.
    38. L. Kocarev, U. Parlitz, T. Stojanovski. An application of synchronization chaotic dynamic arrays [J]. Physics Letters A, 1996, 217: 280-284.
    39. Gregory D. Vanwiggeren, Rajarshi Roy. Chaotic communication using time-delayed optical systems [J]. International J. Bifurcation and Chaos, 1999, 11(9): 2129-2156.
    40. Saverio Mascolo, Giuseppe Grassi. Observer for hyperchaos synchronization with application to secure communication [C]. Proceedings of the 1998 IEEE International Conference on Control Applications, Trieste, Italy, Sep.1-4, 1998: 1016-1100.
    41. Frederick H. Willeboordse. Chaotic communication with a time delayed map [DB/OL]. http://staff.science.nus.edu.sg/~frederik.
    42. 卢辉斌,李丽香,彭海朋 et al.超混沌 M-G 系统参数辨识及其在通讯中的应用[J].电子学报, 2002, 30 (2): 289-291.
    43. V. Ahlers, U. Parlitz, W. Lauterborn. Hyperchaotic dynamics and synchronization of external-cavity semiconductor lasers [J]. Physics Review E, 1998, 58, 7208.
    44. 廖晓昕.动力系统的稳定性理论和应用[M].国防工业出版社,北京, 2000.
    45. Tao Yang, Linbao Yang, Chunmei Yang. Cryptanalyzing chaotic secure communications using return maps [J]. Physics Letters A, 1998, 245: 495-510.
    46. M. S. Leeson. Security difficulties with a recently proposed chaotic based communication technique [J]. Electronics Letters, 1994, 30 (24): 2014-2015.
    47. Herve Dedieu, Maciej J. Ogorzalek. Identifiability and Identification of chaotic systems based on adaptive synchronization [J]. IEEE Transaction on Circuits and Systems I, 1997, 44 (10): 948-962.
    48. G. Alvarez, F. Montoya, M. Romera. Breaking parameter modulated chaotic secure communication system [DB/OL]. http://arxiv.org/PS_cache/nlin/pdf/0311/0311041.pdf
    49. Tao Yang, Linbao Yang, Chunmei Yang. Breaking chaotic secure communication using a spectrogram [J]. Physics Letters A, 1998, 247: 105-111.
    50. Mariusz Zoltowski. An adaptive reconstruction of chaotic attractors out of their single trajectories [J]. Signal Processing, 2000, 80: 1099-1113.
    51. Goce Jakimoski, Ljupco Kocarev. Analysis of some recently proposed chaos-based encryption algorithms [J]. Physics Letters A, 2001, 291: 381-384
    52. Xinggang Wang, Meng Zhan, C.-H. Lai. Error function attack of chaos synchronization based encryption schemes [DB/OL]. http://chaos.physics.nus.edu.sg/pub/ccsc/1075774996.pdf
    53. Changsong Zhou, C.H. Lai. Extracting message masked by chaotic signals of time-delay systems [J]. Physical Review E, 2000, 60: 320-323.
    54. Short K. M., Parker A. T. Unmasking a hyperchaotic communication scheme [J]. Physical Review E, 1998, 58: 1159-1162.
    55. Moez Feki. An adaptive chaos synchronization scheme applied to secure communication [J]. Chaos, Solitons and Fractals, 2003, 18: 141-148.
    56. Jochen Brocker, Ulrich Parlitz. Analyzing communication schemes using methods from nonlinear filtering [J]. Chaos, 2003, 13 (1): 195-208.
    57. L. M. Pecora, T. L. Carroll. Synchronization in chaotic systems [J]. Physical Review Letters, 1990, 64: 821-824.
    58. S. Boccaletti. The synchronization of chaotic systems [J]. Physics Report, 2002, 366: 1-101.
    59. 关新平,范正平,陈彩莲 et al.混沌控制及其在保密通信中的应用.国防工业出版社,北京,2002.
