用户名: 密码: 验证码:
青杨脊虎天牛的温度胁迫耐受性及在中国的适生分布区
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
青杨脊虎天牛(Xylotrechus rusticus L.)近10年来一直被列为全国林业检疫性有害生物,是我国东北地区重要的林木钻蛀性害虫,主要危害杨属(Populus)、柳属(Salix)和榆属(Ulmus)的健康大径级树木,以幼虫蛀食主干,严重影响树木生长,还极易造成被害木主干风折,威胁路人生命及财产安全。目前,青杨脊虎天牛主要分布于我国高纬度地区,但其暴发区呈现出逐渐向北转移的趋势。一般而言,温度是限制昆虫种群地理分布的主要因素之一。因此,开展青杨脊虎天牛在极端温度胁迫下的响应研究,对其潜在分布区的预警和综合管理具有重要意义。本文在系统观察青杨脊虎天牛危害过程的基础上,通过对其温度胁迫耐受性、温度胁迫下的生理响应,以及蛀干坑道微生境温度变化规律的研究,揭示了该天牛对高、低温胁迫的耐受极限和主要耐受对策,并以此为主导,划分青杨脊虎天牛在我国的潜在适生区。主要结果如下:
     1.首次系统精细地观察了青杨脊虎天牛的危害特征。通过长期连续的大量观察和解剖,明确了该天牛在不同发育阶段的典型危害特征,即初孵幼虫群集式垂直于主干蛀食,在形成平均深度3.5cm的“刀砍”状危害特征后,中龄幼虫分散转移至韧皮部危害,但进入秋季,老熟幼虫会再次蛀食木质部,并在平均深度4.5cm处越冬、直至春末羽化。同时,以3-D手绘图系统展示了青杨脊虎天牛幼虫在蛀干坑道内的逐步危害过程,以及相应危害阶段树皮表面的典型特征照片。
     2.明确了青杨脊虎天牛成虫和幼虫的高温耐受极限,并初步揭示了其越夏幼虫高温胁迫下的生理响应能力。结果表明,造成大多数成虫休克、失去行为能力的临界高温区间(38℃-39.5℃)低于成虫高温胁迫2h后的半致死温度HLT50(44.87℃)说明临界高温并非成虫的高温致死上限;但临界高温的上限(41℃)与高温胁迫4h后的半致死温度HLT50(41.90℃)十分接近,因此当临界高温的胁迫时间延长至4h左右,则足以对50%成虫个体造成致死性伤害。另外,在高温胁迫24h后,幼虫的HLT50(43.0℃)比成虫的HLT50(37.79℃)高约5℃,说明幼虫比成虫具有更强的耐热性。由此推断,青杨脊虎天牛种群通过长期对环境条件的适应,以幼虫作为唯一越夏虫态,因此其幼虫在不同高温胁迫时间内的各致死温度(HLT50和HLT99)对其种群适生分布区的评价具有更合理的指导意义。另外,夏季幼虫在两组时间(4h和24h)内的高温胁迫条件下,35℃胁迫后的虫体蛋白质含量与对照组(25℃)相比均显著升高,说明在35℃下有大量热激蛋白产生,从而进行高温胁迫下的生理调节,而虫体含水率和脂肪率变化均不显著,说明水和脂肪能够在35℃进行较为正常的代谢作用,因此35℃是幼虫可承受、并可进行生理响应的胁迫高温;但当温度上升至40℃,虫体蛋白质含量和脂肪率显著降低、含水率显著升高,并且3个生理指标均维持各自近似水平至45℃,说明幼虫经40-C或更高温度胁迫后,将丧失耐热生理调节能力,即为不可进行生理响应的胁迫高温。
     3.明确了青杨脊虎天牛越冬幼虫的低温耐受极限,并初步揭示了其越冬幼虫的主要生理耐寒机制。结果表明,青杨脊虎天牛越冬幼虫在不同低温下,持续暴露24h(短期胁迫)和768h(长期胁迫)后的半致死温度LLT5o分别为-33.64-C和-30.08℃,均远低于越冬期内过冷却点(SCP)的最低值-14.7℃和平均值-11℃,说明越冬幼虫在体液结冰之后,依然能够长期维持存活状态,由此可推断青杨脊虎天牛属于传统耐寒对策分类中的耐结冰型昆虫。另外,在越冬期内幼虫SCP与环境温度之间呈现出相同的变化趋势,说明越冬幼虫SCP的高低,能够体现其个体耐寒性的强弱。通过越冬期幼虫生理生化指标的测定表明,a.越冬期内,甘油含量的变化趋势与SCP之间表现为显著负相关(P=0.033,R=0.907),由此推断越冬中期增加的甘油为越冬幼虫的主要抗寒物质;b.虫体糖原含量和脂肪含量均在越冬中期大幅度降低,并在越冬后期还原至越冬初期水平,因此推断其为越冬幼虫的主要能源物质,但仅糖原含量与SCP呈现出显著正相关(P=0.006,R=0.971);c.越冬期幼虫体内的糖原与甘油之间(P=0.046,R=0.885)、糖原与甘露醇(P=0.012,R=0.954)之间存在相互转化关系;d.越冬期幼虫体内含水率变化不显著,推断幼虫可通过“节水”机制来提高虫体耐寒性;e.虫体蛋白质含量在越冬中期显著升高,说明越冬幼虫在冬季受到低温诱导后,其体内合成了与抗寒作用相关的功能性蛋白。
     4.测定并明确了幼虫坑道内温度在越冬期的变化规律及其特点,并揭示了坑道在越冬幼虫遭遇冬季低温时提供的保护模式。在2012年1月,应用微探头温度自动记录仪定时(1次/30min)测量杨树的模拟坑道内温度。结果表明,坑道内的温度变化呈现出与野外环境温度变化几乎相同的昼夜周期性,以及明显的时滞性;坑道内最低温记录值(-39.58℃)与坑道外(-39.88℃)相比仅高0.3℃,且坑道内1月平均温度仅比坑道外高0.227℃,差异均不显著;在相同时刻,南侧与北侧坑道内的温度差值在0.15℃-1.85℃之间,平均值为0.24℃,差异不显著。故以杨树为寄主的幼虫坑道对昆虫的保护作用并非因为坑道内温度单纯的、持续的比坑道外高,而是因为木材比热较空气大,从而使坑道内温度的升高或降低较坑道外缓和,进而为幼虫适应低温提供了保护性的缓冲作用,并通过这种自然驯化逐渐提高越冬幼虫的耐寒性。
     5.基本明确了青杨脊虎天牛在我国的高度适生区和中度适生区。经统计分析中国43个气象台站连续5年(2007-2012年)温度参数,应用Arcgis9.3软件,通过反距离权重法将温度差值为等温线图,并以青杨脊虎天牛幼虫分别在温度胁迫24h和32d后的致死温度(LLTso、LLT99、HLT50和HLT99)作为适生分布区划分的临界参考值,结果表明:我国东北大部、华北、西北和西南地区均属于青杨脊虎天牛的高度适生区;福建、浙江和江西全境,江苏、安徽、湖北、湖南和广东的大部分区域,以及东北北部、河南省东南部和内蒙古额济纳旗中部的较小区域,为该天牛的中度适生区;在仅以温度限制种群地理分布时,该天牛在我国不存在非适生区。
The grey tiger longicorn beetle, Xylotrechus rusticus L., is one of the most severe wood bores in northeast China and is listed as one of the national forestry quarantine pests in recent10years. The beetles mainly damaged the healthy and mature trees of Populus, Salix and Ulmus. Woods growth were seriously affected after larvae fed on the trunk, for which reason the damaged trees can be easily blown down and the safety of local populace were critically threatened. At present, this pest mainly occurred in high latitudes areas in China, however, the geographic distribution of X. rusticus had expanded to higher latitudes because of global warming. Generally speaking, temperature is a vital factor that limit the geographic distribution of insect. So it's important to study the extreme temperature tolerance of X. rusticus for early warnning about potential distribution and its integrated control. Thus, based on the detailed observation of damage features, the present study aimed to determine the tolerance to extreme temperatures and the relevant physiological variations, as well as the change regulations of larvae microhabitat temperature during overwintering, thereby characterizing its limiting of tolerance to extreme low and high temperatures and the tolerant strategies, then to assess the suitable geographic distribution and its potential adaptive area in China. The main results are as follows:
     1. The detailed damage characteristics of X. rusticus in different development stage were systematically observed for the first time. After eggs hatched, the newly larvae would bore the trunk in cluster and leave a damaging feature of a chopped scar with mean depth of3.5cm; till the middle stage, larvae started to feed on phloem; the mature larvae would damage the xylem again in autumn and overwinter in the trunk mean depth of4.5cm until to the emergence of adults. Based on all above, a three dimensional gallery features internal the trunk were drawn refered to different damage stages, and the photos of corresponding damage features on the bark surface were also presented.
