用户名: 密码: 验证码:
熔化极气体保护焊熔滴过渡控制策略研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
熔化极气体保护焊(Gas Metal Arc Welding)是一种高效节能的焊接工艺,通过连续送进的焊丝与焊接工件之间产生的电弧作为热源熔化焊丝和金属母材,在焊接过程中外加保护气体避免熔滴、熔池金属及焊接区高温金属受到周围空气的氧化作用,特别适合于自动焊接生产线和机器人焊接系统。
     GMAW焊接过程熔滴飞溅大,焊缝成形差,焊接参数调整困难,限制了GMAW焊接工艺的推广应用。熔滴过渡过程直接影响GMAW焊接质量,由于焊接规范的不同,熔滴存在多种过渡模式,目前国内外的熔滴过渡控制方法主要从作用于电弧的电流和电压入手,针对特定的熔滴过渡模式,通过对焊丝输入热量的控制减小飞溅,或通过对弧压的控制保证焊接过程的稳定,难以适应不同工艺参数的要求。
     根据GMAW焊中存在的问题,分析了熔滴过渡过程的机理,针对短路过渡模式和自由过渡模式中熔滴不同的行为状态,采用不同的控制策略保证了熔滴过渡的平稳和连续。在此基础上,设计完成了基于软开关的能适应所有焊接参数和工艺条件的GMAW焊接系统。主要研究工作和成果如下:
     (1)在对熔滴受力和熔滴的运动过程进行分析的基础上,分析了焊接电流、焊接电源输出电压、焊接速度等工艺规范参数对熔滴过渡模式和焊缝成形的影响,从熔滴位移和质量变化、焊接回路动态过程、弧长变化方面对焊接过程进行了数学描述,建立了GMAW焊接过程数学模型,并对模型进行了仿真,证实了模型的准确性。为基于模型的控制策略提供了理论基础。
     (2)针对熔滴飞溅大和焊缝成形不好的问题,提出在熔滴短路过渡模式中采用分阶段电流波形控制策略,将熔滴短路过渡的物理过程分成五个阶段,根据熔滴在每个阶段的状态和受力情况,输出不同波形的焊接电流,保证熔滴在短路阶段能以较小的飞溅平稳过渡。建立分阶段电流波形控制的仿真模型,为分阶段电流波形控制参数的优化提供依据。采用模糊神经网络控制算法调节大电流燃弧段的作用时间维持弧长的稳定和熔滴过渡的一致性和平稳性,利用遗传算法对模糊变量的隶属度函数进行调整和优化,将优化后的网络引入GMAW短路过渡模式的焊接过程,通过附加动量法在线调整神经网络的权值,在减小飞溅的基础上,保证焊缝的成形。
     (3)在熔滴自由过渡模式中,采用直接模型参考自适应控制算法实现焊接参数的去耦控制,解决了GMAW焊接参数调节困难的问题。直接模型参考自适应基于指令跟踪器和输出渐进跟踪理论,控制器的设计只需利用参考模型和跟踪误差来完成,与控制对象几乎无关,控制结构简单,可实现高阶被控对象对低阶参考模型的性能跟踪。针对目前离散时间系统直接模型参考自适应控制算法中存在的稳态误差和控制律计算困难的问题,提出改进算法消除稳态误差,且控制律的计算符合因果关系。分析了算法的跟踪效果和稳定性,采用该改进算法,通过调节焊接电源的输出电压和送丝速度,实现焊接电流的和弧长的稳定,保证熔滴尺寸和过渡时间间隔均匀一致,焊接过程平稳流畅。
     (4)为了提高焊接电源动态性能,提出一种适合IGBT焊接电源的零电压零电流软开关拓扑结构,通过在中频变压器原侧增加一个谐振电容和饱和电感,实现了超前臂的零电压开通和滞后臂的零电流开通和关断。对超前臂和滞后臂上的开关管的开通和关断损耗进行了分析,并提出了减少超前臂开通损耗的途径。针对焊接电源在GMAW焊接过程中负载变化剧烈,提出在高频变压器副侧增加一个换流电感,保证空载和轻载时软开关条件的充分实现。根据软开关拓扑结构,设计了焊接电源,实验结果验证了理论分析和设计。
     (5)采用模块化设计思想,开发了适合全范围焊接参数,实现多过渡模式下熔滴过渡控制的GMAW焊接系统,系统由80C196KC单片机控制的基于软开关技术的GMAW焊接电源模块和GMAW送丝系统模块组成,两个单元之间采用通信协议进行数据传输和交换。焊接系统具有完备的过热、过流、欠压保护措施和软硬件抗干扰措施。
     现场焊接试验结果表明,系统较好地解决了焊接过程飞溅大和焊接参数的匹配范围窄的问题,保证焊缝成形和提高生产效率,使GMAW焊工艺性能得到全面的提高,具有重要的实用价值。
Gas metal arc welding(GMAW) is suitable for the automatic welding and robot with high efficiency and energy saving. The continuously supplied wire and welding pool are heated and melt by the arc between them to form a welding seam. In the welding process, the welding area are protect by the shielding gas from the hazard action of the air.