    60. S. S. Yang, C. K. Duan. Generalized synchronization in chaotic systems [J]. Chaos, Solitons and Fractals, 1998, 9 (10): 1703-1707.
    61. A. Kittel, J. Parisi, K. Pyragas. Generalized synchronization of chaos in electronic circuits experiments [J]. Physica D, 1998, 112: 459-471.
    62. Xiaosong Yang. On the existence of generalized synchronizor in unidirectionally coupled systems [J]. Applied Mathematics and Computation, 2001, 122: 71-79
    63. Jianwei Shuai, Dominique M. Durand. Phase synchronization in two coupled chaotic neurons [J]. Physcis Letters A, 1999, 264: 289-297.
    64. Zhengming Ge, Chiencheng Chen. Phase synchronization of coupled chaotic multiple time scales systems [J]. Chaos, Solitons and Fractals, 2004, 20: 639-647.
    65. M. G. Rosenblum, A. S. Pikovsky, J. Kurths. Phase synchronization of chaotic oscillators [J]. Physics Review Letters, 1996, 76: 1804.
    66. Kuang-You Lian, Chian-Song Chiu, Tung-Sheng Chiang, Peter Liu. Secure communication systems with robust perform via fuzzy observer-based design [J]. IEEE Transaction on Fuzzy Systems, 2001, 9 (1): 212-220
    67. Kuang-You Lian, Chian-Song Chiu, Tung-Sheng Chiang, Peter Liu. LMI-based fuzzy chaotic synchronization and communication [J]. IEEE Transaction on Fuzzy Systems, 2001, 9 (4): 539-553
    68. L. Xie. Output feedback H∞ control of systems with parameter uncertainties. [J]. Int. J. Contr. 1996, 63 (4): 741-750
    69. K. M. Short. Steps Toward to Unmasking Secure Communications Scheme [J]. Int. J. Bifurcation and Chaos, 1994, 4 (4): 959-977.
    70. Yang T., Chua L. O. Channel-independent Chaotic Secure Communication [J]. Int. J. Bifurcation and Chaos, 1996, 6 (12B): 2653-2660.
    71. Yang T., Chua L. O. Generalized Synchronization of Chaos via Linear Transformations [J]. Int. J. Bifurcation and Chaos, 1998, 8 (7): 1557-1564.
    72. Yang S. S., Duan C. K. Generalized Synchronization in Chaotic Systems [J]. Chaos Solitons & Fractals, 1998, 9 (10): 1703-1707.
    73. Min Lequan, Chen Guanrong, Zhang Xiaodan et al. Approach to Generalized Synchronization with Application to Chaos-Based Secure Communication [J]. Communication Theory Physics, 2004, 41 (4): 632-640.
    74. Lequan Min, Xianhua Zhang, Miao Yang. Secure Communication by Generalized Synchronization [J]. J. University of Science and Technology Beijing, 2003, 10 (2): 75-78.
    75. D. Zhang, L. Min, Theory for Constructing Generalized Synchronization and Applications [J]. J. University Science and Technology Beijing, 2000, 7 (3): 225-228.
    76. Chen G, Ueta T. Yet Another Chaotic Attractor [J]. Int. J. Bifurcation and Chaos, 1999, 9: 1465-1466.
    77. 樊春霞, 姜长生. 统一混沌系统自适应同步控制 [J]. 系统工程与电子技术, 2004, 26 (3): 358-360.
    78. 杨俊华,吴捷,胡跃明.反步方法原理及在非线性鲁棒控制中的应用[J].控制与决策, 2002, 17, Suppl.: 641-647.
    79. Ioannis Kanellakopouos, Petar V. Kokotovic, A. Stepher Morse. Systematic Design of Adaptive
    Controller for Feedback Linearizable Systems [J]. IEEE Transaction on Automatic Control, 1991, 36 (11): 1241-1253.