     2. Thermal tolerance of X. rusticus adults and larvae were defined, and the ability for physiological adjustment that larvae reponse to high temperature stress were also revealed. The results showed that the critical thermal maximum (CTMax) ranged from38℃to39.5℃, during which most adults would lost the ability for of action and then went into shock state. All the values of CTMax were lower than the high lethal temperature of HLT50(44.87℃) after adults under thermal stress for2h, which implied that CTMax was not the upper lethal temperature for the beetles. However, the highest value of CTMax (41℃) was approximately the same with the HLT50(41.90℃) that adults were exposed to high temperature for4h, which indicated that CTMax would be the lethal damage temperature resulting50%mortality of adults if the time of exposure to the CTMax prolonged to4h. In addition, the HLT50(43.0℃)of larvae exposed to high temperature for24h was higher than that of adults (HLT50,37.79℃), which indicated that larva had stronger thermal tolerance than adults. It showed that larva of X. rusticus was the only developed stage over summer because of the long-term natural selection that the species in habitat, so the lethal temperatures of larvae in different time duration was more meaningful for assessing the potential distribution of X. rusticus. In addition, the body protein content of the two groups were both increased significantly when oversummering larvae stressed under35℃for4h and24h, respectively. It implied that there was much heat shock protein synthesized in larvae bodies, in order to progress physiological adjustment response to high temperature stress at35℃. While the body water content and lipid content did not change significantly, in other words, the two physiological substances could metabolize regularly at high temperature of35℃. Therefore,35℃is the endurable high temperature that larva can be tolerant through physiological adjustment. However, when larvae were exposed to high temperature of40℃, all the three physiological substances changed significantly, and maintained the similar level as temperature rising to45℃, though the body protein content and lipid rate decreased whereas the water rate increased. It indicate that oversummering larvae would loss the ability of physiological adjustment when the temperature rise to40℃or more.
     3. The cold hardiness of overwintering X. rusticus larva was demonstrated, and the physiological and biochemical indices were preliminarily revealed. The lower lethal temperature (LLT50) was respectively-33.64℃and-30.08℃under24h (short-term stress) and768h (long-term stress) whenX. rusticus overwintering larvae were exposed to different low temperatures. And the two values were far lower than the average (-11℃) and minimum (-14.7℃) of SCP, which indicated that the larva could survive after their body fluid freeze for a long time. It implied that X. rusticus belong to freezing-tolerant insect according to the traditional cold hardiness strategy classification. In addition, the similar variation tendency were showed between SCP and the environment temperature during the overwintering period, which implied that SCP could be used to assess the cold hardiness variation tendency during a sampling period and the cold hardiness differences between individuals in a population. However, SCP was not considered as the lower limit of lethal temperature of this species. The determination of physiological and biochemical indices showed:a. glycerol play an important role as major cryoprotectant for the accumulation in mid-overwintering stage and showed a significantly negative correlation with SCP (P=0.033, R=0.907); b. glycogen and lipid were considered as the important energy substances, which decreased obviously in mid-overwintering period, but only glycogen correlated positively with (P=0.006R=0.971); c. transformations between glycogen and glycerol(.P=0.046, R=0.885), as well as glycogen and mannitol (P=0.012, R=0.954) were showing negative correlations; d. water content of larva body changed little during the whole overwintering period, which implied that "Water-saving mechanism" may have been conducted to improve the cold tolerance; e. the protein content of larva body increased significantly in mid-overwintering period. It seemed that functional protein about cold resistance could be synthesized in larva body, which may be triggered by the low temperature.
