用户名: 密码: 验证码:
松材线虫纤维素酶系及其cDNA基因的克隆与RNA干扰研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球一体化和国际社会交往与贸易往来的与日俱增,外来有害生物随人口流动、动植物及其产品跨国扩散日益严重,给入侵地生态系统和国土安全造成巨大的灾害性损失。松材线虫(Bursaphelenchu xylophilus (Steiner & Buhrer) Nickle)已经成为世界上重要的检疫对象和我国有史以来危害最为严重的林业外来有害生物。基于经典与现代生物学的理论与方法,国内外众多学者对松材线虫的生物学、生态学和致病性等进行了深入研究,但是迄今尚未有有效控制措施。本研究基于前人对松材线虫致病过程中纤维素酶的认识,研究分析松材线虫和近似种拟松材线虫(B. mucronatus)分泌的纤维素酶系组成,纤维素酶系活力与线虫迁移扩散能力的关系,以及纤维素酶相关编码基因的克隆与功能鉴定,意图阐明纤维素酶在松材线虫致病过程中的分子机制,为松材线虫病的可持续控制提供理论基础。
     采用真菌平板培养法研究了不同松材线虫和拟松材线虫株系的繁殖能力。在灰葡萄孢上培养10d,松材线虫和拟松材线虫繁殖倍数分别达到248倍和373倍,而在松球壳孢上培养10d,松材线虫和拟松材线虫繁殖倍数分别为133和98倍。结合性比及幼虫/成虫指标数据,结果表明,在本实验室条件下,线虫在灰葡萄孢(Botrytis cinerea)上繁殖速度最快,繁殖后得到合适数量的混合龄期线虫;以反映线虫繁殖能力的三个指标:繁殖倍数、性比和幼虫/成虫分析比较了供试的6个松材线虫株系和4个拟松材线虫株系,以松材线虫Bx02、Bx03和拟松材线虫Bm01表现较高的繁殖能力。
     分别采用羧甲基纤维素钠(CMC)、微晶纤维素(MC)和水杨素(SC)三种底物,结合DNS定量分析法,研究了松材线虫和拟松材线虫体外分泌物中内切-β-1,4-葡聚糖酶、外切-β-1,4-葡聚糖酶和β-葡萄糖苷酶三类酶的活性。结果表明,在离体培养条件下,松材线虫和拟松材线虫均能产生包括三类酶的完整纤维素酶系。其中,松材线虫分泌物中三类酶活性明显高于拟松材线虫分泌物中这三类酶活性。在内切-β-1,4-葡聚糖酶中,松材线虫Bx01株系的酶活性最高为9.36μg·ml-1·min-1,拟松材线虫Bm03株系的酶活性最高是6.32μg·ml-1·min-1,前者酶活性是后者的1.48倍;外切-β-1,4-葡聚糖酶酶活性最高的松材线虫Bx01是6.67μg·ml-1·min-1,酶活性最高的拟松材线虫Bm03是4.22μg·ml-1·min-1,前者是后者的1.58倍;Β-葡萄糖苷酶活性最高的松材线虫Bx02株系为7.35μg·ml-1·min-1,最高的拟松材线虫Bm01株系为4.63μg·ml-1·min-1,前者是后者酶活性的1.59倍。方差分析和多重比较结果表明,松材线虫Bx01、Bx02、Bx04、Bx05和Bx06株系内切-β-1,4-葡聚糖酶活性同所有拟松材线虫株系相比,结果达到极显著差异。结合二者致病力的显著差异,研究结果为更好的解释松材线虫致病机理提供了科学数据。
     通过人工接种方法,比较了供试松材线虫和拟松材线虫株系在黑松枝段内的迁移扩散和繁殖能力。结果表明,与拟松材线虫相比,松材线虫在黑松枝段内迁移能力更强,表现在以更快的速度和更大的种群数量穿过黑松枝段。多数松材线虫株系在黑松枝段内的繁殖力高于拟松材线虫,并且多数松材线虫株系繁殖数量同其中三个拟松材线虫株系繁殖数量差异显著。结合松材线虫株系分泌的纤维素酶系活性明显高于拟松材线虫株系的纤维素酶系,纤维素酶可能是线虫在寄主体内迁移扩散的主要驱动力之一。
     以松材线虫总RNA为模板,运用RT-PCR技术分离和克隆了编码松材线虫纤维素酶系组分之一的内切-β-1,4-葡聚糖酶基因的cDNA片段(GenBank注册号为EU660207)。经T载体克隆、酶切鉴定和序列测定获得cDNA片段为一个长678bp的完整的开放阅读框,编码全长为225个氨基酸的蛋白,同GenBank数据库中已登录的日本松材线虫内切-β-1,4-葡聚糖酶基因表现出较高的同源性,相似性为95%。用生物信息学方法分析和预测了编码蛋白质的主要特性。同源性分析表明,该蛋白同真菌中糖基水解酶相似性比较高,同植物寄生线虫和细菌的糖基水解酶相似性较低,证明该基因是来自真菌的水平基因漂移(HGT)。
     进一步运用RANi技术鉴定了松材线虫内切-β-1,4-葡聚糖酶基因的功能。荧光显微镜观察结果表明,溶液浸泡可以把siRNA成功导入松材线虫体内,产生基因沉默效应。采用荧光定量PCR技术检测松材线虫内切-β-1,4-葡聚糖酶基因mRNA水平的表达抑制效应发现,siRNA15和siRNA275的沉默效率最高,siRNA581沉默基因的效率最低。生物学效应分析结果表明,siRNA松材线虫处理后,松材线虫分泌物中纤维素酶活性显著下降,说明松材线虫β-1,4-葡聚糖酶基因的表达受到明显抑制。同时,松材线虫种群繁殖力明显降低,穿过黑松枝段的时间明显延长,说明松材线虫内切-β-1,4-葡聚糖酶可能对松材线虫生长发育和运动扩散能力也有一定的影响。
With the development of the global integration and international exchanging and trading, the invasive alien species dispersal causes a large damage to the ecology system of the country invaded. Pine wood nematode (Bursaphelenchus xylophilus), as an agent of pine wilt disease and the important quarantine target of many countries around the world, has been the most serious invasive pest in China. Based on the classic and modern biology theory and method, many scientists focused on the biology, ecology and pathogenicity and so on from all over the world, but until recently there were no effective controlling measures to the pine wilt disease. Based on the understanding of cellulase from pine wood nematode secretion, the component of cellulase from B. xylophilus and B. mucronatus was analyzed while the relationship between cellulase activity and dispersal ability of the nematode was also discussed. And cellulase encoding gene was isolated and identified with RNAi. This will try to demonstrate the molecular mechanism of cellulase in the pathogenicity, and give science data to provide an academic support for the sustainable management of pine wilt disease.