    80. L O Chua, L Yang. Cellular Neural Networks: Theory [J]. IEEE Transaction on Circuits and Systems, 1998, 35 ( ): 1257-1272.
    81. L O Chua, L Yang. Cellular Neural Networks: Applications [J]. IEEE Transaction on Circuits and Systems, 1998, 35 ( ): 1273-1290.
    82. International Journal of Circuits Theory and Applications. 1996, 24 (1): Specials on CNN [J].
    83. Zhang Yifeng, He Zhenya. A Secure Communication Scheme Based on Cellular Neural Network [A]. IEEE International Conference on Intelligent Processing Systems, 1997 (ICIPS’97) [C], 1997, 1: 521-524.
    84. 蒋国平,王锁萍.细胞神经网络超混沌同步及其在保密通信中的应用[J]. 通信学报, 2000, 21 (9): 79-85.
    85. Tanaka M, Crounse K R, Roska T. Template Synthesis of Cellular Neural Networks for Information Coding and Decoding [A]. Proceedings, Second International Workshop on Cellular Neural Networks and Their Applications, 1992 (CNNA~92) [C]: 29-35.
    86. 周黎晖.基于同步的混沌通信系统的保密性能及新型数字混沌加密应用研究[DB/OL]. http://202.119.70.19:85/~cddbn/Y424479/pdf/index.htm
    87. 赵耿,方锦清. 现代信息安全与混沌保密通信应用研究进展[J]. 物理学进展, 2003, 23 (2): 211-255.
    88. Saeed Tahrion, Yingcheng Lai. Observability of lag synchronization of coupled chaotic oscillators [J]. Physical Review E, 1999, 59 (6): 6247
    89. A. Barsella, C. Lepers. Chaotic lag synchronization and pulse-induced transient chaos in lasers coupled by saturable absorber [J]. Optical communication, 2002, 205: 397-403.
    90. M. G. Rosenblum, A. S. Pikovsky, J. Kuths. From phase to lag synchronization in coupled oscillators [J]. Physical Review Letters, 1997, 78: 4193.
    91. E. M. Shahverdiev, S. Sivapakasam, K. A. Shore. Lag synchronization in time-delayed systems [J]. Physics letters A, 2002, 292: 320-324
    92. Henning U. Voss. Anticipating chaotic synchronization [J]. Physical Review E, 2000, 61 (5): 5155-5159.
    93. F. Rogister, D. Pieroux, M. Sciamanna et al. Anticipating synchronization of two chaotic laser diodes by incoherent optical coupling and its application to secure communications [J]. Optics Communications, 2002, 207: 295-306.
    94. Emilio Hernandez Garcia, C. Masoller, Claudio R. Mirasso. Anticipating the dynamics of chaotic maps [J]. Physics Letters A, 2002, 295: 39-43.
    95. C. Masoller. Anticipation in the synchronization of chaotic semiconductor lasers with optical feedback [J]. Physics Review E, 1998, 58: 3067.
    96. 杨明,胥光辉,齐望东.密码编码学与网络安全:原理与实践(第二版)[M]. 电子工业出版社,北京,2002.
    97. 宋震等.密码学[M].中国水利水电出版社,北京,2002.
    98. Tao Yang. A survey of chaotic secure communication systems [J]. International J. Computational Cognition (http://www.YangSky.com/yangijcc.htm), 2004, 2 (2): 81-130.
    99. Kristic M, Kanellakopoulos I, Kokotovic P. Nonlinear and adaptive control design [M]. John Wiley & Sons, NY
    100. Pecora L M, Carroll T L. Synchronization in chaotic systems [J]. Physics Review Letter, 1990, 64: 821-824.
    101. 方锦清.驾驭混沌与发展高新技术[M].原子能出版社,北京,2002.
    102. 赵耿,郑德玲,方锦清.混沌保密通信的新进展[J].自然杂志, 2001, 23 (2): 97-106.