     Spatter, poor appearance of welding seam and hard-matched welding parameters are main factors which impact on the promotion and application of GMAW. The welding quality is related to the droplet transfer methods. The GMAW process provides short circuit transfer and free transfer methods. The currently methods of control of droplet transfer is to eliminate the energy to droplet to reduce the spatter and keep the arc voltage to make the welding process steady. It is difficult to be suitable for different droplet transfer methods and welding parameters.
     The scheme of a power source with different control Strategies adapt to different droplet methods are designed to make the process of transfer steady and get a high quality of welding seam with lower spatter. The main research contributions of the thesis are as follows:
     (1)Based on the analysis of the forces acting on the droplet and the transfer process, a mathematical model describing the GMAW process is developed. The mathematical model includes a description of the droplet displacement and mass, electrical circuit, the arc length, and the melting rate. Simulation programs show the effectiveness of the model, based on which an adaptive contol algorithm is developed.
     (2)In the short circuit transfer mode, the droplet transfer process is divided into five periods, the corresponding current wave form that adapt to the states of the droplet in each period is output. A big current is applied on the period of arc burning to provide the enough energy to ensure the good appearance of welding seam. The principle of five periods wave form is dicussed and the simulation model of wave form droplet transfer control is developed to optimize the parameters of wave form. The duration of arc burning period is adjusted by the fuzzy neural network algorithm to control the arc length to the preset value. The membership function of fuzzy variable is optimized by experiment data with genetic algorithm. On the process of welding, the additional momentum method is used to adjust the weight of the neural network on the realtime.
     (3)To solving the problem of hard-matching of parameters in free transfer mode, the simple direct model reference adaptive control is applied to decouple the welding parameters. The simple direct model reference adaptive control algorithm is based on the the theory of command generator trace, Only the states of the reference model and the trace error are needed to design the controller that let the high order plant model trace the simple chosen low order reference model. A improved discrete simple direct model reference adaptive control algorithm is proposed to remove the steady state error. Current and arc length as being the process output are controlled by open circuit voltage and wire feed speed to trace the output of the reference model, which ensure the size and the transfer interval is uniform.
     (4)The application of droplet transfer control strategies depend on the rapid dynamic characteristics of the welding power source. The performance of the traditional welding power source is hard to satified the requirements. The soft switch technique is applied to improve the switching frequency of inverter which is the key to the dynamic response of the power source. A zero voltage and zero current full bridge soft switching topology is proposed, in which a dc blocking capacitor and a small saturable inductor is added in the primary side to achieve ZCS for the lagging-leg switches.The working states of soft switching circuit is analyzed. The way to eliminate the turn-on switching loss of the leading-leg switches is discussed. The conditions that achieve the soft switch in a wide range of load which is from off-duty to full duty in the welding process is hard to be satisfied, so a inductor is add on the secondary side to provide the additional energy. A power source based on the topology is designded and the successful tests have been carried out.
     (5)A welding system suiable for the different parameters and droplet transfer method is developed based on the module design. The system are consist of microprocessor controlled welding power source unit and wire feeder unit which exchang the welding parameters by communication. The complete protection of overheat, over current and undervoltage are included.
     The welding experiments show that the system can get high welding quality with lower spatter. The droplet transfer control methods and the system are valuable for the application of GMAW.
引文
[1]潘际銮,郭世康,王其隆,等.焊接手册[M].北京:机械工业出版社,2005,7.
    [2]Ushio Masao. Development of gas-shielded arc processes in automatic welding[J]. Welding in the World,2009,53(3):1-8.