     The population propagation ability of B. xylophilus and B. mucronatus was analyzed. The results showed that both B. xylophilus and B. mucronatus reproduced very fast on the Botrytis cinerea culture which produced large number of mixed stage nematodes. Three index including propagation rate, sex ratio and larvae/adult were used to comparing the propagation ability. B. xylophilus strain Bx02, Bx03 and B. mucronatus Bm01 exhibitted the potential high propagating ability.
     The secretion cellulase of B. xylophilus and B. mucronatus was analyzed while CMC, MC and SC were used to be the celllose resouces for the nematodes secretion degrading. The results showed that in vitro endo-β-1,4-glucanase, exo-β-1,4-glucanase andβ-glycosidase activity could be detected in the secretion of both B. xylophilus and B. mucronatus. And the three cellulase activity from B. xylophilus secretion was higher than that from B. mucronatus. It is inferred that the pathogenicity of B. xylophilus was more serious than B. mucronatus for the reason of the cellulase activity.
     The dispersal and propagation ability of B. xylophilus and B. mucronatus in Pinus thunbergii shoot section were analyzed with artificial inoculation. Compared with B. mucronatus, B. xylophilus passed through the shoot section of P. thunbergii with a higher speed and less time. The numbers of nematode passing through the section at first were not significantly different among the most strains of nematodes including B. mucronatus, although the numbers of most strains of B. xylophilus were much more than that of B. mucronatus. The reproduction numbers of B. xylophilus were more than that of B. mucronatus in the section for 20 days and all the numbers of B. xylophilus strains were significantly different with the numbers of three strains of B. mucronatus. Considering the same phenomena in the investigation of the cellulase activity of both species nematodes above, the cellulase probably was one of the driving for the nematode dispersal inside the host tree.
     The cDNA fragment coding endo-β-1,4-glucanase of B. xylophilus was isolated and identified from total RNA with RT-PCR techniques. The cDNA fragment was 678 bp in length and contained an open reading frame of 225 amino acids (GenBank accession number EU660207). The cDNA could eccode a protein similar to glycosyl hydrolase family 45. The Blast result showed that the cDNA shared 95% identity with endo-β-1,4-glucanase from Japanese strain of B. xylophilus. The characteristic of the putative protein were analyzed with biological information method. The alignment of several selected sequences similar to this cDNA in GenBank suggested that the cellulase gene from Chinese strain Bx02 of B. xylophilus was acquired by horizontal gene transfer from fungi.
     The function of gene encoding endo-β-1,4-glucanase was identified with RNAi. The siRNA was introduced into the body of pine wood nematodes with the fluorescence microscope investigation. The effect of inhibition on the expression of gene encoding endo-β-1,4-glucanase was detected with fluorescence quantity real time PCR. siRNA15 and siRNA275 showed more higher effective inhibition than other siRNA. The biology characteristic of pine wood nematodes after RNAi was demonstrated and analyzed. The cellulase activity decreased to a low level and the reproduction rate was also reduced. Furthermore, it took some more time to pass through the shoot section of P. thunbergii for pine wood nematodes after RNAi. This indicated that some functions related to the development or dispersal ability of pine wood nematodes were likely to be influenced while siRNAs interferenced the gene encoding endo-β-1,4-glucanase.