     4. The change regulation of temperature in larva gallery during overwintering period was determined and clarified. The internal gallery temperature of poplar during January2012was detected by a micro-detector Auto-temperature recorder (1time per30min). The results showed that temperature changed inside gallery during January presented a significant feature of circadian periodicity and time delay; the minimum temperature of internal gallery (-39.58℃) was only0.3℃higher than that of the external gallery, and the average temperature of internal gallery in January was only0.227℃higher than that of the external, differences of both were not significant; in addition, the temperature difference between northern and southern internal gallery was0.15℃-1.85℃, averagely0.24℃, so the protection provided by the gallery to the larva was depended on the larger specific heat capacity of wood than air rather than the temperature of internal gallery higher than that of the external, this features of gallery enabled a lower change ratio of temperature of internal gallery, providing a protective buffer role for larva, and through this nature accommodation, the larva could improve their cold hardiness gradually.
     5. Highly and moderately adaptive distribution of X. rusticus were determined. The lowest and highest monthly mean temperature, within5years from2007to2012, were collected from January and July respectively, which were analyzed by meteorological data from43meteorological stations among China. The results showed that the highly adaptive area is northern, northwestern, southwestern China, and most part of northeastern China. The moderately adaptive area is Fujian, Zhejiang and Jiangxi province, most part of Jiangsu, Anhui, Hubei and Guangdong province, north part of northeastern China, southeast part of Henan province, and central part of Ejina County. There is no disadaptive area in China if take temperature as the only population restrict factor.
引文
1. 安堃.哈尔滨地区植物多样性与青杨脊虎天牛生态控制研究[D].哈尔滨:东北林业大学,2009.
    2. 蔡建文,谷镅,孙玉峰,等.青杨虎天牛的生态学特性[J].林业科技,2000,25(2):29.
    3. 曹传旺,高彩球.昆虫生化与分子生物学实验技术[M].哈尔滨:东北林业大学出版社,2009.
    4. 常向前,马春森,张舒,等.小菜蛾的耐热性[J].应用生态学报,2012,23(3):772-778.
    5. 陈兵,康乐.南美斑潜蝇地理种群蛹过冷却点随纬度递变及其对种群扩散的意义[J].动物学研究,2003a,24(3):168-172.
    6. 陈兵,康乐.生物入侵及其与全球变化的关系[J].生态学杂志,2003b,22(1):31-34.
    7. 陈兵,康乐.昆虫对环境温度胁迫的适应与种群分化关[J].自然科学进展,2005,15(3):266-271.
    8. 陈明华,周祖基,熊强,等.松褐天牛的人工饲料初步研究[J].四川林业科技,2008,29(6):63-65.
    9. 陈世骧,谢蕴贞,邓国蕃.中国经济昆虫志(第一册鞘翅目天牛科)[M].北京:科学出版社,1959.
    10.陈永杰,孙绪艮,张卫光,等.桑螟越冬幼虫体内蛋白质、氨基酸、碳水化合物的变化与抗寒性的关系[J].蚕业科学,2005,31(2):111-116.
    11.陈瑜,马春森.气候变暖对昆虫影响研究进展[J].生态学报,2010,30(8)2159-2172.
    12.程红.青杨脊虎天牛触角感器类型及其对植物挥发物的反应[D].哈尔滨:东北林业大学,2006.
    13.程红,严善春,徐波,等.青杨脊虎天牛触角主要感器的超微结构及其分布[J].昆虫知识,2008,5(2):223-231.
    14.程红,严善春,徐波,等.青杨脊虎天牛触角感器的分布特征及特殊的感器类型[J].昆虫知识,2008,45(5):743-749.
    15.程立超.十种杨树树皮挥发性物质对青杨脊虎天牛成虫的影响[D].哈尔滨:东北林业大学,2007.
    16.成卫宁,李修炼,李建军.夏季高温对翌年小麦吸浆虫发生的影响[J].西北农业学报,2002,11(4):13-15.
    17.崔双双,贺一原.昆虫的耐寒性及其影响因素[J].生命科学研究,2011,15(3)273-276.
    18.崔旭红.B型烟粉虱和温室粉虱热胁迫适应性及其分子生态机制[D].北京:中国农业科学院,2007.
    19.丁惠梅,马罡,武三安,等.滞育昆虫小分子含量变化研究进展[J].应用昆虫学报,2011,48(4):1060-1070.
    20.杜尧,马春森,赵清华,等.高温对昆虫影响的生理生化作用机理研究进展[J].生态学报,2007,27(4):1565-1572.
    21.费云标,严绍颐.抗冻蛋白的生物化学与抗冻作用机制.生物工程进展[J],1992,12(6):17-20,46.
    22.高桂珍,吕昭智,夏德萍,等.高温胁迫及其持续时间对棉蚜死亡和繁殖的影响[J].生态学报,2012,32(23):7568-7575.
    23.高庆磊.吐鲁番地区B型烟粉虱热胁迫适应性研究[D].泰安:山东农业大学,2011.
    24.高玉红.烟夜蛾Helicoverpa assulta越冬滞育蛹的生理生化特性研究[D].郑州:河南农业大学,2005.
    25.关桦南.青杨脊虎天牛细胞色素P450基因的克隆与表达及氰戊菊酯对其的诱导作用[D].哈尔滨:东北林业大学,2008.
    26.韩政,赵龙龙,陈光,等.热激蛋白与昆虫的耐热性关系研究进展[J].山西农业科学,2010,38(8):92-94,105.
    27.韩瑞东,孙绪艮,许永玉,等.赤松毛虫越冬幼虫生化物质变化与抗寒性的关系[J].生态学报,2005,25(6):1352-1356.
    28.黄桂嫦,张卫东,宋婷婷,等.黄埔口岸截获黄纹曲虎天牛和青杨脊虎天牛[J].植物检疫,2003,17(2):90.
    29.黄华,陆温,农春,等.眉斑楔天牛的人工饲料初步研究[J].广西植保,2007,20(1):9-11.
    30.黄咏槐.青杨脊虎天牛生物学特性及防治技术研究[D].哈尔滨:东北林业大学,2004.
    31.贺萍,黄竞芳.光肩星天牛的人工饲养[J].北京林业大学学报,1992,14(2):61-67.
    32.胡春祥,黄咏槐,李成军,等.青杨脊虎天牛幼虫空间分布格局[J].昆虫知识,2004,41(3):241-244.
