用户名: 密码: 验证码:
两类不适定问题的正则化方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要讨论了两类不适定问题的正则化方法。一类是复分析中的数值解析延拓问题,这是一个线性的严重不适定问题。多年来研究进展不大,而且早期的结果基本上集中在条件稳定性上,近年来蓬勃发展的正则化理论及算法在这方面的应用则很少。本文讨论了一个带型区域上的数值解析延拓问题,我们用Fourier变换将其转化为一个线性算子方程,分析了该算子方程的不适定性,进而讨论了正则化方法的最优误差界。在此基础上,为了稳定地计算它,分别提出了一个修改的Tikhonov正则化方法和一个磨光正则化方法,并分别在先验与后验参数选取规则下给出误差估计,最后用数值例子验证了方法的有效性。另一类是对非线性不适定算子方程一般理论中的有关问题进行了研究,在对非线性条件的某种限制下,针对经典的Tikhonov正则化方法,在对数源条件下分别给出了先验参数选取和两个后验参数选取规则下的收敛速率,并对一个有重要应用背景的未知边界识别问题用所得结果进行了数值模拟,数值结果也体现了方法的有效性。
This thesis investigates the regularization methods for two classes of ill-posed problems. The first one is the problem of numerical analytic continuation in com-plex analysis, which is a linear and severely ill-posed problem. Over the years, advances in this research are not remarkable and the earlier results mostly focus on the conditional stability. However, it seems that there are few applications of modern theory of regularization methods which have been developed intensively in the last few decades. In this thesis, we consider the problem of numerical analytic continuation on a strip domain. Firstly, we transform it into a linear operator equation by using Fourier transform and analyze the ill-posedness. Moreover, the optimal error bound of regularization method is also given. Based on this, for stably computing it, we provide a modified Tikhonov regularization method and a mollification regularization method, and give error estimate under a-priori and a-posteriori parameter choice rules, respectively. Several numerical examples are provided, which show the two methods work effectively. The other kind is that some related problems in the general theory on a nonlinear ill-posed operator equa-tion are considered. Imposing some nonlinear conditions on the nonlinear operator, we provide a-priori and two a-posteriori parameter choice rules which are specific to Tikhonov regularization method under logarithmic-type source condition and give the convergence rates, respectively. In addition, an unknown boundary iden-tification problem, which has important application background, is also discussed. Numerical experiments support our theoretical results and show the effectiveness of the methods.
引文
[1]H. Abdullah and A.K. Louis, The approximate inverse for solving an inverse scat-tering problem for acoustic waves in an inhomogeneous medium, Inverse Problems 15,1213-1229,1999.
    [2]C.D. Acosta and C.E. Mejia, Stabilization of explicit methods for convection diffu-sion equations by discrete mollification, Computers and Mathematics with Appli-cations 55,368-380,2008.
    [3]R.G. Airapetyan, A.G. Ramm and A.B. Smirnova, Continuous analog of the Gauss-Newton method, Math. Models Methods Appl. Sci.9(3),463-474,1999.
    [4]L. Ahlfors, Complex Analysis, McGraw-Hill Science/Engineering/Math,1979.
    [5]N.D. Aparicio and M.K. Pidcock, The boundary inverse problem for the Laplace equation in tow dimensions, Inverse Problems 12,565-577,1996.
    [6]A.B. Bakushinskii, The problem of the convergence of the iteratively regularized Gauss-Newton method, Comput. Math. Phys.32,1353-1359,1992.
    [7]H.T. Banks and F. Kojima, Boundary shape identification in two-dimensional elec-trostatic problems using SQUIDs, J. Inverse Ill-posed Problems 8,467-504,2000.
    [8]F. Bauer and T. Hohage, A Lepskij-type stopping rule for regularized Newton methods, Inverse Problems 21,1975-1991,2005.
    [9]B. Blaschke(-Kaltenbacher), Some Newton type methods for the solution of non-linear ill-posed problems, Ph.D. thesis, Schriften der Johannes Kepler universitdt Linz, Trauner, Linz,1996.
    [10]B. Blaschke(-Kaltenbacher), A. Neubauer and O. Scherzer, On convergence rates for the iteratively regularized Gauss-Newton method, IMA J. Numer. Anal.17, 421-436,1997.