    [3]Murphy A.B., Tanaka M., Tashiro, S., et al. A computational investigation of the effectiveness of different shielding gas mixtures for arc welding[J]. Journal of Physics D: Applied Physics,2009,42(11):205-216.
    [4]S Gases. GMAW best practices[J]. Welding Journal,2006,85(2):46-50.
    [5]张贵锋,张建勋,王士元.CO2焊接工艺研究与工程应用进展[J].电焊机,2004,26(3):1-3.
    [6]田松亚,孙烨,吴冬春.CO2气体保护焊飞溅控制的研究[J].华北工学院学报,2006,36(8):8-11.
    [7]杨立军,李桓,李俊岳.CO2焊短路液桥的力学分析[J].电焊机,2004,34(3):4-7.
    [8]Tsai H.L., Hu J. Heat and mass transfer in gas metal arc welding. Part Ⅰ: The arc[J]. International Journal of Heat and Mass Transfer,2007,50(5):833-846.
    [9]Hirata, Y.; Tsujimura, K.. Modeling of molten drop oscillation in gas shielded metal arc welding[J]. Materials Science Forum,2009,539:3973-3978.
    [10]Praveen P., Kang M.J., Yarlagadda P.K.D.V.. Drop transfer mode prediction in pulse GMAW of aluminum using statistical model[J]. Journal of Materials Processing Technology,2008,201(3):502-506.
    [11]黄石生,文元美,薛家祥,等.弧焊熔滴过渡的高速摄像与电信号测试分析[J].华南理工大学学报,2008,36(4):1-5.
    [12]Danut Iordachescua, Luisa Quintinob. Steps toward a new classification of metal transfer in gas metal arc welding[J]. Journal of materials processing technology, 2008,(202):391-397.
    [13]Cook G.E.. Decoupling of welding variables for improved automatic control[C], 5th international conference on trends in welding research, Pine Mountain, GA, 1998:1007-1015.
    [14]Ersoy U., Hu S.J., Kannatey-Asibu E.. Observation of arc start instability and spatter generation in GMAW[J]. Welding Journal,2008,87(2):51-56.
    [15]Era Tetsuo, Akinobu I.D.E., Ueyama Tomoyoki, et al. Spatter reduction in GMAW of stainless steel sheets using CBT process[J]. Journal of the Japan Welding Society,2009,27 (3):195-201.
    [16]朱志明,吴文楷,陈强.短路过渡CO2焊接短路历程分析与控制[J].中国机械工程,2005,16(21):1970-1973.
    [17]Henderson Michael R.. An overview of gmaw including applications, common problems and solutions[C]. Vancouver: Pressure Vessel Technologies for the Global Community,2006:199-205.
    [18]区智明,孙晓明,夏胜全.改善MIG/MAG短路过渡焊接电弧工艺性能的方法[J].电焊机,2008,39(1):77-82.
    [19]Dalmaz Nesip, Ozbelge Hilmi Onder, Eraslan Ahmet Nedim.. Heat and mass transfer mechanisms in drying of a suspension droplet: A new computational model[J]. Drying Technology,2007,25 (2):391-400.
    [20]Marta C., Doroftei I., Suciu, L.. Influence of thermal field in the GMAW process: modelling and comparison with experimental results[C].19th International DAAAM Symposium. Intelligent Manufacturing & Automation: Focus on Next Generation of Intelligent Systems and Solutions,2008:817-818.
    [21]Pellerin N., de Izarra C., Zielinska, S.. Microstructural analysis of the anode in gas metal arc welding (GMAW)[J]. Journal of Materials Processing Technology, 2009,209(7):3581-3591.
    [22]何建萍,吴毅雄,焦馥杰.GMAW短路过渡液桥形状动态模型[J].焊接学报,2008,29(7):6-8.
    [23]Janez T.. A mathematical model for the melting rate in welding with a multiple-wire electrode[J]. Journal of Physics D:Applied Physics,1999,32(1):1739-1744.
    [24]Jesper Sandberg Thomsen. Advanced Control Methods for Optimization of Arc Welding[D]. Aalborg East, Denmark:2005.
    [25]P.J. Modenesia, R.I. Reisb. A model for melting rate phenomena in GMA welding[J]. Journal of Materials Processing Technology.2007,189:199-205.