    33.金格斯吾尔兰汗.青杨脊虎天牛的生物学特性及其综合防治[J].林业实用技术,2006,7:28-29.
    34.景晓红,康乐.昆虫耐寒性研究[J].生态学报,2002,22(12):2202-2207.
    35.景晓红,康乐.昆虫耐寒性的测定与评价方法[J].昆虫知识,2004,40(1):7-10.
    36.景晓红,康乐.飞蝗越冬卵过冷却点的季节性变化及生态学意义[J].昆虫知识,2003,40(4):326-328.
    37.景晓红,郝树广,康乐.昆虫对低温的适应——抗冻蛋白研究进展[J].昆虫学报,2002,45(5):679-683.
    38.孔维娜.入侵种松材线虫的关键传媒——松墨天牛的耐寒性[D].太古:山西农业大学,2005.
    39.李冰祥,蔡惠罗,陈永林.昆虫的热休克反应和热休克蛋白[J].昆虫学报,1997,20(4):417-427.
    40.李冰祥,陈永林,蔡惠罗.过冷却和昆虫的耐寒性[J].昆虫知识,1998,35(6):361-364.
    41.李玲,迟德富,裴永强,等.寄主挥发物对青杨脊虎天牛EAG和行为的影响[J].东北林业大学学报,2013,41(3):115-121.
    42.李庆,王思忠,封传红,等.西藏飞蝗(Locustam igratoria tibetensis Chen)耐寒性理化指标[J].生态学报,2008,28(3):1314-1320.
    43.李小珍.南亚果实蝇种群特征及其对史料和热胁迫的生理调节机制[D].重庆:西南大学,2007.
    44.李兴鹏,宋丽文,张宏浩,等.蝎蝽抗寒性对快速冷驯化的响应及其生理机制[J].应用昆虫学报,2012,23(3):791-797.
    45.李毅平,龚和.昆虫低温生物学:1.昆虫耐冻的生理生化适应机[J].昆虫知识,1998,35(6):364-364.
    46.李毅平,龚和.昆虫低温生物学:11.冰核物质(冰核蛋白)和昆虫的耐冻性[J].昆虫知识,2000,37(4):250-254.
    47.李志明.椰心叶甲啮小蜂耐热性机理初步研究[D].海口:海南大学,2010.
    48.梁中贵,孙绪艮.松阿扁叶蜂越冬幼虫体内氨基酸含量的测定分析[J].华东昆虫学报,2007,16(4):281-284.
    49.林晓佳,吴蓉,武扬,等.CLIMEX预测欧杉天牛在中国潜在适生区的分布[C].植物保护科技创新与发展——中国植物保护学会2008年学术年会论文集,2008,430-436.
    50.路常宽.沙棘木蠹蛾灾害监测与综合管理技术研究[D].北京:北京林业大学,2005,9-12.
    51.刘海军.北京地区林木外来重大有害生物风险分析[D].北京:北京林业大学,2003.
    52.罗应婷,杨钰娟.SPSS统计分析从基础到实践[M].北京:电子工业出版社,2007.
    53.毛新芳,张富春.昆虫抗冻蛋白的分离纯化及特性分析[J].昆虫知识,2009,46(1):26-31.
    54.马春森,马罡,杜尧,等.连续温度梯度下昆虫趋温性的研究现状与展望[J].生态学报,2005,25(12)3390-3397.
    55.马春森,马罡,常向前.农业害虫高温调控的研究进展[J].环境昆虫学报,2008,30(3):257-264.
    56.马罡,马春森.三种麦蚜在温度梯度中活动行为的临界高温[J].生态学报,2007,27(6)2449-2459.
    57.庞春杰.豆卜馍夜蛾热休克蛋白Hsp70与Hsc70基因的克隆及原核表达[D].哈尔滨:东北农业大学,2012.
    58.强承魁,于玲雅,杜予州,等.快速冷耐受对水稻二化螟滞育幼虫的生理效应[J].中国水稻科学,2012,26(2)251-254.
    59.邱立明,马纪.昆虫抗冻蛋白基因的克隆与表达研究进展[J].昆虫知识,2009,46(6):837-845.
    60.邵强,李海峰,徐存拴.昆虫抗冻蛋白:规则结构适应功能[J].昆虫学报,2006,49(3):491-496.
    61.宋红敏,徐汝梅.松墨天牛的全球潜在分布区分析[J].昆虫知识,2006,43(4):535-541.
    62.宋红敏,张清芬,韩雪梅,等CLIMEX预测物种分布区的软件[J].昆虫知识,2004,41(4):379-386.
    63.宋修超,崔宁宁,郑方强,等.变温贮藏僵蚜对烟蚜茧蜂耐寒能力的影响[J].应用生态学报,2012,23(9):2515-2520.
    64.申建茹.苹果蠢蛾Cydia pomonella (L,)人工繁育和热胁迫适应性研究[D].重庆:西南大学,2011.
    65.史瑞.杨树对青杨脊虎天牛抗虫化学机制的研[D].哈尔滨:东北林业大学,2008.
    66.王亮.热处理对四种重要仓储害虫致死作用研[D].重庆:西南大学,2011.
    67.王广利.青杨脊虎天牛信息化学物质的研究[D].哈尔滨:东北林业大学,2009.
    68.王广利,迟德富,王跃进.青杨脊虎天牛精子超微结构及其辐照后的变化[J].核农学报,2008,22(4):533-538.
    69.王海鸿,雷仲仁.昆虫热休克蛋白的研究进展[J].中国农业科学,2005,38(10):2023-2034.
    70.王牧原.十种杨树酚酸类物质对青杨脊虎天牛的影响[D].哈尔滨:东北林业大学,2008.
    71.王鹏,凌飞,于毅,等.桃小食心虫越冬幼虫过冷却能力及体内生化物质动态[J].生态学报,2011,31(3)|:0638-0945.
    72.王宪辉,齐宪磊,康乐.昆虫的快速冷驯化现象及其生态学适应意义[J].自然科学进展,2003,13(11):1128-1133.
    73.王艳敏,仵均祥,万方浩.昆虫对极端高低温胁迫的响应研究[J].环境昆虫学 报,2010,32(2):250-255.
    74.王志英,刘宽余,张国财,等.青杨脊虎天牛防治技术[J].东北林业大学学报,2006,34(5):1-3.