    [11]K. Bryan and M. Vogelius, A computational algorithm to determine crack locations from electrostatic boundary measurements, The case of multiple cracks Int. J. Eng. Sci.32,579-603,1994.
    [12]H.S. Cabayan and G.G. Belford, On computing a stable least squares solution to the inverse problem for a planar Newtonian potential, SIAM J. Appl. Math.20, 51-61,1971.
    [13]A. Carasso, Determining surface temperatures from interior observations, SIAM J. Appl. Math.42,558-74,1982.
    [14]D. Colton and R. Kress, Inverse acoustic and electromagnetic scattering theory, Berlin:Springer,1992.
    [15]D. Colton and A. Kirsch, A simple method for solving inverse scattering problems in the resonance region, Inverse Problems 12,383-393,1996.
    [16]D. Colton, H. Haddar and M. Piana, The linear sampling method in inverse elec-tromagnetic scattering theory, Inverse Problems 19, S105-137,2003.
    [17]K. Deimling, Nonlinear Functional Analysis, Heidelberg:Springer,1985.
    [18]P. Deuflhard, H.W. Engl and O. Scherzer, A convergence analysis of iterative meth-ods for the solution of nonlinear ill-posed problems under affinely invariant condi-tions, Inverse Problems 14,1081-1106,1998.
    [19]L.E. Evans, Partial differential equations, Graduate Studies in Mathematics, Vol-ume 19, American Mathematical Society,1998.
    [20]B. Han, M.L. Zhang and J.Q. Liu, A widely convergent generalized pulse-spectrum technique for the coefficient inverse problem of differential equation, APPL. MATH. COMPUT.81,97-112,1997.
    [21]H.W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems, Boston:Kluwer Academic Publishes,1996.
    [22]H.W. Engl, K. Kunisch and A. Neubauer, Convergences rates for Tikhonov regu-larization of nonlinear ill-posed problems, Inverse Problems 5,523-540,1989.
    [23]H.W. Engl and G. Landl, Convergence rates for entropy regularization, SIAM J. Numer. Anal.30,1509-1536,1993.
    [24]C.L. Epstein, Introduction to the mathematics of medical imaging, Society for Industrial and Applied Mathematics, Philadelphia, PA,2008.
    [25]D. Fasino and G. Inglese, Discrete methods in the study of an inverse problem for Laplace's equation, IMA J. Numer. Anal.19,105-118,1999.
    [26]G.B. Folland, Introduction to partial differential equations, Chichester West Sussex: Princeton University Press,1995.
    [27]K. O. Friedrichs, The identity of weak and strong extensions of differential opera-tors, Transactions of the American Mathematical Society 55 (1):132-151,1944.
    [28]J. Franklin, analytic continuation by the fast Fourier transform, SIAM J. ScI. STAT. COMPUT., Vol.11, No.1, pp.112-122, January 1990.
    [29]C.-L. Fu, F.-F. Dou, X.-L. Feng and Z. Qian, A simple regularization method for stable analytic continuation, Inverse Problems 24(6),065003 (15pp),2008.
    [30]C.-L. Fu and Z. Qian, Numerical pseudodifferential operator and Fourier regulariza-tion, Advances in Computational Mathematics, DOI:10.1007/s10444-009-9136-5, 2009.
    [31]C.-L. Fu, Z.-L. Deng, X.-L Feng and F.-F Dou, A modified Tikhonov regularization for stable analytic continuation, SIAM J. Numer. Anal.47(4),2982-3000,2009.
    [32]D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Third edition, New York:Springer-Verlag,1980.
    [33]R. Gorenflo and B. Hofmann, On autoconvolution and regularization, Inverse Prob-lems 10,353-373,1994.
    [34]L.J. Guo and D. Murio, A mollified space-marching finite-difference algorithm for the two-dimensional inverse heat conduction problem with slab symmetry, Inverse Problems 7,241-259,1991.
    [35]J. Hadamard, Lectures on the Cauchy problems in linear partial differention, New Haven:Yale University Press,1923.