引文
[1] Xie Y, Li Z, Williamp G et al.Invasive species in China overview. Biodiversity and Conservation, 2002, 45:121-130
    [2]万方浩,郑小波,郭建英.重要农林外来入侵物种的生物学与控制.北京:科学出版社, 2005
    [3] Liebhold A, Macdonald W, Bergdahl D et al. Invasion by exotic forest pests: a threat to forest ecosystems. Forest Science Monographs. The Society of American Foresters, 1995, 30: 1-49
    [4] Tabashnik B. Pest adaptation. Nature,1997,(389):778
    [5]张润志,张大勇,叶万辉等.农业外来生物入侵种研究现状和发展趋势.植物保护,2004,30(3):5-9
    [6]严东辉,吕全,张星耀.松材线虫病.张星耀,骆有庆主编.中国森林重大生物灾害.北京:中国林业出版社, 2003:1-29
    [7] Bergdahl DR. Impact of pinewood nematode in North America: present and future. J. Nematol,1988, (20): 260-265
    [8] Dropkin VH, Foudin A, Kondo E et al. Pinewood nematode: a threat to U.S. forest. Plant Disease, 1981, (65): 1022-1027
    [9] Nickle, Golden, Mamiya et al. On the taxonomy and morphology of the pine wood nematode, Bursaphelenchus xylophilus (Steiner & Buhrer 1934)Nickle 1970. Journal of Nemotology. 1981, 13(3):385-392
    [10]宁眺,方宇凌,汤坚等.松材线虫及其传媒松墨天牛的监测和防治现状.昆虫知识, 2005, 42(3): 264-269
    [11]杨宝君,潘宏阳,汤坚等.松材线虫病.北京:中国林业出版社, 2003
    [12]梁军,张星耀.森林有害生物生态控制.林业科学, 2005, 41(5): 168-176
    [13] Tokushige Y, Kiyohara T. Bursaphelenchus sp. in the wood of dead pine trees. Journal of Japanese Forest Society, 1969, 51:193-195
    [14] Mamiya Y, Kiyahara T. Description of Bursaphelenchus lignicolus n.sp.(Nematoda: Aphelenchoididae) from pine wood and histopathology of nematode-infested trees. Nematologica, 1972, 18:120-124
    [15] Mamiya, Enda. Bursaphelenchus mucronatus n.sp.(Nmeatoda:Aphelenchoididae)from pine wood and its biology and pathologenicity to pine trees. Nematologica, 1979, 25:353-361
    [16] Steiner, Buhrer. Aphelenchoides xylophoilus n. sp.. a nematode associated with blue-stain and other fungi in timer. Journal of Agriculture Research, 1934, 48:949-951
    [17] Dropkin V, Foudin A. Report of the occurrence of Bursaphelenchus lignicolus-induced pine wilt disease in Missouri. Plant Disease Reporter, 1979, 65:1022-1027
    [18] Wingfield M, Blanchette, Nicholls. Is the pine wood nematode a important pathogen in the United States? J. For. , 1984, 82:232-235
    [19] Wingfield M, Blanchette, Kondl. Comparison of the pine wood nematode, Bursaphelenchus xylophilus from pine and balsam fir. Eropean J. For. Pathol., 1983, 13 (5-6):360-373
    [20] Nickle WR. A taxonomic review of the genera of the Aphelenchoidea (fuchs, 1937)Thorne, 1949(Nematoda:Tylenchida). Journal of Nematology, 1970, 2:375-392
    [21] Baujard P. Trois nouvells especes de Bursaphelenchus (Nematoda. Tylenchida) et remarques sur le genre. Revue Nematol., 1980, 3 :167-177
    [22] Duncan LW, Moens M. Migratory endoparasitic nematodes. In: Perry, R.N. & Moens, M. (Eds) Plant nematology. CABI, Wallingford, UK. 2006. 123-152.
    [23] McNamara DG. Quarantine concerns about the methods used to demonstrate pathogenicity of Bursaphelenchus spp. In: Mota M. & Vieira P. (Eds). The pinewood nematode, Bursaphelenchus xylophilus. Proceedings of an International Workshop, University ofévora, Portugal, August 20-22, 2001. Nematology monographs and perspectives, Volume 1. Leiden, The Netherlands, E. J. Brill, 2004, 187-197.
    [24] Bowers, W, Hudak J, Raske A. Host and vector surveys for the pinewood nematode, Bursaphelenchus xylophilus (Steiner and Buhrer) Nickle (Nematoda: Aphelenchoididae) in Canada. Information Report Newfoundland and Labrador Region, Forestry Canada (N-X-285), 1992, 55
    [25] Robbins K. Distribution of the pinewood nematode in the United States. In: Appleby, J.E. & Malek, R.B. (Eds). Proceedings of the national pine wilt disease workshop. III. Natural History Survey, Champaign, IL, USA, 1982, 3-6
    [26] Malek R, Appleby J. Epidemiology of pine wilt in Illinois: disease distribution. Plant Disease, 1984, 68:180-186
    [27] McNamara D, Stoen M. A survey for Bursaphelenchus spp. in pine forests in Norway. Bulletin OEPP , 1988, 18: 353-363
    [28] Mamiya Y. Pathology of pine wilt disease caused by Bursaphelenchus xylophilus. Ann Rev Phytopath, 1983, 21: 201-220
    [29] Linit MJ. Nematode-vector relationship in the pine wilt disease system. Journal of Nematology, 1998,20(2):227-235
    [30] Sousa E, Bravo M, Pires J et al. Bursaphelenchus xylophilus (Nematoda: Aphelenchoididae) associates with Monochamus galloprovincialis (Coleoptera: Cerambycidae) in Portugal. Nematology, 2001, 3: 89-91
    [31] Maniya Y, Enda N. Transmission of Bursaphelenchus lignicola (Nematoda: Aphelenchoidae) by Monochamus alternatus (coleopteran: cerambycidae). Nematologica, 1972, 18:159-162
    [32] Mamiya Y. In: Wingfield M. J. (ed.), Pathogenicity of the Pine Wood Nematode. Japan: APS Press, St. Paul., 1987, 59-65
    [33] Yi C, Byun B, Park J et al. First finding of the pine wood nematode, Bursaphelenchus xylophilus (Steiner et Buhrer) Nickle and its insect vector in Korea. Research Reports of the Forestry Research Institute Seoul, 1989, 38: 141-149
    [34] Lee SM, Choo HY, Park NC et al. Nematodes and insects associated with dead trees, and pine wood nematode detection in Monochamus alternatus. Korean Journal of Applied Entomology, 1990, 29:14-19