    103. Henk Nijmeijer, Iven M. Y. Mareels. An observer looks at synchronization [J]. IEEE Transaction on Circuits and Systems I, 1997, 44 (10): 882-890.
    104. Giuseppe Grassi, Saverio Mascolo. A system theory for designing cryptosystems based on hyperchaos [J]. IEEE Transaction on Circuits and Systems I, 1999, 46 (9): 1135-1138.
    105. Henri Huijberts, Henk Nijmerjer, Rob Willems. Systems identification in communication with chaotic systems [J]. IEEE Transaction on Circuits and Systems I, 2000, 47 (6): 800-808.
    106. Liao T-L, Tsai S-H. Adaptive synchronization of chaotic systems and its application to secure communications [J]. Chaos, Solitons and Fractals, 2000, 11 (9): 1387-1396.
    107. Feki M. Observer-based chaotic synchronization in the presence of unknown inputs [J]. Chaos, Solitons and Fractals, 2003, 15: 831-840.
    108. Moez Feki. Observer-based exact synchronization of ideal and mismatched chaotic systems [J]. Physics Letters A, 2003, 309: 53-60.
    109. Morgül ?, Solak E. Observer based synchronization of chaotic signals [J]. Physics Review E, 1996, 54 (5): 4803-4811.
    110. Morgül ?, Solak E. On the synchronization of chaotic systems by using state observers [J]. International J Bifurcation and Chaos, 1997, 7 (6): 1307-1322.
    111. Dedieu H., M. J. Ogorzalek. Identifiability and identification of chaotic systems based on adaptive synchronization [J]. IEEE Transaction on Circuits and Systems I, 1997, 44: 948-962.
    112. Alexander L Fradkov, A. Yu. Markov. Adaptive synchronization of chaotic systems based on speed gradient method and passification [J]. IEEE Transaction on Circuits and Systems I, 1997, 44 (10): 905-912.
    113. A. Fradkov, H. Nijmeijer, A. Markov. Adaptive observer-based synchronization for communication [J]. International Bifurcation and Chaos, 2000, 10 (12): 2807-2813.
    114. Hu Guojie, Feng Zhengjin, Meng Ruiling. Chosen ciphertext on chaos communication chaotic synchronization [J]. IEEE Transaction on Circuits and Systems I, 2003, 50 (2): 275-279.
    115. 周红,罗杰,凌燮亭.混沌非线性反馈密码序列设计和有限精度实现[J].电子学报,1997,25(10): 58-60.
    116. 周红, 凌燮亭.有限精度混沌系统的 m 序列扰动实现[J].电子学报, 1997, 25 (7): 95-97.
    117. 鞠磊,翁贻方.主动-被动混沌同步保密通信系统设计[J].北京工商大学学报(自然科学版),2002, 20 (1): 33-36.
    118. C. E. Shannon. Communication theory of secrecy system [J]. The Bell System Technical Journal, 1949, 28 (4): 656-715.
    119. Shijun Li, Xuanqin Mou, Yuanlong Cai. Improving security of a chaotic encryption approach [J]. Physics Letters A, 2001, 290 (3): 127-133
    120. Frank Dachselt, Wolfgang Schwarz. Chaos and cryptography [J]. IEEE Transaction on Circuits and Systmes I, 2001, 48 (12): 1498-1509.
    121. K. Li, Y. C. Soh, Z. G. Li. Chaotic cryptosystem with sensitivity to parameter mismatch [J]. IEEE Transaction on Circuits and Systems I, 2003, 50 (4): 579-583.