    [36]M. Hanke, A. Neubauer and O. Scherzer, A convergence analysis of the Landweber iteration for nonlinear ill-posed problems, Numer. Math.72,21-37,1995.
    [37]M. Hanke, A regularization Levenberg-Marquardt scheme with applications to in-verse ground-water filtration problems, Inverse Problems 13,79-95,1997.
    [38]M. Hanke, Regularizing properties of a truncated Newton-CG algorithm for non-linear inverse problems, Numer. Funct. Anal. Optim.18,971-993,1997.
    [39]D.N. Hao and H. Shali, Stable analytic continuation by mollification and the fast Fourier transform, Method of Complex and Clifford Analysis (Proceedings of ICAM Hanoi,143-152,2004.
    [40]D.N. Hao, A mollification method for ill-posed problems, Numer. Math.68,469-506, 1994.
    [41]G.H. Hardy, Divergent series, Claredon Press, Oxford,1949.
    [42]P. Henrici, Applied and computational complex analysis, Vol.1, New York:John Wiley& Sons, Inc.,1988.
    [43]F. Hettlich and W. Rundell, Iterative methods for the reconstruction of an inverse potential problem, Inverse Problems 12,251-266,1996.
    [44]G. Herglotz, Ueber die analytische Fortsetzung des Potentials ins Innere der anziehenden Massen, Teubner-Verlag, Leipzig,1914.
    [45]T. Hohage, Logarithmic convergence rates of the iteratively regularized Gauss-Newton method for an inverse potential and an inverse scattering problem, Inverse Problems 13,1279-1299,1997.
    [46]T. Hohage, Exponentially ill-posed problems, Numer. Funct. Anal, and Opitimiz 21(3-4),439-464,2000.
    [47]T. Hohage, Iterative methods in inverse obstacle scattering:regularization theory of linear and nonlinear exponentially ill-posed problems, Dissertation Linz,1999.
    [48]V. Isakov, Inverse problems in partial differential equation, Springer-Verlag, Applied Mathematical Science series, Second Edition,2005.
    [49]V. Isakov, Inverse source problems (Mathematical Surveys and Monographs 34) (Probidence, RI:American Mathematical Society),1990.
    [50]V.K. Ivanov, V.V. Vasin and V.P. Tanana, Theory of linear ill-posed problems, Nauka, Moscow,1978(in Russian).
    [51]F. John, Partial differential equations, Third edition, New York:Springer-Verlag, 1980.
    [52]P. Jonas and A.K. Louis, Approximate inverse for a one-dimensional inverse heat conduction problem, Inverse Problems 16175-185,2000.
    [53]B. Kaltenbacher, Some Newton type methods for the regularization of nonlinear ill-posed problems, Inverse Problems 13,729-753,1997.
    [54]B. Kaltenbacher, A posteriori parameter choice strategies for some Newton type methods for the regularization of nonlinear ill-posed problems, Numer. Math.79, 501-528,1998.
    [55]B. Kaltenbacher, A. Neubauer and A.G. Ramm, Convergence rates of the continu-ous regularized Gauss-Newton method, J. Inv. Ill-Posed Problems, Vol.10, No.3, 261-280,2002.
    [56]B. Kaltenbacher, A note on logarithmic convergence rates for nonlinear Tikhonov regularization, J. Inv. Ill-posed Problems 16,79-88,2008.
    [57]P.G. Kaup, F. Santosa and M. Vogelius, Method for imaging corrosion damage in thin plates from electrostatic data, Inverse Problems 13,113-123,1997.
    [58]A. Kirsch, An introduction to the mathematical theory of inverse problems, New York:Springer-Verlag,1996.
    [59]A. Kirsch and R. Kress, A numerical method for an inverse scattering problem, Inverse and Ill-Posed Problems, (Sankt Wolfgang,1986) (Notes Rep. Math vol 4 Sci. Eng)(Boston, MA:Academic),279-289,1987.
    [60]A. Kirsch, The domain derivative and two applications in inverse scattering theory, Inverse Problems 9,81-96,1993.
    [61]R. Kress and W. Rundell, Nonlinear integral equations and the iterative solution for an inverse boundary value problem, Inverse Problems 21,1207-1233,2005.