    [35] Li H, Shen P, Fu P et al. Characteristics of the emergence of Monochamus alternatus, the vector of Bursaphelenchus xylophilus (Nematoda: Aphelenchoididae), from Pinus thunbergii logs in Nanjing, China, and of the transmission of the nematodes through feeding wounds. Nematology ,2007, 9: 807-816
    [36] Linit MJ. Transmission of pinewood nematode through feeding wounds of Monochamus carolinensis (Coleoptera: Cerambycidae). Journal of Nematology, 1990, 22:231-236
    [37] Linit MJ, Tamura M. Relative susceptibility of four pine species to infection by pinewood nematodes. Journal of Nematology, 1987, 19: 44-50
    [38] Linit MJ, Kondo E, Smith T. Insects associated with the pinewood nematode, Bursaphelenchus xylophilus (Nematoda: Aphelenchoididae), in Missouri. Environmental Entomology, 1983, 12: 467-470
    [39] Kobayashi F, Yamane A, Ikeda T. The Japanese pine sawyer beetle as the vector of pine wilts disease. Annual Review of Entomology,1984, 29:115-135
    [40] Ikeda T, Yamane A, Enda N et al. Attractiveness of volatile components of felled pine trees for Monochamus alternatus (Coleoptera: Cerambycidae) . J. Jpn. For. Soc., 1986, 68: 15-19
    [41] Anbutsu H, Togashi K. Oviposition deterrent by female reproductive gland secretion in Japanese pine sawyer, Monochamus alternatus. J. Chem. Ecol., 2001,27 (6): 1151-1161
    [42]郝德君,张永慧,戴华国等.松墨天牛对寄主树木的产卵选择.昆虫学报, 2005, 48(3):460-464
    [43]赵良平.中国林业检疫性有害生物及检疫技术操作办法.北京:中国林业出版社, 2005
    [44] Wingfield MJ. Transmission of pine wood nematode to cut timber and girdled trees. Plant Disease, 1983, 67:35-37
    [45] Kazuo Suzuki. Pines wilt disease-a threat to pine forest in Europe. Dendrobiology, 2002, 48:71–74
    [46]杨宝君.松材线虫病致病机理的研究进展.中国森林病虫, 2002, 21(1): 27-31
    [47]谈家金,叶建仁.松材线虫病致病机理的研究进展.华中农业大学学报, 2003, 22(6):613-617
    [48]谢立群,赵博光.松材线虫病的病理学研究进展.江西农业大学学报, 2003, 25(2):204-208
    [49]谈家金,冯志新.松材线虫病病理生理学研究进展.江西科学, 2001, 19(1):27-30
    [50]郭道森,赵博光,李周直.松材线虫病致病机理的研究进展.南京林业大学学报, 2000, 24(4):64-68
    [51] Kiyohara T, Tokushige Y. Inoculation experiments of a nematode, Bursaphelenchus sp., onto pine trees. Journal of the Japanese Forestry Society,1971, 53: 210-218
    [52] Tamura H. Pathogenicity of aseptic Bursaphelenchus xylophilus and associated bacteria to pine seedlings. Japan J Nematology, 1983,13:1-5
    [53] Kuroda K, Ito S. Migration speed of pine wood nematodes and activities of other microbes during the development of pine-wilt disease in Pinus thunbergii. Journal of the Japanese Forestry Society,1992, 74:383-389
    [54] Oku H, Shiraishi T, Kurozumi S. Pine wilt toxin the metabolite of a bacterium associated with a nematode. Naturwissenschaften, 1980, 67(4): 198-199
    [55] Oku H, Shiraishi T, Kurozumi S. Participation of toxin in wilting of Japanese pines caused by a nematode. Naturwissenschaften , 1980, 67(4): 210-211
    [56] Oku H. Role of phytotoxins in pine wilt disease. Journal of Nematology, 1988, 20: 245-251
    [57] Oku H. Phytotoxins in pine wilt disease Bursaphelenchus xylophilus. Nippon Nogeikagaku Kaishi,1990,64:1254-1257
    [58] Kusonoki M. Symptom development of pine wilt disease–histopathological observations with electron microscopy. Annals of the Phytopathological Society of Japan, 1987, 53:622-629
    [59] Kawazu K, Kaneko N, Kanzaki H. What factors govern the pathogenicity of the pine wood nematode, Bursaphelenchus xylophilus? In: Futai, K., Togashi, K. & Ikeda, T. (Eds). Sustainability of pine forests in relation to pine wilt and decline. Proceedings of the Symposium,Tokyo,Japan, 26-30 October 1998. Kyoto, Japan, Shokado Shoten, 1999: 42-46
    [60] Kawazu K, Yamashita H, Kobayashi et al. Isolation of pine-wilting bacteria accompanying pine wood nematode, Bursaphelenchus xylophilus, and their toxic metabolites. Scientific Reports of the Faculty of Agriculture, Okayama University, 1998: 1-7
    [61] Kawazu K, Zhang H, Kanzaki H. Accumulation of benzoic acid in suspension cultured cells of Pinus thunbergii Parl. in response to phenylacetic acid administration. Bioscience, Biotechnology and Biochemistry , 1996, 60:1410-1412
    [62] Kawazu K, Zhang H, Yamashita et al. Relationship between the pathogenicity of the pine wood nematode, Bursaphelenchus xylophilus, and phenylacetic acid production. Bioscience, Biotechnology and Biochemistry , 1996b, 60:1413-1415
    [63] Zhang H, Kazaki H, Kawazu K. Benzoic acid accumulation in the Pinus thunbergii callus inoculated with the pine wood nematode. Z. Naturforsch, 1997, 52(5):329-332
    [64]洪英娣,曹越,赵博光等.松材线虫携带细菌的鉴定和毒性研究.南京林业大学报, 2002, 26(5):37-40
    [65]赵博光,郭道森,高蓉.细菌分离物619与松材线虫病关系的初步研究.南京林业大学学报, 2000, 24(4) :72-74
    [66]赵博光,郭道森.松材线虫携带细菌部位的电镜观察.南京林业大学学报, 2000, 24(4) :69-71
    [67]赵博光,郭道森.松材线虫携带的一株细菌分离及其致病性.北京林业大学学报, 2004, 26(1):57-61
    [68] Higgins DF, Harmey MA, Jones DL. Pathogenicity related gene expression in Bursaphelenchus xylophilus. In: Futai, K., Togashi, K. & Ikeda, T. (Eds). Sustainability of pine forests in relation to pine wilt and decline. Proceedings of the Symposium, Tokyo, Japan, 26-30 October 1998. Kyoto, Japan, Shokado Shoten, 1999: 23-28.