    [26]Zafer Bingul, George E. Cook. A Real-Time Prediction Model of Electrode Extension for GMAW[J]. IEEE/ASME Transactions on mechatronics. 2006,11(1):47-53.
    [27]K.L. Moore, D.S. Naidu, R.Yender. Gas metal arc welding control: Part Ⅰ: Modeling and analysis[J]. Nonlinear Analysis,1997,30(5):3103-3111.
    [28]俞建荣,蒋力培.CO2弧焊熔滴过渡过程的特征及其定量评价[J].机械工程学报,2002,42(2):137-140.
    [29]Nemchinsky V.A. Heat transfer in a liquid droplet hanging at the tip of an electrode during arc welding[J]. Journal.Phys.D:Appl.Phys.,1997,30:1120-1124.
    [30]Simpson S W, Zhu P Y. Formation of Molten Droplets at A Consumable Anode in an Electric Welding Arc [J]. Journal of Physics D: Applied Physics,1995,28 (8):1594-1600.
    [31]Simpson, S.W.. Metal transfer instability in gas metal arc welding[J]. Science and Technology of Welding and Joining,2009,14(4):562-573.
    [32]Lowke, J.J.. Physical basis for the transition from globular to spray modes in gas metal arc welding [J]. Journal of Physics D: Applied Physics, 2009,42(13):135-142.
    [33]Ersoy U., Hu S.J., Kannatey-Asibu, E.. Analytical modeling of metal transfer for GMAW in the globular mode[C]. Proceedings of the ASME International Manufacturing Science and Engineering Conference,2008,1:551-560.
    [34]Choi S.K., Ko S.H.,Yoo C.D.. Dynamic simulation of metal transfer in GMAW, Part2: Short-circuit transfer modes[J]. Welding Journal,1998,77(1):45-51.
    [35]Chio S.K., Kim Y.S, Yoo C.D.. Dimensional analysis of metal transfer in GMA welding[J]. Journal of Physics D: Applied Physics,1999,32(5):326-334.
    [36]Arif N., Jae Hak Lee, Choong Don Yoo. Force-displacement model for analysis of pulsed-GMAW[J]. Journal of Physics D: Applied Physics,2009,42(3): 504-511.
    [37]陈茂爱,武传松,廉荣GMAW焊接熔滴过渡动态过程的数值分析[J].金属学报,2004,40(11):1227-1232.
    [38]武传松,陈茂爱GMAW焊接熔滴长大和脱离动态过程的数学分析[J].机械工程学报,2006,42(2):76-81.
    [39]Rhee S, Kannatey A.. Analysis of Arc Pressure Effect on Metal Transfer in Gas Metal Arc Welding[J]. Journal of Applied Physics,1991,70 (9):5068-5075.
    [40]朱志明,吴文楷,陈强.短路过渡CO2焊接熔滴尺寸控制分析[J].焊接学报,2007,28(4):1-4.
    [41]Hirt C.W, Nichols B.D.. Volume of fluid (VOF) Method of the Dynamics of Free Boundaries[J]. Journal of Computational Physics,1981,39 (1):201-225.
    [42]Haidar J, Lowke J.J.. Predictions of Metal Droplet Formation in Arc Welding[J]. Journal of Physics D: Applied Physics,1996,29(12):2951-2960.
    [43]Choi S.K., Yoo C.D., Kim Y.S.. Dynamic simulation of metal transfer in GMAW,Partl:Globular and spray transfer modes[J]. Welding Journal, 1998,77(1):38-44.
    [44]Choi S.K., Ko S.H.,Yoo C.D.. Dynamic simulation of metal transfer in GMAW, Part2:Short-circuit transfer modes[J]. Welding Journal,1998,77(1):45-51.
    [45]王方,候文考,胡仕新.熔化极气体保护焊仿真系统[J].焊接学报,2003,24(1):35-39.
    [46]F. Wang, W.K. Hou, S.J. Hu. Numerical simulation of metal transfer in gas metal arc welding of sheet metals[C]. Detroit: Proceedings of American Welding Society,2002:4-8.
    [47]F. Wang, W.K. Hou, S.J. Hu. Modeling and analysis of metal transfer in gas metal arc welding[J]. Journal of Physics D:Applied Physics,2003,36(9):1143-1152.