    [62]R. Kress, Inverse scattering from an open arc, Math. Meth. App. Sci.18,267-293, 1995.
    [63]R. Kress and W. Rundell, A quasi-Newton method in inverse obstacle scattering, Inverse Problems 10,1145-1157,1994.
    [64]R. Kress, Linear integral equations, Second Edition, New York:Springer-Verlag, 1999.
    [65]K. Kunisch and X. Pan, Estimation of interfaces from boundary measurements. SIAM J. Control Optm.32,1643-1674,1994.
    [66]M.M. Lavrent'ev, V.G. Romanov and S.P. Shishat-skii, Ill-posed problems of math-ematical physics and analysis, Translations of Mathematical Monographs 64, Amer-ican Mathematical Society, Providence, Rhode Island,1986.
    [67]K. Levenber, A method for the solution of certain nonlinear problems in least squares, Qart. Appl. Math.2,164-166,1944.
    [68]G.S. Li, J. Cheng, D. Yao, H.L. Liu and J.J. Liu, One-dimensional equilibrium model and source parameter determination for soil-column experiment, Applied Mathematics and Computation, Vol.190, No.2,1365-1374,2007.
    [69]J.J. Liu, G.Nakamura and M.Sini, Reconstruction of the shape and surface impedance from acoustic scattering data for arbitrary cylinder, SIAM J. Appl. Maths, Vol.67, No.4,1124-1146,2007.
    [70]Y. Liu, B. Han and Y. X. Dou, A homotopy-projection method for the parameter estimation problems, Inverse Problems in Science and Engineering 16(2):141-157, 2008.
    [71]A.K. Louis, Inverse und schlecht gestellte probleme, Teubner, Stuttgart,1989.
    [72]A.K. Louis and P. Maass, A mollifier method for linear operator equations of the first kind, Inverse Problems 6,427-440,1990.
    [73]A.K. Louis, A unified approach to regularization methods for linear ill-posed prob-lems, Inverse Problems 15,489-498,1999.
    [74]A.K. Louis, Application of the approximate inverse to 3D X-ray CT and ultrasound tomography, Inverse Problems in Medical Imaging and Nondestructive Testing, Wien:Springer,1997.
    [75]S. Lu, S.V. Pereverzev and R. Ramlau, An analysis of Tikhonov regularization for nonlinear ill-posed problems under a general smoothness assumption, Inverse Problems 23,217-230,2007.
    [76]D.W. Marquardt, An algorithm for least-squares estimation of nonlinear inequali-ties, SIAM J. Appl. Math.11,431-441,1963.
    [77]C.E. Mejia and D. Murio, Mollified hyperbolic method for coefficient identification problems, Comput. Math. Appl.26 (1993) 1-12.
    [78]K. Miller, Least squares methods for ill-posed problems with a prescribed bound, SIAM J. Math. Anal., pp.52-74,1970.
    [79]D.A. Murio, The mollification method and the numerical solution of ill-posed prob-lems[M], New York:A Wiley-Interscience Publication, John Wiley and Sons Inc., 1993.
    [80]D.A. Murio, Mollification and space marching, in:K. Woodbury (Ed.), Inverse Engineering Handbook, CRC Press,2002.
    [81]D. Murio, C.E. Mejia and S. Zhan, Discrete mollification and automatic numerical differentiation, Comput. Math. Appl.35 (1998) 1-16.
    [82]J. More, The Levenberg-Marquardt algorithm:Implementation and Theory, In Watson G A ed., Lectures Notes in Mathematics 630:Numerical Analysis, Springer-Verlag,105-116,1978.
    [83]L.J. Montoya, C.E. Mejia, F.M. Toro, Estabilizacion de esquemas por molificacion discreta, Adv. Recur. Hidraul.7,102-116,2000.
    [84]R.D. Murch, D.G.H. Tan and D.J.N. Wall, Newton-Kantorovich method applied to two-dimensional inverse scattering for an exterior Helmholtz equation, Inverse Problems 4,1117-1128,1988.
    [85]M.Z. Nashed and X. Chen, Convergence of Newton-like methods for singular oper-ator equations using outer inverses, Numer. Math.66,235-257,1993.