    [69]尹永华,郭道森,赵博光等.松材线虫携带一株荧光假单胞菌分泌毒素的初步研究.植物学通报, 2007, 24(2):147-153
    [70]王慧利,韩素芬,赵博光.松材线虫携带细菌在疫区和寄主中分布及致病性研究.北京林业大学学报, 2004, 26(4):48-53
    [71] Odani K, Yamamoto Y, Nishiyama Y et al. Action of nematodes in the development of pine wilt disease. Proc. U. S. Jpn Sem on pine wilt disease, East-West centre, Honolulu, HA, 1984:128-140
    [72] Odani K, Sasaki S, Nishiyama Y et al. Early symptom development of the pine wilt disease by hydrolytic enzymes produced by the pine wood nematodes-cellulase as a possible candidate of thepathogen. Journal of Japan Forestry Science, 1985, 67(9):366-372)
    [73]严东辉,杨宝君.松材线虫体外酶组成分析.林业科学研究, 1997, 10(3):265-269
    [74]蒋丽雅,王晓芸.松材线虫提取液和分泌液中纤维素酶定性检测.森林病虫通讯, 1995(3):9-11
    [75]王明旭.日本松材线虫病文献资料的研究与分析.中南林学院学报, 2004, 24(5):132-137
    [76]汪来发,朴春根,李咏等.松材线虫产生的分泌物对松树的致病作用.西北农林科技大学学报, 2006, 33:178-180
    [77] Higgins DF, Briarty DM, Harmey MA. Detection of a chitinase gene fragment in Bursaphelenchus species by polymerase chain reaction amplification. In: Futai, K., Togashi, K. & Ikeda, T. (Eds). Sustainability of pine forests in relation to pine wilt and decline. Proceedings of the Symposium, Tokyo, Japan, 26-30 October 1998. Kyoto, Japan, Shokado Shoten, 1999: 29-34
    [78] Bolla R, Shaheen F, Winters R. Phytotoxin production in Bursaphelenchus xylophilus pine wilt. Journal of Nematology, 1982,14: 431
    [79]曹越,沈伯葵.人工培养条件下松材线虫提取物的毒性研究.南京林业大学学报, 1996, 20(4):13-16
    [80]曹越,韩正敏,李传道.松材线虫病感染松树中致萎毒素物质的研究.林业科学,2001, 37(4):75-79
    [81] Bolla RI, Shaheen F, Winter R. Phytotoxins in Bursaphelenchus xylophilus induced pine wilt. Proceedings of the United States-Japan Seminar: The resistance mechanisms of pines against pine wilt disease, May 1984, East-West Center, Honolulu, Hawaii, 1984: 119-126
    [82] Tata M, Omizu A, Shraishi M.Effect of phosphate on the growth and toxin-producing ability of a bacterium isolated from pine wood nematode Bursaphelenchus lignicolus. Sci Rep Fac Agric, 1981,57:35-40
    [83] Kawazu K, Kaneko N. Asepsis of the pine wood nematode isolate OKD-3 causes it to lose its pathogenicity. Japanese Journal of Nematology, 1997, 27: 76-80.
    [84] Myers RF. Comparative histology and pathology in conifers infected with pine wood nematode, Bursaphelenchus xylophilus. In Dropkin V. ed. Proceedings of the United States-Japan Seminar: The resistance mechanisms of pines against pine wilt disease, East-West Center, Honolulu, Hawaii. Japan Society for the Promotion of Science, 1984: 91-95
    [85] Kuroda K. Terpenoids causing tracheid-cavitation in Pinus thunbergii infected by the pine wood nematode (Bursaphelenchus xylophilus). Annals of the Phytopathological Society of Japan, 1989, 55:170-178
    [86] Kuroda K. Mechanism of cavitation development in the pine wilt disease. European Journal of Forest Pathology, 1991, 21:82-89
    [87] Fukuda K, Hogetus T, Suzuki K. Cavitation and cytological changes in xylem of pine seedlings inoculated with virulent and avirulent isolates of Bursaphelenchus xylophilus and B. mucronatus. J Jpn For Soc, 1992,74(1):1-8
    [88]何学友,黄金水.日本松材线虫病研究的最新动向.中国森林病虫, 2005, 24(5):26-31
    [89]戈进杰编著.生物降解高分子材料及其应用.北京:化学出版社, 2002
    [90] Chen H, Li XL, Ljungdahl LG. Sequencing of a 1,3-1,4-beta-D-glucanase(lichenase) from the anaerobic fungus Orpinomyces strain PC-2: properties of the enzyme expressed in Escherichia coli and evidence that the gene has a bacterial origin. J. Bacteriol., 1997, 179:6028–34
    [91] Collmer A. Determinants of pathogenicity and avirulence in plant pathogenic bacteria. Curr. Opin. Plant Biol., 1998, 1(4):329–335
    [92] Byrne KA, Lehnert SA, Johnson SE et al. Isolation of a cDNA encoding a putative cellulase in the red law crayfish Cherax quadricarinatus. Gene, 1999, 239:317–324
    [93] Tokuda G, Lo N, Watanabe H et al. Metazoan cellulase genes from termites: intron/exon structures and sites of expression. Biochim. Biophys. Acta, 1999, 1447:146–159
    [94] Hussey RS. Disease-inducing secretions of plant-parasitic nematodes. Annu. Rev. Phytopathol., 1989, 27:123–141
    [95] Klyoyov AA. Trends in biochemistry and enzymology of cellulose degradation. Biochemistry, 1990, 29(47):10577-10585
    [96] Giebel J. Mechanism of resistance to plant nematodes. Ann. Rev. Phytopathol., 1982, 20: 257- 279
    [97] Fukuda, K., Hogetsu, T. & Suzuki, K. (1994). Ethylene production during symptom development of pine-wilt disease. European Journal of Forest Pathology 24, 193-202.