    122. H. Poincare. Sur Les equations de la dynamique ef le probleme des trios corps [J]. Acta Mathmatics, 1890, 13: 1-270
    123. E. Lorenz. Deteministic nonperiodic flow [J]. J Almos. Sci., 1963, 20: 282-293.
    124. T. Y. Li, J. A. Yorke. Period three implies chaos [J]. American Mathmatics Monthly, 1975, 82: 985-992.
    125. R. L. Devaney. An introduction to chaotic dynamic systems [M]. Assion-Wesley, 1987.
    126. M. J. Feigenbaum. Quantialive university for a class of nonlinear transformation [J]. Journal of Statistics Physics, 1978, 19: 25-28.
    127. 陈士刚. 映象与混沌 [M]. 国防工业出版社, 北京, 1992.
    128. 郝柏林. 从抛物线谈起——混沌动力学引论 [M]. 上海科技教育出版社, 上海, 1993.
    129. 王光瑞, 于熙龄, 陈式刚.混沌的控制,同步与利用[M].国防工业出版社, 2001.
    130. 杨维明. 时空混沌和耦合映象格子 [M]. 上海科技教育出版社, 上海, 1994.
    131. E. Ott., C. Grebogi, J. A. Yorke. Controlling chaos [J]. Physics Review Letters, 1990, 64 (11): 1196-1199.
    132. T. Shinbrot, C. Grebogi, E. Ott. Et al. Using small perturbation to control chaos [J]. Nature, 1993, 363: 411-417.
    133. W. L. Ditto, S. N. Rauseo, M. L. Spano. Experimental control of chaos [J]. Physics Review Letters, 1990, 65 (36): 3211-3214.
    134. M. Ramesh, S. Narayanan. Chaos control by nonfeedback methods in the presence of noise [J]. Chaos, Solitons and Fractals, 1999, 10 (9): 1473-1489.
    135. Jiandong Zhu, Yuping Tian. Nonlinear recursive delayed feedback control fro chaotic discrete-time systems [J]. Physics Letters A, 2003, 310: 295-300.
    136. 卢俊国. 混沌系统控制方法及其应用研究[D]. 南京理工大学博士学位论文, 2001.
    137. Kotaro Hisrasawa, Junichi Murata, Jinglu Hu et al. Chaos control on universal learning networks [J]. IEEE Transaction on Systems, Man, And Cybernetics, Part C, 2000, 30 (1): 95-104.
    138. Ho Jae Lee, Jin Bae Park, Guanrong Chen. Robust fuzzy control of nonlinear systems with parametric uncertainties [J]. IEEE Transactions on Fuzzy Systems, 2001, 9 (2): 369-379.
    139. Jitao Sun, Yinping Zhang. Impulsive control of Rossler systems [J]. Physics Letters A, 2003, 306: 306-312.
    140. Carlo Piccardi, Sergio Rinaldi. Optimal control of chaotic systems via peak-to-peak maps [J]. Physica D, 2000, 144: 298-308.
    141. S. J. Schiff, K. Jerger, D. H. Duong et al. Controlling chaos in the brain [J]. Nature (London), 1994, 370: 615-620.
    142. Jinhu Lü, Xinghuo Yu, Guanrong Chen. Generating chaotic attractors with multiple merged basins of attraction: A switching piecewise-linear control approach [J]. IEEE Transaction on Circuits and Systems I, 2003, 50 (2): 198-207.
    143. Tianshou Zhou, Guanrong Chen, Qigui Yang. Constructing a new chaotic system based on the Silnikov criterion [DB/OL]. http://www.ee.cityu.edu.hk/~gchen/pdf/single-equilibrium.pdf
    144. Zhong Li, Jin Bae Park, Young Hoon Joo et al. Anticontrol of chaos discrete TS fuzzy systems [J]. IEEE Transaction on Circuits and Systems I, 2002, 49 (2): 249-253.
    145. Zuohuan Zheng, Jinhu Lü, Guanrong Chen et al. Generating two symmetrically chaotc attractors via a switching piecewise-linear controller [DB/OL]. http://www.ee.cityu.edu.hk/~gchen/pdf/2627.pdf
    146. Chen G, Lai D. Anticontrol of chaos via feedback [J]. International J. Bifurcation and Chaos, 1999, 9 (7): 1585-1590.