    75.魏建荣,王素英,牛艳玲,等.花绒寄甲耐寒性研究[J].中国森林病虫,2010,29(5):19-46.
    76.魏初奖.松突圆蚧在中国的适生性与风险性研究[D].福州:福建农林大学,2010.
    77.文礼章.昆虫学研究方法与技术导论[M].北京:科学出版社,2010:200-203.
    78.吴蕾.环境胁迫对西藏飞蝗成虫取食生长和抗氧化酶系统的影响[D].雅安:四川农业大学,2010.
    79.夏继刚,王立志,李秉一,等.杂拟谷盗的热适应特性[J].昆虫知识,2007,44(2):229-232.
    80.萧刚柔.中国森林昆虫(第二版)[M].北京:中国林业出版社,1992:510-514.
    81.谢秀杰,贾宗超,魏群.抗冻蛋白结构与抗冻机制[J].细胞生物学杂志,2005,27:5-8.
    82.徐波,张健,程红,等.青杨脊虎天牛触角表皮孔的超微结构及其分布[J].东北林业大学学报,2007,35(11):89-91.
    83.寻锋,刘强.槐绿虎天牛人工饲养的研究[J].天津师范大学学报(自然科学版),2012,32(4):78-80.
    84.严善春,李金国,温爱亭,等.青杨脊虎天牛的危害与杨树氨基酸组成和含量的相关性[J].昆虫学报,2006,49(1)93-99.
    85.杨大荣,杨跃雄,沈发荣,等.白马蝠蛾幼虫的抗寒性研究[J].昆虫学报,1991,34(1):32-37.
    86.翟会芳,江幸福,罗礼智.甜菜夜蛾HSP90基因克隆及高温胁迫下其表达量的变化[J].昆虫学报,2010,53(1)20-28.
    87.张建国.浙江省森林昆虫多样性及其风险性评价初步研究[D].杭州:浙江大学,2005.
    88.张克斌,胡木林.黄斑星天牛人工饲料研究[J].林业科学,1993,29(3)227-233.
    89.张玉宝,李金国,安堃,等.不同杨树品系还原糖含量与青杨脊虎天牛危害的关系[J].东北林业大学学报,2006,34(2):35-37.
    90.张振.化学生态技术调控青杨脊虎天牛种群基础研究[D].哈尔滨:东北林业大学,2011.
    91.卓德干.绿盲蝽越冬卵的滞育机制及其耐寒性研究[D].泰安:山东农业大学,2011.
    92.周茂建,杜文胜,李跃,等.青杨脊虎天牛风险评估[J].植物检疫,2006,20(3):165-167.
    93.周世豪,袁哲明.冰核蛋白和昆虫抗冻蛋白在虫体抗寒中的作用[J].中国农学通报,2012,28(09):229-234.
    94. Addo-Bediako, A., Chown, S.L. and Gaston, K.J. Thermal tolerance, climatic variability and latitude [J]. Proceeding of The Royal Society B,2000,267:739-745.
    95. Andreadis, S.S., Eliopoulos, P.A. and Savopoulou-Soultani M. Cold hardiness of immature and adult stages of the Mediterranean flour moth, Ephestia kuehniella [J]. Journal of Stored Products Research,2012,48:132-136.
    96. Atapour, M. and Moharramipour, S. Changes of cold hardiness, supercooling capacity, and major cryoprotectants in overwintering larvae of Chilo suppressalis (Lepidoptera:Pyralidea) [J]. Environmental Entomology,2009,38(1):260-265.
    97. Bale, J.S. Insects at low temperature:a predictable relationship? [J] Functional Ecology, 1991,5:291-298.
    98. Bale, J.S. Insect cold hardiness:a matter of life and death [J]. European Journal of Entomology,1996,93:369-382.
    99. Bale, J.S. Insects and low temperature:from molecular biology to distributions and abundance [J]. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences,2002,357:849-862.
    100. Bale, J.S. and Hayward S.A. Insect overwintering in a changing climate [J]. The Journal of Experimental Biology,2010,213:980-994.
    101. Baust, J.G. Biochemical correlates of cold-hardening in insects [J]. Cryobiology,1981,18: 186-198.
    102. Behroozi, E., Izadi, H., Samih, M.A., et al. Physiological strategy in overwintering larvae of pistachio white leaf borer, Ocneria terebinthina Strg. (Lepidoptera:Lymantriidae) in Rafsanjan, Iran [J]. Italian Journal of Zoology,2012,79:44-49.
    103. Belehradek, J. Physiological aspects of heat and cold [J]. Annual Review of Physiology, 1957,19:59-82.
    104. Bemani, M., Izadi, H., Mahdian, K., et al. Study on the physiology of diapause, cold hardiness and supercooling point of overwintering pupae of the pistachio fruit hull borer, Arimania comamffi [J]. Journal of Insect Physiology,2012,58:897-902.
    105. Bowler, K. and Terblanche, J.S. Insect thermal tolerance:what is the role of ontogeny, ageing and senescence? [J]. Biological Reviews,2008,83:339-355.
    106. Blirgi, L.P. and Mills, N.J. Ecologically relevant measures of the physiological tolerance of light brown apple moth, Epiphyas postvittana, to high temperature extremes [J]. Journal of Insect Physiology,2012,58:1184-1191.
    107. Carroll, A.L., Taylor, S.W., Regniere, J., et al. Effects of Climate Change on Range Expansion by the Mountain Pine Beetle in British Columbia [C]. Mountain Pine Beetle Symposium:Challenges and Solutions. Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, Kelowna, BC, Canada.2004:223-232.
    108. Chen, B. and Kang, L.Variation in cold hardiness of Liriomyza huidobrensis (Diptera: Agromyzidae) along latitudinal gradients [J]. Physiological Ecology,2004,33(2):155-164.
    109. Chidawanyika, F. and Terblanche, J.S. Rapid thermal responses and thermal tolerance in adult codling moth Cydia pomonella (Lepidoptera:Tortricidae) [J]. Journal of Insect Physiology,2011,57:108-117.
    110. Cowles, R.B. and Bogert, C.M. Apreliminary study of the thermal requirements of desert reptiles [J]. Bulletin of The American Museum of Natural History,1944,83:261-296.