    [98] Mori T, Inoue T. Pine-wood nematode-indeuced ethylene production in pine stems and cellulase as an inducer. J . Jpn. For. Soc. ,1986,68 (2) :43 - 50
    [99] Kusunoki M. Symptom developments of pine wilt disease - histopathological observations with electron microscope. Ann Phytopath Soc Jpn, 1987, 53:622-629
    [100] Yamamoto N. Cellulase exudation by the pine wood nematode and detection of activity in its crawling track. J Jpn For Soc, 1986, 68:237-240
    [101] Kojima K, Kamijyo A, Masumori M et al. Cellulase activities of pine-wood nematode isolates with different virulences. Journal of the Japanese Forestry Society, 1994, 76:258-262
    [102] Kikuchi T, John J, Takuya A et a1. A family of glycosyl hydro1ase family 45 cellulase from the pine wood nematode Bursaphelenchus xylophilus. FEBS Letters, 2004, 572:201-205
    [103]刘维志.植物线虫志.北京:中国农业出版社, 2004
    [104] Brown DJ, Robertson WM, Trudgill DLTransmission of viruses by plant nematodes. Annu. Rev. Phytopathol. 1995,43: 223-249
    [105] Valerie M, Richard S. Nematode Pathogenesis and Resistance in Plants. The Plant Cell, 1996, 8:1735-1745
    [106] Hussey RS. Disease-inducing secretions of plant-parasitic nematodes. Annu. Rev. Phytopathol. 1989, 27:123-141.
    [107] Hussey RS, Mims CW. Ultrastructure of esophageal glands and their secretory granules in the root-knot nematode Meloidogyne incognita. Protoplasma,1990, 156 : 9-18
    [108] Eric L, Richard S, Thomas J et al. Nematode parasitism genes. Annu. Rev. Phytopathol. 2000, 38:365-396
    [109] Lambert KN, Allen KD, Sussex IM. Cloning and characterization of an esophageal-gland-specific chorismate mutase from the phytoparasitic nematode Meloidogyne javanica. Mol. Plant-Microbe Interact. 1999, 12:328–336
    [110] Robertson L, Robertson W, Jones J. Direct analysis of the secretions of the potato cyst nematode Globodera rostochiensis. Parasitology, 1999, 119:167–76
    [111] Ray C, Abbott A, Hussey R. Trans-splicing of a Meloidogyne incognita mRNA encoding a putative esophageal gland protein. Mol. Biochem.Parasitol. 1994, 68:93–101
    [112] Smant G, Stokkermans J, Yan Y et al. Endogenous cellulases in animals: isolation of ?-1,4-endoglucanase genes from two species of plant-parasitic cyst nematodes. Proc. Natl. Acad. Sci. USA, 1998, 95:4906–4911
    [113] Rosso M, Favery B, Piotte C et al. Isolation of a cDNA encoding a beta-1,4-endoglucanase in the root-knot nematode Meloidogyne incognita and expression analysis during plant parasitism. Mol. Plant-Microbe Interact. 1999, 12:585–91
    [114] Shpigel E, Roiz L, Goren R, Shoseyov O.1998. Bacterial cellulose-binding domain modulates in vitro elongation of different plant cells. Plant Physiol. 117(4):1185–94
    [115] Hawdon J, Narasimhan S, Hotez P. Ancylostoma secreted protein 2: cloning and characterization of a second member of a family of nematode secreted proteins from Ancylostoma caninum. Mol. Biochem. Parasitol. 1999, 99:149–65
    [116] Ding X, Shields J, Allen R et al. A secretory cellulose-binding protein cDNA cloned from the root-knot nematode Meloidogyne incognita. Mol. Plant-Microbe Interact. 1998,11:952–959
    [117] Qin L, Kudla U, Roze EH et al. Plant degradation: a nematode expansion acting on plants. Nature, 2004, 427:30
    [118] Kikuchi T, Shibuya H, John J. Molecular and biochemical characterization of an endo-β-1,3-glucanase from the pinewood nematode Bursaphelenchus xylophilus acquired by horizontal gene transfer from bacteria. J. Biochem., 2005, 389:117–125
    [119] Kikuchi T, Shibuya H, Takuya A et al. Cloning and Characterization of Pectate Lyases Expressed in the Esophageal Gland of the Pine Wood Nematode Bursaphelenchus xylophilus. Mol. Plant-Microbe Interact. 2006, 19: 280–287
    [120] Kikuchi T, Takuya A, Kosaka H et al. Expressed sequence tag analysis of the pine wood nematode Bursaphelenchus xylophilus and B. mucronatus. Molecular and Biochemical Parasitology, 2007,155:9-17
    [121] Fire A, Xu S, Montgomery M et al. Potent and specific genetic interference by the double-stranded RNA in Caenorhabditis elegans. Nature, 1998,391:806-811