    147. 茅耀斌. 基于混沌的图像加密与数字水印技术研究 [D]. 南京理工大学博士学位论文, 2003.
    148. 胡岗, 萧井华, 郑志刚. 混沌控制[M]. 上海教育出版社, 上海, 2000.
    149. Shujun Li, Xuanqin Mou, Yuanlong Cai. Chaotic cryptography in digital world: state-of-the art, problems and solutions [DB/OL]. http://www.hooklee.com
    150. Ljupco Kocarev, Goce Jakimoski, Toni Stojanovski et al. From chaotic maps to encryption schemes [J]. Proceedings of IEEE International Symposium Circuits and Systems, IEEE, 1998, 4: 514-517.
    151. Kocarev L. Chaos-based cryptography: a brief view [J]. IEEE Circuits and Systems Magazine, 2001, 1 (3):6-21.
    152. C Kolumba, M. P. Kennedy, L. O. Chua. The role of synchronization in digital communications using chaos — Part I: fundamentals of digital communications [J]. IEEE Transaction on Circuits and Systems I, 1997, 44 (10): 927-936.
    153. C Kolumba, M. P. Kennedy, L. O. Chua. The role of synchronization in digital communications using chaos — Part II: chaotic modulation and chaotic synchronization [J]. IEEE Transaction on Circuits and Systems I, 1998, 45 (11): 1129-1140.
    154. Sungchul Kim, Byoungho Lee, Dong Hwan Kim. Experiments on chaos synchronization in two separate erbium-doped fiber lasers [J]. IEEE Photonics Technology Letters, 2001, 13 (4): 290-292
    155. S. Tang, H. F. Chen, S. K. Hwang et al. Message encoding and decodong through chaos modulation in chaotic optical communications [J]. IEEE Transactions Circuits and Systems I, 2002, 49 (2): 163-169.
    156. Marco Gotz, Kristina Kelbe, Wolfgang Schwarz. Discrete-time chaotic encryption systems – Part I: statistical design approach [J]. IEEE Transaction on Circuits and Systems I, 1997, 44 (10): 963-970.
    157. Li Shujun, Li Qi, Li Wenmin et al. Statistical properties of digital piecewise linear chaotic maps and their roles in cryptography and pseudo-random coding [C]. Cryptography and Coding, 8th IMA International Conference Proceedings, Springer-Verlag, Berlin, 2001: 205-221.
    158. T. Stojanovski, L. Kocarev. Chaos-based random number generators – Part I: analysis [J]. IEEE Transaction on Circuits and Systems I, 2001, 48 (3): 281-287.
    159. R. Brown, L. O. Chua. Clarifying chaos: example and counterexamples [J]. International J. Bifurcation and Chaos, 1996, 6 (2): 219-249.
    160. Goce Jakimoski, Ljupco Kocarev. Chaos and cryptography: block encryption ciphers based on chaotic maps [J]. IEEE Transaction on Circuits and Systems I, 2001, 48 (2): 163-169.
    161. Ljupco Kocarev, Goce Jakimoski, Toni Stojanovski et al. From chaotic maps to encryption schemes [J]. Proceedings of IEEE International Symposium Circuits and Systems, IEEE, 1998, 4: 514-517
    162. K. M. Roskin, J. B. Gasper. From chaos to cryptography [DB/OL]. http://xcrypt.theory.org/paper/paper.pdf
    163. 冯登国, 吴文玲. 分组密码的设计与分析 [M]. 清华大学出版社, 北京, 2000.
    164. 胡予濮, 张玉清, 肖国镇. 对称密码学 [M]. 机械工业出版社, 北京, 2002.
    165. Naoki Masuda, Kazuyuki Aihara. Cryptosystems with discretized chaotic maps [J]. IEEE Transactions on Circuits and Systems I, 2002, 49 (1): 28-40.