    [86]M. Z. Nashed and O. Scherzer, Least squares and bounded variation regularization with nondifferentialble functinal, Num. Funct. Anal, and Optimiz.19,873-901, 1998.
    [87]A. Neubauer, Tikhonov regularization for nonlinear ill-posed problems:optimal convergence rates and finite-dimensional approximation, Inverse Problems 5,541-557,1989.
    [88]R. Potthast, Point sources and multipoles in inverse scattering theory, Research Notes in Mathematics, vol 427, (Boca Raton, FL:Chapman& Hall/CRC),2001.
    [89]A. Rieder, On the regularization of nonlinear ill-posed problems via inexact Newton methods, Inverse Problems 15,309-327,1999.
    [90]A. Rieder and T. Schuster, The approximate inverse in action with an application to computerized tomograph, SIAM J. Numer. Anal.37,1909-1929,2000.
    [91]A. Rieder and T. Schuster, The approximate inverse in action II:convergence and stability, Mathematics of Computation 72,1399-1415,2003.
    [92]W. Ring, Identification of a core from boundary data, SIAM J. Appl. Math.55, 677-706,1995.
    [93]A. Roger, Newton-Kantorovich algorithm applied to an electromagnetic inverse problem, IEEE Trans. Ant. Propagat. AP-29,232-238,1981.
    [94]O. Scherzer, H.W. Engl and K. Kunisch, Optimal a-posteriori parameter choice for Tikhonov regularization for solving nonlinear ill-posed problems, SIAM J. Numer. Anal., Vol.30, No.6,1796-1838,1993.
    [95]O. Scherzer, Explicit vrsus implicite relative error regularization on the space of functions of bounded variation, Contemporary Methematics 313,171-198,2002.
    [96]S. Sobolev, Sur un theoreme d'analyse fonctionnelle, Matematicheskii Sbornik 4(46) (3):471-497, (in Russian, with French summary) 1938.
    [97]T. Schuster, The method of approximate inverse:theory and applications, Lecture Notes in Mathematics, vol.1906, Springer (Berlin, Heidelberg),2007.
    [98]T. I. Seidman,'Optimal Filtering'for some ill-posed problems, Wave Propagation and Inversion, eds. W. Fitzgibbon and M. Wheeler, SIAM, Philadelphia,108-123, 1992.
    [99]U. Tautenhahn, Optimality for ill-posed problems under general source conditions, Numer. Funct. Anal, and Optimiz.19,377-398,1998.
    [100]U. Tautenhahn and Q-N Jin, Tikhonov regularization and a-posteriori rules for solving nonlinear ill-posed problems, Inverse Problems 19,1-21,2003.
    [101]U. Tautenhahn, On a general regularization scheme for nonlinear ill-posed prob-lems, Inverse Problems 13,1427-1437,1997.
    [102]U. Tautenhahn, On a new parameter choice rule for ill-posed inverse problems HERCMA'98 Proc.4th Hellenic-Eur. Conf., Computer Mathematics and its Ap-plications ed E A Lipitakis (Athens:LEA) 118-125,1998.
    [103]A.N. Tikhonov and V.Y. Arsenin, Solutions of Ill-Posed Problems, Winston, New York,1977.
    [104]W. Tobocman, Inverse acoustic wave scattering in two dimensions for impenetrable targets, Inverse Problems 5,1131-1144,1989.
    [105]R. Wegmann, An iterative method for the conformal mapping of doubly connected regions, J. Comput. Appl. Math.14,79-98,1986.
    [106]袁亚湘,孙文瑜,最优化理论与方法,北京:科学出版社,1997.
    [107]张恭庆,林源渠,泛函分析讲义,北京:北京大学出版社,1987.
    [108]童裕孙,泛函分析教程,上海:复旦大学出版社,2003.
    [109]钟承奎,范先令,陈文塬,非线性泛函分析引论,兰州:兰州大学出版社,1998.
    [110]刘继军,不适定问题的正则化方法及应用,北京:科学出版社,2005.
    [111]肖延庭,于慎根,王彦飞,反问题的数值解法,北京:科学出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700