    111. Czajka, M.C. and Lee R.E. Jr. A rapid cold-hardening response protecting against cold shock injury in Drosophila melanogaster [J]. Journal of experimental biology,1990,148:245-254.
    112. Dahlgaard, J., Loeschcke, V, Michalak, P., et al. Induced thermotolerance and associated expression of the heat-shock protein Hsp70 in adult Drosophila melanogaster [J]. Functional Ecology,1998,12:786-793.
    113. Danks, H.V. Key themes in the study of seasonal adaptations in insects I. Patterns of cold hardiness [J]. Applied Entomology and Zoology,2005,40 (2):199-211.
    114. Danks, H.V, Kukal, O. and Ring, R.A. Insect Cold-Hardiness:Insights from the Arctic [J]. The Arctic Institute of North America,1994,47(4):391-404.
    115. Duman, J. and Horwath, K. The role of hemolymph proteins in the cold tolerance of insects [J]. Annual Review of Physiology,1983,45:261-270.
    116. Feder, M.E. Heat-shock proteins, molecular chaperones, and the stress response: Evolutionary and Ecological Physiology [J]. Annual Review of Physiology,1999,61:243-282.
    117. Fields, P.G. and McNeil, J.N. The cold hardiness of Ctenucha virginica (Lepidoptera: Arctiidae) larvae, a freezing-tolerant species [J]. Journal of Insect Physiology,1988,34(4): 269-277.
    118. Fields, P.G., Fleurat-Lessard, F., Lavenseau, L., et al. The effect of cold acclimation and deacclimation on cold tolerance, trehalose and free amino acid levels in Sitophilus granarius and Cryptolestes ferrugineus (Coleoptera) [J]. Journal of Insect Physiology,1998,44:955-965.
    119. Goto, M., Sekine, Y, Outa, H., et al. Relationships between cold hardiness and diapause, and between glycerol and free amino acid contents in overwintering larvae of the oriental corn borer, Ostrinia furnacalis [J]. Journal of Insect Physiology,2001,47:157-165.
    120. Hanzal, R. and Jegorov, A. Changes in free amino acid composition in haemolymph of larvae of the wax moth, Galleria mellonella L., during cold acclimation [J]. Comparative Biochemistry and Physiology Part A:Physiology,1991,100(4):957-962.
    121. Hazell, S.P., Groutides, C., Neve, B.P., et al. A comparison of low temperature tolerance traits between closely related aphids from the tropics, temperate zone, and Arctic [J]. Journal of Insect Physiology,2010,56:115-122.
    122. Hazelwood, C.F. Bound water in biology [J]. ActaBiochimica et Biophysica; Academiae Scientiarum Hungaricae,1977,12(3):263-273.
    123. Huey, R.B., Crill, W.D., Kingsolver, J.G., et al. A method for rapid measurement of heat or cold resistance of small insects [J]. Function Ecology,1992,6(4):489-494.
    124. Hutchison, VH. The critical thermal maximum in salamanders [J]. Physiological Zoology, 1961,34:92-125.
    125. Ishiguro, S., Li, Y., Nakano, K., et al. Seasonal changes in glycerol content and cold hardiness in two ecotypes of the rice stem borer, Chilo suppressalis, exposed to the environment in the Shonai distinct, Japan [J]. Journal of Insect Physiology,2007,53:392-397.
    126. Izumi, Y, Anniwaer, K., Yoshida, H., et al. Comparison of cold hardiness and sugar content between diapausing and nondiapausing pupae of the cotton bollworm, Helicoverpa armigera (Lepidoptera:Noctuidae) [J]. Physiological Entomology,2005,30:36-41.
    127. Kelty, J.D. and Lee, R.E. Jr. Induction of rapid cold hardening by cooling at ecologically relevant rates in Drosophila melanogaster [J]. Journal of Insect Physiology,1999,45:719-726.
    128. Kostal, V, Dolezal, P., Rozsypal, J., et al. Physiological and biochemical analysis of overwintering and cold tolerance in two Central European populations of the spruce bark beetle, Ips typographus [J]. Journal of Insect Physiology,2011,57:1136-1146.
    129. Kostal, V. and Simek, P. Overwintering strategy in Phrrhocoris apterus (Heteroptera):the relations between life-cycle, chill tolerance and physiological adjustments [J]. Journal of Insect Physiology,2000,46:1321-1329.
    130. Kristiansen, E., Wilkens, C., Vincents, B., et al. Hyperactive antifreeze proteins from longhorn beetles:Some structural insights [J]. Journal of Insect Physiology,2012,58:1502-1510.
    131. Kroschel, J., Sporleder, M., Tonnang, H.E.Z., et al. Predicting climate-change-caused changes in global temperature on potato tuber moth Phthorimaea operculella (Zeller) distribution and abundance using phenology modeling and GIS mapping [J]. Agricultural and Forest Meteorology,2013,170:228-241.
    132. Kulikova, E.G. Phytosanitary Risk. Arbez, M., Birot, Y. and Carnus, J-M. Risk Management and Sustainable [C]. Forestry Bordeaux (France):European Forest Institute,2002,46:43-53.
    133. Laak, S. Physiological adaptation to low temperature in freezing-tolerant Phyllodecta laticollis beetles [J]. Comparative Biochemistry and Physiology Part A:Physiology,1982, 73(4):613-620.
    134. Leather, S.R. Walters, K.F.A. and Bale, J.S. The Ecology of Insect Overwintering [M]. England:Cambridge University Press,1993.
    135. Lee, R.E.Jr. Insect Cold-hardiness:to freeze or not to freeze. BioScience,1989,39:308-313.
    136. Lee, R.E.Jr., Chen, C.P. and Denlinger, D.L. A rapid cold-hardening process in insects [J]. Science,1987,238:1415-1417.
    137. Lee, R.E.Jr., Damodaran, K., Yi, S.X., et al. Rapid cold-hardening increases membrane fluidity and cold tolerance of insect cells [J]. Cryobiology,2006,52:459-463.
    138. Levitt J. Responses of Plants to Environmental Stresses [M]. New York:Academic Press, 1972:110-208.
    139. Li, B.X., Chen, Y.L. and Cai, H.L. The Cold-hardiness of different geographical populations of the Migratory Locust, Locusta migratoria L. (Orthoptera, Acrididae) [J]. Acta Ecologica Sinica,2001,21(12):2023-2030.