    166. Shahram Etemadi Borujeni. Cryptography by pseudo random number generator [C]. First International IEEE Symposium “Intelligent Systems”, 2002: 244-247.
    167. Matthews R. On the deviation of a “chaotic” encryption algorithm [J]. Crytologia, 1989, 8 (1): 29-41.
    168. Guoning Tang, Shihong Wang, Huaping Lü et al. Chaos-based cryptograph incorporated with S-box algebraic operation [J]. Physics Letters, 2003, 318: 388-398.
    169. Mieczyslaw Jessa. Data encryption algorithm using one-dimensional chaotic maps [C]. ISCAS, 2000: 711-714
    170. Kwok-Wo Wong, Sun-Wah Ho, Ching-Ki Yung. A chaotic cryptograph scheme for generating short ciphertext [J]. Physics Letters A, 2003, 310: 63-73.
    171. Kwok-Wo Wong. A combined chaotic cryptographic and hashing scheme [J]. Physics Letters A, 2003, 307: 292-298.
    172. Wai-Kit Wong, Lap-piu Lee, Kwok-wo Wong. A modified chaotic cryptographic method [J]. Computer Physics Communications, 2001, 138: 234-236.
    173. N. K. Pareek, Vinod Patidar, K. K. Sud. Discrete chaotic cryptography using external key [J]. Physics Letters A, 2003, 309: 75-82.
    174. Chin-Chen Chang, Tai-Xing Yu. Cryptanalysis of an encryption scheme for binary images [J]. Pattern Recognition Letters, 2002, 23: 1847-1852.
    175. G. Alvarez, F. Montoya, M. Romera et al. Cryptanalysis of an ergodic chaotic cipher [J]. Physics Letters A, 2003, 311:172-179.
    176. Goce Jakimoski, Lupco Kocarev. Analysis of some recently proposed chaos-based encryption algorithms [J]. Physics Letters A, 2001, 191: 381-384.
    177. Xiaogang Wu, Hanping Hu, Baoliang Zhang. Analyzing and improving a chaotic encryption method [J]. Chaos, Solitons and Fractals, 2004, 22: 367-373.
    178. Guojie Hu, Zhengjin Feng, Lin Wang. Analysis of a type digital chaotic cryptosystem [C]. IEEE International Symposium on Circuits and Systems, 2002, 3: 473-475
    179. G. Alvarez, F. Montoya, M. Romera et al. Cryptanalysis of a discrete chaotic cryptosystem using external key [J]. Physics Letters A, 2003, 319: 334-339.
    180. G. Alvarez, F. Montoya, M. Romera et al. Keystream cryptanalysis of a chaotic cryptographic method [J]. Computer Physics Communications, 2004, 156 (2): 205-207.
    181. G. Alvarez, F. Montoya, M. Romera et al. Cryptanalyzing a discrete-time chaos synchronization secure communication system [J]. Chaos, Solitons and Fractals, 2004, 21: 689-694.
    182. Jochen Brocker, Ulrich Parlitz. Analyzing communication schemes using methods from nonlinear filtering [J]. Chaos, 2003, 13 (1): 195-208.
    183. K. M. Cuomo, A. V. Oppenheim, S. H. Strogatz. Synchronization of Lorenz-based chaotic circuits with application to communications [J]. IEEE Transaction on Circuits and Systems I, 1993, 40: 626-633
    184. H. Dedieu, M. P. Kennedy, M. Hasler. Chaos shift keying: modulation and demodulation of a chaotic carrier using self-synchronizing Chua’s circuits [J]. IEEE Transaction on Circuits and Systems II, 1993, 40: 634-642.
    185. M. Sushchik, L. S. Tsimring, A. R. Volkovskii. Performance analysis of correlation-based communication schemes utilizing chaos [J]. IEEE Transaction on Circuits and Systems I, 2001, 48 (12): 1684-1691.