    [122] Waterhouse P, Graham M, Wang M. Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc. Natl Acad. Sci. USA, 1998, 95: 13959–13964
    [123] Jorgensen R, Cluster P, English J et al. Chalcone synthase cosuppression phenotypes in petunia flowers: comparison of sense vs. antisense constructs and single-copy vs. complex T-DNA sequences. Plant Mol. Biol.,1996, 31:957–973
    [124] Ronald P, Rene K. The silence of the genes. Current Opinion in Genetics and Development 2000, 10:562–567
    [125]王俊,宋尔卫译. RNAi技术—线虫、果蝇和哺乳动物细胞基因沉默的基本原则与方法.北京:人民卫生出版社,2006
    [126] Fanelli E, Di M, Jones J et al. Analysis of chitin synthase function in a plant parasitic nematode, Meloidogyne artiellia, using RNAi. Gene, 2005,349:87-95
    [127] Russo M, Favery B, Piotte C et al. Isolation of a cDNA encoding a beta-1,4-endoglucanase in the root-knot nematode and expression analysis during plant parasitism. Mol. plant-microbe interact.,1999,12:585-591
    [128] Bakhetia M, Charlton W, Atkinson H et al. RNA interference of dual oxidase in the plant nematode Meloidogyne incognita. Mol. Plant–Microbe Interact. 2005, 18:1099–1106
    [129] Urwin P, Lilley C, Atkinson H. Ingestion of double-stranded RNA by pre parasitic juvenile cyst nematodes leads to RNA interference. Mol. Plant–Microbe Interact. 2002, 15:747–752
    [130] Steeves R, Todd C, Essig J et al. Transgenic soybeans expressing siRNAs specific to a major sperm protein gene suppress Heterodera glycines reproduction. Funct. Plant Biol. 2006, 33: 991–999
    [131] Lilley C, Goodchild S, Atkinson H et al. Cloning and characterisation of a Heterodera glycines aminopeptidase cDNA. Int. J. Parasitol. 2005, 35:1577–1585
    [132] Alkharouf N, Klink V, Matthews B. Identification of Heterodera glycines (soybean cyst nematode [SCN]) cDNA sequences with high identity to those of Caenorhabditis elegans having lethal mutant or RNAi phenotypes. Experimental Parasitology, 2007, 115: 247-258
    [133] Yadav B, Veluthambi K, Subramaniam K. Host-generated double stranded RNA induces RNAi in plant-parasitic nematodes and protects the host from infection. Mol. Biochem. Parasitol. 2006, 148: 219–222.
    [134] Shingles J, Lilley C, Atkinson H et al. Meloidogyne incognita: molecular and biochemical characterisation of a cathepsin L cysteine proteinase and the effect on parasitism following RNAi. Exp.Parasitol. 2007, 115:114–120
    [135]李子仁译.松材线虫产生的水解酶引起松树枯萎病早期症状的发展—纤维素酶可能是致病的重要物质.广东林业科技, 1987, 5:45-50
    [136]赵锦年译.与松萎蔫病发生有关的两种近缘线虫—松材线虫和拟松材线虫在松苗中的分散量增殖.浙江林业科技, 1987, 7(5): 49-52
    [137]胡凯基,杨宝君.松材线虫和拟松材线虫不同株系酶电泳的研究.林业科学研究, 1995, 8(1): 73-77
    [138]季宏铁,丁晓帆,林茂松等.松材线虫与拟松材线虫及杂交后代群体致病性和纤维素酶活性测定.中国线虫学研究.北京:中国农业科技出版社, 2006
    [139]王明旭,张志飞,罗宽等.松材线虫快速检测技术方法的比较研究.湖南农业大学学报, 2004, 30(4):239-242
    [140]田旺,张奇,杨文博等.抗松材线虫纤维素酶单链抗体库的构建及筛选.生物工程学报,2005,21(60):900-905
    [141]张奇,马洪周,杨文博等.松材线虫纤维素酶的分离纯化及免疫学检测方法的研究.南开大学学报, 2006, 39(1):95-99
    [142]张奇,李海燕,白钢等.松材线虫纤维素酶的免疫学分析.林业科学, 2007, 43(2): 64-67
    [143]陆伟,陈学新,郑经武等.松材线虫与拟松材线虫rDNA中ITS区的比较研究.农业生物技术学报, 2001, 9(4): 387-390
    [144]李一农,余道坚,李芳荣等.松材线虫rDNA-ITS1区分子检测与鉴定.植物保护, 2004, 30(3): 61-63
    [145]王金成,季蕾,杨秀丽等.松材线虫TaqMan探针实时荧光PCR诊断.植物病理学报, 2006, 36(3): 281-284
    [146]成飞雪,成新跃,谢丙炎等.松材线虫种群遗传多样性AFLP标记的建立及其应用.植物病理学报, 2005,35(5): 410-419
    [147]张志荣,廖金铃,崔汝强等.爪哇根结线虫β-1,4-内切葡聚糖酶基因cDNA全长克隆和序列分析.植物病理学报, 2006, 36(6): 517-522
    [148]沈卫锋,牛宝龙,翁宏飚等.松材线虫actin基因全长cDNA的克隆.浙江农业学报, 2007, 19(6): 399-403
    [149]戴素明,成新跃,肖启明等.松材线虫Hsp70基因的克隆与原核表达.植物病理学报, 2007, 37(5): 512-519
    [150]王守先,牛宝龙,沈卫锋等.松材线虫RNA聚合酶基因的RNA干扰研究.浙江农业科学, 2007, 6: 690-694
    [151]张锴.松材线虫纤维素酶的特异性研究,中国林业科学研究院硕士学位论文, 2007
    [152]王浩杰,索凤梅,郭付新等.松墨天牛纤维素酶的研究Ⅲ.活体条件下金属离子对松墨天牛纤维素酶活性的影响.林业科学研究, 2006, 19(4): 472-476
    [153] Sambrook J, Russell D. Molecular cloning: A Laboratory Manual.黄培堂等.第三版.北京:科学出版社, 2002
    [154] Kobayashi T,Sasaki K,Mamiya Y.Fungi associated with Bursaphelenchus lignicolus,the pine wood nematode(I).Journal of the Japanese Forestry Society, 1974, 56:136-145
    [155] Mamiya Y,Kimoto J,Wakisaka H et al. Biology of Trichaptum abietinum in relation to pine wilt disease. Bulletin of the Faculty of Agriculture Tamagawa University, 1999 (39):35-50