    140. Li, N.G. and Zachariassen, K.E. Water balance and adaptation strategy in insects of Central Yakutia to extreme climatic conditions [J]. Biology Bulletin,2006,33(5):483-487.
    141. Liu, Z.D., Gong, P.Y, Wu, K.J., et al. Effects of larval host plants on over-wintering preparedness and survival of the cotton bollworm, Helicoverpa armigera (Hubner) (Lepidopatera, Noctuidae) [J]. Journal of Insect Physiology,2007,53:1016-1026.
    142. Loganathan, M., Jayas, D.S. Fields, P.G., et al. Low and high temperatures for the control of cowpeabeetle, Callosobruchus maculatus (F.) (Coleoptera:Bruchidae) in chickpeas [J]. Journal of Stored Products Research,2011,47:244-248.
    143. Lombardero, M.J., Ayres, M.P., Ayres, B.D., et al. Cold Tolerance of Four Species of Bark Beetle (Coleoptera:Scolytidae) in North America [J]. Environmental Entomology,2000, 29(3):421-432.
    144. Lutterschmidt, W.I. and Hutchison, V.H. The critical thermal maximum:history and critique [J]. Canadian Journal of Zoology,1997a,75:1561-1574.
    145. Lutterschmidt, W.I. and Hutchison, V.H. The critical thermal maximum:data to support the onset of spasms as the definitive end point [J]. Canadian Journal of Zoology,1997b,75: 1553-1561.
    146. Ma, G. and Ma, C.S. Climate warming may increase aphids'dropping probabilities in responseto high temperatures [J]. Journal of Insect Physiology,2012,58:1456-1462.
    147. Manrique, V., Cuda, J.P., Overholt, W.A., et al. Temperature-Dependent Development and Potential Distribution of Episimus utilis (Lepidoptera:Tortricidae), a Candidate Biological Control Agent of Brazilian Peppertree (Sapindales:Anacardiaceae) in Florida [J]. Environmental Entomology,2008,37(4):862-870.
    148. Ma, R. Y, Hao, S.G., Kong, W.N., et al. Cold hardiness as a factor for assessing the potential distribution of the Japanese pine sawyer Monochamus alternates (Coleoptera: Cerambycidae) in China [J]. Annals of Forest Science,2006,63:449-456.
    149. Marsh, A.C. Thermal Responses and Temperature Tolerance in a Diurnal Desert Ant, Ocymyrmex barbiger [J]. Physiological Zoology,1985,58(6):629-636.
    150. Men6ndez, R., Gonzalez-Megias, A., Jay-Robert, P., et al. Climate change and elevational range shifts:evidence from dung beetles in two European mountain ranges [J]. Global Ecology and Biogeography,2013, doi:10.1111/geb.12142.
    151. Miller, M. Cold-hardiness strategies of some adult and immature insects overwintering in interior Alaska [J]. Comparative Biochemistry and Physiology Part A:Physiology,1982, 73(4):595-604.
    152. Morimoto, N., Imura, O. and Kiura, T. Potential effects of global warming on the occurrence of Japanese pest insects [J]. Applied Entomology and Zoology,1998,33(1):147-155.
    153. Nedved, O. Snow white and the seven dwarfs:a multivariate approach to classification of cold tolerance [J]. Cry-Letters,2000,21:339-348.
    154. Nedved, O., Lavy D. and Verhoef H. A. Modelling the time-temperature relationship in cold injury and effect of high-temperature interruptions on survival in a chill-sensitive collembolan [J]. Functional Ecology,1998,12:816-824.
    155. Neven, L.G. Physiological responses of insects to heat [J]. Postharvest Biology and Technology,2000,21:103-111.
    156. Nielsen, M.M., Overgaard, J., Sorensen, J.G.,et al. Role of HSF activation for resistance to heat, cold and high-temperature knock-down [J]. Journal of Insect Physiology,2005,51: 1320-1329.
    157. Ohtsu, T., Kimura, M.T. and Hori, S.H. Energy storage during reproductive diapause in the Drosophila melanogaster species group [J]. Journal of Comparative Physiology B,1992, 162(3):203-208.
    158. Okamoto, H. The Longicorn beetles from Corea [J]. Insecta Matsumurana,1927,2(2):62-86.
    159. Ouyang, F., Liu, Z.D., Yin, J., et al. Effects of transgenic Bt cotton on overwintering characteristics and survival of Helicoverpa armigera [J]. Journal of Insect Physiology,2011, 57:153-160.
    160. Ozdikmen, H. Contribution to the knowledge of Turkish longicorn beetles fauna (Coleoptera: Cerambycidea) [J]. Munis Entomology & Zoology,2006,1(1):71-90.
    161. Paradis, A., Elkinton, J., Hayhoe, K., et al. Role of winter temperature and climate change on the survival and future range expansion of the hemlock woolly adelgid(Adelges tsugae) in eastern North America [J]. Mitig Adapt Strat Glob Change,2008,13:541-554.
    162. Parkin, E.A. The digestive enzymes of some wood-boring beetle larvae [J]. The Journal of Experimental Biology,1940,17:364-377.
    163. Payne, N.M. Freezing and survival of insects at low temperatures [J]. Journal of Morphology, 1927a,43(2):521-546.
    164. Payne, N.M. Measures of insect cold-hardiness [J]. Biological Bulletin,1927b,52(6):449-457.
    165. Regniere, J. and Bentz, B. Modeling cold tolerance in the mountain pine beetle, Dendroctonus ponderosae [J]. Journal of Insect Physiology,2007,53:559-572.
    166. Renault, D., Vernonb, P. and Vannierc, G. Critical thermal maximum and body water loss in first instar larvae of three Cetoniidae species (Coleoptera) [J]. Journal of Thermal Biology, 2005,30(8):611-617.
    167. Rinehart, J.P., Hayward, S.A.L., Elnitsky, M.A., et al. Continuous up-regulation of heat shock proteins in larvae, but not adults, of a polar insect [J]. PNAS,2006,103(38):14223-14227.
    168. Ring, R.A. Freezing-tolerant insects with low supercooling points [J]. Comparative Biochemistry and Physiology Part A:Physiology,1982,73(4):605-612.