    [48]李士凯,陈茂爱,武传松.脉冲GMAW熔滴过渡动态过程的解析模型[J].焊接学报,2004,25(2):47-51.
    [49]武传松,陈茂爱,李士凯.GMAW焊接熔滴长大和脱离动态过程的数学分析[J].机械工程学报,2006,42(2):76-81.
    [50]Yudodibroto B.Y.B., Hermans M.J.M., Hirata Y.,et al. Pendant droplet oscillation during GMAW[J]. Science and Technology of Welding and Joining, 2007,11(3):308-314.
    [51]区智明,曹贞全,孙晓明.改善C02气体保护焊机性能的有效方法[J].电焊机,2008,38(2):37-40.
    [52]杨林,王宝,Rehfeldt D.,等.焊接电参数的一种新型测试方法[J].华北工学院学报,2005,26(1):75-77.
    [53]M. Tanakaa, T. Tamakia, S. Tashiro. Characteristics of ionized gas metal arc processing[J]. Surface & Coatings Technology.2008,(202):5251-5254.
    [54]Soderstrom E. J., Mendez P.F.. Metal transfer during GMAW with thin electrodes and Ar-CO2 shielding gas mixtures[J]. Welding Journal, 2008,87(5):124-133.
    [55]殷树言,陈树君,刘嘉.逆变焊接技术的现状与发展[J].焊接技术,2002,31(12):29-32.
    [56]Tanaka, M.; Tashiro, S.; Ushio, M.. CO2 shielded arc as a high-intensity heat source[J]. Vacuum,2006,80(11):1195-1198.
    [57]Nemchinsky, V.A.; Meyer, D.W.. Method of metal transfer regulation during GMA welding[J]. European Physical Journal, Applied Physics,2010,50(1): 1001-1004.
    [58]黄石生,陆沛涛,薛峰.逆变式与晶闸管式MAG焊机的可靠性和效率实测对比[J].电焊机,2007,37(3):6-9.
    [59]解生冕,黄石生,程韬波.机器人CO2焊接动态过程的分析[J].电焊机,2008,38(6):1-8.
    [60]吴雷,张健,沈冬辉.基于DSP的软开关焊接电源研究[J].电力电子技术,2009,43(8):37-38.
    [61]解生冕,黄石生,李远波.软开关逆变焊接电源数学模型及动态特性[J].电气技术与自动化,2008,37(5):153-156.
    [62]王富光,陆晓明,黄文超.电抗器参数对弧焊过程动特性的影响分析[J].焊接技术,2008,37(2):41-44.
    [63]尹懿,洪波,袁灿.一种改善CO2晶闸管电源动特性的双可控电感技术的研究[J].焊接技术,2004,33(3):36-37.
    [64]陈焕明,曾敏,曹彪.高速CO2焊电流波形控制系统[J].焊接学报,2007,28(1):41-45.
    [65]胡小建,李蕴泽,林丽红.弧焊逆变电源外特性控制策略的建模与仿真[J].合肥工业大学学报,2007,30(5):554-557.
    [66]胡小建.恒流逆变式CO2气保焊电源的研究[J].合肥工业大学学报,2000,23(5):748-751.
    [67]朱志明,张人豪.恒流CO2焊接的熔滴过渡形式及其参数的研究[J].电焊机,1997,27(2):36-39.
    [68]王禹华,桂赤斌,王征.基于复合控制数字化弧焊逆变电源的仿真分析[J].焊接学报,2007,28(1):109-112.
    [69]韩赞东,都东,张前,等.焊接电弧的三维外特性控制研究[J].清华大学学报(自然科学版),1999,39(4):35-37.
    [70]俞建荣,龚永飞,蒋力培.C02焊的波形控制技术的研究进展[J].北京石油化工学院学报,2007,15(3):10-12.
    [71]韩成功,熊敬清,姚屏,等.CO2焊逆变电源波控的影响因素[J]. 电焊机,2008,38(5):41-45.
    [72]冯胜强,胡绳荪,杨立军,等.波控CO2短路过渡焊逆变电源电弧系统仿真[J].电力电子技术,2008,42(2):33-35.
    [73]张一帆.减少CO2气体保护焊金属飞溅的措施[J].焊接学报,2008,37(4):98-99.
    [74]包晔峰,周昀,吴毅雄,等.熔化极气体保护焊熔滴过渡研究[J].电焊机,2006,36(3):55-58.