    186. A. Abel, W. Schwatz, M. Gotz. Noise performance of chaotic communication systems [J]. IEEE Transaction on Circuits and Systems I, 2000, 47 (12): 1726-1732.
    187. M. P. Kennedy, G. Kolumban, G. Kis et al. Performance evaluation of FM-DCSK modulation in multipath environments [J]. IEEE Transaction on Circuits and Systems I, 2001, 48 (12): 1702-1717.
    188. P. Palaniyandi, M. Lankshmanan. Secure digital signal transmission by multistep parameter modulation and alternative driving of transmitter variables [J]. International J. Bifurcation and Chaos, 2001, 11 (7): 2031-2036.
    189. Hector Puebla, Jose Albarez-Ramirez. Stability of inverse-system approach in choherent chaotic communication [J]. IEEE Transaction on Circuits and Systems I, 2001, 48 (12): 1413-1423.
    190. H. D. Abarbanel, P. S. Linsay. Secure communication and unstable periodic orbit of strange attractors [J]. IEEE Transactions on Circuits and Systems II, 1993, 40 (1): 576-587.
    191. N. F. Rulkov, M. M. Sushchik, L. S. Tsimring er al. Digital communication using chaotic pulse-position modulation [J]. IEEE Transactions on Circuits and Systems I, 2001, 48 (12): 1436-1444.
    192. 王玫,焦李成.一种基于混沌序列相关同步的 DS-CDMA 通信系统[J].通信学报,2002, 23 (8): 121-127.
    193. Scharinger J. Fast encryption of image data usinig chaotic Kolmogorov follows [J]. J Electronic Imaging, 1998, 7 (2): 318-325.
    194. J. Fridrich. Symmetric ciphers based-on two-dimensional chaotic maps [J]. International J Bifurcation and Chaos, 1998, 8 (6): 1259-1284.
    195. Neto L. G., Sheng Y L. Optical implementation of image encryption using randon-phase encoding [J]. Opt. Eng. 1996, 35 (9):2459-2463.
    196. Fridrich, J. Image encryption based on chaotic maps [J]. IEEE Int. Conf. System, Man & Cybernetics Computational Cybernetics, Simulations, 1997, 1117-1120.
    197. Chuang T J, Lin J C. A new multiresolution approach to still image encryption [J]. Pattern Recognition Image Anal 1999, 9 (3): 431-436.
    198. 李昌刚,韩正之,张浩然.一种随机密钥及“类标准映射”的图像加密[J].计算机学报, 2003, 26 (4): 465-470.
    199. Zbigniew K, Janusz S. Application of discrete chaotic dynamical systems in cryptography-DCC method [J]. International Journal of Bifurcation and Chaos, 2000, 10 (8): 1867-1874.2
    200. Hectro Puebla, Jose Albarez-Ramirez. Stability of inverse-system approaches in coherent chaotic communication. IEEE Transaction on Circuits and Systems I, 2001, 48 (12): 1413-1423
    201. Tanaka K, Ikdea T, Wang H O. A unified approach to controlling chaos via LMI-based fuzzy control system design [J]. IEEE Transaction on Circuits and Systems I, 1998, 45 (10): 1021-1040.
    202. Chuandong Li, Xiaofeng Liao, Kwok-wo Wong. Chaotic lag synchronization of coupled time-delayed systems and its applications in secure communication [DB/OL].
    http://www.elsevier.com/locate/physd.
    203. 秦红磊,郝燕玲,孙枫.一种基于混沌的图像置乱网络的设计[J].计算机工程与应用, 2002, 38 (7):104-106.
    204. Parlitz U, Junge L, Kocarev L. Synchronization-based parameter estimation from time series [J]. Physical Review E, 1996, 54 (6): 6253-6259.
    205. V. Lakshmikantham, D.D. Bainov, and P.S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700