    169. Ring, R. A. and Tesar, D. Cold-hardiness of the arctic beetle, Pytho americanus Kirby Coleoptera, Pythidae (Salpingidae) [J]. Journal of Insect Physiology,1980,26(11):763-774.
    170. Rochefort, S., Berthiaume, R., Hebert, C., et al. Effect of temperature and host tree on cold hardiness of hemlock looper eggs along a latitudinal gradient [J]. Journal of Insect Physiology,2011,57(6):751-759.
    171. Rozsypal, J., Kostal, V., Zahradnickova, H., et al. Overwintering strategy and mechanisms of cold tolerance in the codling moth (Cydia pomonella) [J]. Plos One,2013,8(4):e61745.
    172. Sahlin, E. and Ranius, T. Habitat availability in forests and clearcuts for saproxylic beetles associated with aspen [J]. Biodiversity and Conservation,2009,18:621-638.
    173. Salt, R.W. Principles of insect cold-hardiness [J]. Annual Review of Entomology,1961,6: 55-74.
    174. Salt, R.W. Influence of moisture content and temperature on cold-hardiness in hibernating insects [J]. Canadian Journal of Zoology,1956,34(4):283-294.
    175. Salvucci, M.E., Stecher, D.S. and Henneberry, T.J. Heat shock proteins in whitefies, an insect that accumulates sorbitol in response to heat stress [J]. Journal of Thermal Biology,2000,25: 363-371.
    176. Sambaraju, K.R., Carroll, A.L., Zhu, J., et al. Climate change could alter the distribution of mountain pine beetle outbreaks in western Canada [J]. Ecography,2012,35:211-223.
    177. Schaefer, C.H. and Washino, R.K. Synthesis of energy for overwintering in natural populations of the mosquito Culex tarsalis [J]. Comparative Biochemistry and Physiology, 1970,35(2):503-506.
    178. Shiroto, A., Satoh, T. and Hirota, T. The Importance of Workers for Queen Hibernation Survival in Camponotus Ants [J]. Zoological Science,2011,28(5):327-331.
    179. Sinclair, B.J. Insect cold tolerance:how many kinds of frozen? [J]. European Journal of Entomology,1999,96:157-164.
    180. Solomon, J.M, Rossi, J.M., Golic, K., et al. Changes in Hsp70 alter thermotolerance and heat-shock regulation in Drosophila [J].New Biologist,1991,3:1106-1120.
    181. Somme, L. The physiological of cold hardiness in terrestrial arthropods [J]. European Journal of Entomology,1999,96:1-10.
    182. Somme, L. Effects of glycerol on cold hardiness in insects [J]. Canadian Journal of Zoology, 1964,42:89-101.
    183. Serensen, J.G. and Loeschcke, V. Larval crowding in Drosophila melanogaster induces Hsp70 expression, and leads to increased adult longevity and adult thermal stress resistance [J]. Journal of Insect Physiology,2001,47:1301-1307.
    184. Storey, K.B. Metabolism and bound water in overwintering insects [J]. Cryobiology,1983, 20:365-379.
    185. Storey, K.B., Baust J. G. and Buescher P. Determination of water "bound" by soluble subcellular components during low-temperature acclimation in the overwintering gall fly larva, Eurosta solidaginis [J]. Cryobiology,1981c,18:315-321.
    186. Storey, K.B., Baust J.G. and Storey, J.M. Intermediary metabolism during low temperature acclimation in the overwintering gall fly larva, Eurosta solidaginis [J]. Journal of comparative physiology,1981a,144:183-190.
    187. Storey, K.B., McDonald, D.G. and Booth, C.E. Effect of temperature acclimation on haemolymph composition in the freeze-tolerant larvae of Eurosta solidaginis [J]. Journal of Insect Physiology,1986,32(10):897-902.
    188. Storey, K.B., Park I.R.A. and Storey J.M. Isozyme composition and low temperature acclimation in the overwintering gall fly larva, Eurosta solidaginis [J]. Cryo-Letters,1981b, 2:279-284.
    189. Storey, J.M. and Storey, K.B. Regulation of cryoprotents metabolism in the overwintering gall fly larva, Eurosta solidaginis:temperature control of glycerol and sorbitol levels [J]. Journal of Comparative Physiology B,1983,149:495-502.
    190. Sverdrup-Thygeson, A. and Birkemoe, T. What window traps can tell us:effect of placement, forest openness and beetle reproduction in retention trees [J]. Journal of Insect Conservation, 2009,13:183-191.
    191.Vermunt, B., Cuddington, K, Sobek-Swant, S., et al. Cold temperature and emerald ash borer:Modelling the minimum under-bark temperature of ash trees in Canada [J]. Ecological Modelling,2012,235-236:19-25.
    192. Walther, G.R., Roques, A, Hulme, P.E., et al. Alien species in a warmer world:risks and opportunities [J]. Trend in Ecology and Evolution,2009,24(12):686-693.
    193. Welte, M.A, Tetrault, J.M, Dellavalle, R.P., et al. A new method formanipulating transgenes: Engineering heat tolerance in a comp lexmulticellular organism [J]. Current Biology,1993,3: 842-853.
    194. Woodman, J.D. Cold tolerance of the Australian spur-throated locust, Austracris guttulosa [J]. Journal of Insect Physiology,2012,58:384-390.
    195. Worland, M.R. and Block, W. Survival and water loss in someAntarctic arthropods [J]. Journal of Insect Physiology,1986,32:579-584.
    196. Yi, S.X., Moore, C.W. and Lee, R.E.Jr. Rapid cold-hardening protects Drosophila melanogaster from cold-induced apoptosis [J]. Apoptosis,2007,12(7):1183-1193.
    197. Ya, H., Wan, F.H. and Guo, J. Y Different thermal tolerance and hsp gene expression in invasive and indigenous sibling species of Bemisia tabaci [J]. Biological Invasions,2012,14: 1587-1595.
    198. Zachariassen, K.E. Physiology of cold tolerance in insects [J]. Physiological Reviews,1985, 65:799-832.
    199. Zhou, Z.S., Guo J.Y, J. P. Michaud, et al. Wiation in cold hardiness among geographic populations of the ragweed beetle, Ophraella communa LeSage (Coleoptera: Chrysomelidae), a biological control agent of Ambrosia artemisiifoliaL. (Asterales: Asteraceae), in China [J]. Biological Invasions,2011,13:659-667.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700