    [156]张建平,赵博光,谢立群.松材线虫病死木中真菌和细菌的分离,南京林业大学学报, 2004, 28(2): 87-89
    [157]曾凡勇,骆友庆,吕全等.松材线虫入侵的黑松内栖真菌区系初步研究.林业科学研究, 2006, 19(4): 537-540
    [158] Wang Ji, Ding Ming, Li YH et al. Isolation of a multi-functional endogenous cellulase gene from mollusc, Ampullaria crossean .Acta Biochemical et Biophysica Sinica. 2003, 35(10): 941-946
    [159] Watanabe H, Noda H, Tokuda G et al. A cellulase gene of termite origin. Nature, 1998, 394: 330-331
    [160] Mamiya Y.Initial pathological changes and disease development in pine trees induced by the pine wood nematode, Bursaphelenchus xylophilus. Annals of the Phytopoathological Society of Japan. 1985, 51:546-555
    [161] Fukuda. Physiological processes of the symptom development and resistance mechanism in pine wilt disease. Journal of Forestry Research, 1997, 2:171-181
    [162] Oku , Shiraishi, Chikamatsu. Active defense as a mechanism of resistance in pine against pine wilt disease. Ann. Phytopatholo.Soc,Jpn. 1989, 55:603-608
    [163] Odani K, Sasaki S, Nishiyama Y et al. Early symptom developments of the pine wilt disease by hydrolytic enzymes produced by the pine wood nematodes-cellulase as a possible candidate of the pathogen. Journal of Japan Forestry Science, 1985, 67(9):366-372
    [164] Togashi K, Matsunaga K. Between isolate difference in dispersal ability of Bursaphelenchus xylophilus and vulnerability to inhibition by Pinus densiflora. Nematology, 2003, 5(4):559-564
    [165] Matsunaga K, Togashi K.Amone tree difference in the inhibition of systemic dispersal of Bursaphelenchus xylophilus by Pinus densiflora. Appl. Entomol. Zool.2004, 39(2):271-277
    [166]成新跃,徐汝梅.快速进化与生物入侵.徐汝梅,叶万辉.生物入侵—理论与实践.北京:科学出版社,2003, 102-118
    [167] Yan Y, Smant G, Stokkermans J et al. Genomic organization of four beta-1,4-endoglucanase genes in plant-parasitic cyst nematodes and its evolutionary implications.Gene,1998, 220: 61-70
    [168] Terence N, Stephanie J, Nathalie B et al. Characterization of a newβ-1,4-endoglucanase gene from the root-knot nematode Meloidogyne incognita and evolutionary scheme for phytonematode family 5 glycosyl hydrolases, Gene, 2006, 382:121-128
    [169] Bakhetia M, Urwin P Atkinson H. qPCR analysis and RNAi define pharyngeal gland cell-expressed genes of Heterodera glycines required for initial interactions with the host. Mol. Plant–Microbe Interact.,2007, 20:306–312
    [170] Rosso M, Dubrana M, Cimbolini N et al. Application of RNA interference to root-knot nematode genes encoding esophageal gland proteins. Mol. Plant. Microbe. Interact. 2005, 18(7): 615-620
    [171] Chen Q, Rehman S, Smant G et al. Functional analysis of pathogenicity proteins of the potato cyst nematode Globodera rostochiensis using RNAi. Mol. Plant. Microbe. Interact. 2005, 18(7):621-625
    [172] Burgess T, Kelly R. Constitutive and regulated secretion of proteins. Annu. Rev. Cell Biol. 1987, 3:243-293
    [173] Bird D. Manipulation of host gene expression by root-knot nematodes. J. Parasitol. 1996, 82:881-888
    [174] Fenoll C, Grundler F, Ohl S. Regulations of gene expression in feeding site. Cellular and molecular aspects of palnt-nematode interaction. Dordrecht, the Netherlands:Kluwer,1997
    [175] Jaubert, Laire, Pierre et al. A polygalacturonase of animal origin isolated from the root-knot nematode Meloidogyne incognita1. FEBS Letters, 2002, 522 :109-112
    [176] Elizabeth, Kris. Cloning and Characterization of an Esophageal-Gland-Specific Pectate Lyase from the Root-Knot Nematode Meloidogyne javanica. Mol. Plant. Microbe. Interact. 2002, 15(6): 549-556
    [177] Catherine J, Manjula B, Wayne L et al. Recent progress in the development of RNA interference for plant parasitic nematodes. Molecular plant pathology. 2007, 8(5):1-11
    [178] Huang G, Allen R, Eric L et al. Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene. PNAS, 2006,103(39):14302–14306
    [179] Carl N, Phillip A. The RNAi revolution. Nature, 2004, 430:161-164
    [180]吕全,王卫东,梁军等.松材线虫在我国的潜在适生性评价.林业科学研究, 2005, 18(4): 460-464

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700