    [75]Elliott K. Stava. A new low-spatter arc welding machine[J]. Welding Journal, 1993,72(1):25-29.
    [76]Elliot K. Stava. New GMAW power source designed to reduced spatter and smoke[J]. The Fabricator,1994,24(2):26-30.
    [77]张光先,邹增大,尹海,等.C02气体保护焊表面张力过渡.焊接学报,2003,24(1):80-83.
    [78]李晋川,江磊,张自恒.基于脉冲能量控制方法的多功能焊机设计[J].金属加工,2009,20(14):70-71.
    [79]张撼鹏,黄鹏飞,殷树言,等.新型低热输入数字化焊接电源控制系统的研制[J].焊接学报,2007,28(1):89-92.
    [80]吴文楷,朱志明,罗小锋.弧焊逆变电源动态性能的提高及其对短路过渡焊接过程的影响[J].焊接学报,1999,20(2):90-95.
    [81]薛家祥,刘晓,杨国华,等.C02短路过渡焊工艺参数优化的研究[J].焊接技术,2007,36(2):10-12.
    [82]Ueyama T., Uezono T., Era T.. Solution to problems of arc interruption and arc length control in tandem pulsed gas metal arc welding[J]. Science and Technology of Welding and Joining,2009,14(4):605-614.
    [83]朱六妹,肖孝菊,王伟,等.CO2焊熔滴过渡特征的分析和研究[J].电焊机,2000,30(1):18-28.
    [84]俞建荣,蒋力培.CO2弧焊熔滴过渡过程的特征及其定量评价[J].机械工程学报,2002,24(2):137-140.
    [85]俞建荣,史耀武.C02弧焊电流波形的多参数自寻优智能控制[J].焊接学报,2001,22(4):26-30.
    [86]俞建荣,蒋立培,陈路.一种智能化C02弧焊电源的研究[J].电工技术学报,2003,18,(5):84-86.
    [87]韩赞东.CO2焊接过程熔滴过渡频率的Fuzzy/PID控制[J].焊接学报,2000,21(3):21-26.
    [88]王雅生,张庆,蔡洪能.C02短路过渡焊电弧电压自寻优模糊控制系统[J].焊接学报,2001,22(1),72-74.
    [89]朱志明,吴文楷,罗小锋.波控短路过渡C02焊接恒频自适应控制系统[J].机械工程学报,2001,37(11):81-84.
    [90]严春妍,胡绳荪,郭院波.C02焊接弧长控制模型[J].焊接学报,2005,26(6): 69-72.
    [91]杨军.单片机系统在焊接弧长控制器中的应用[J].机械工程学报,2006,36(10):17-19.
    [92]Jesper S. Thomsen. Feedback Linearization based Arc Length Control for Gas Metal Arc Welding[C]. Portland, American Control Conference,2005:3568-3573.
    [93]H. Ebrahimirad, A.E. Ashari, H.Jalili-Kharaajoo. Robust nonlinear control of current and arc length in gmaw systems[C]. Istanbul, Proc. IEEE Conference on Control Applications,2003,(2):1313-1316.
    [94]Khatamianfar A., Fateh M. M, Farahani S. S.. On sliding mode control of the manual gas metal arc welding process[C]. Singapore:2008 IEEE International Conference on Systems,2008:3570-3575.
    [95]高忠林,胡绳荪,殷凤良,等.GMAW系统电流与弧长的滑模变结构控制仿真[J]..焊接学报,2007,28(6):53-56.
    [96]Kolahan Farhad, Heidari Mehdi. A new approach for predicting and optimizing weld bead geometry in GMAW[C]. Bangkok: Proceedings of World Academy of Science, Engineering and Technology,2009,59(6):138-141.
    [97]罗怡,伍光凤,李春天.CO2焊接工艺参数优化的人工神经网络设计[J].热加工工艺,2008,37(5):93-95.
    [98]Vidyut Deya, Dilip Kumar Pratihara, G. L. Dattaa. Optimization of bead geometry in electron beam welding using a Genetic Algorithm[J]. Journal of Materials Processing Technology,2009,(209):1151-1157.
    [99]K. Manikya Kanti, P. Srinivasa Rao. Prediction of bead geometry in pulsed GMA welding using back propagation neural network[J]. Journal Of Materials Processing Technology,2008,(200):300-305.
    [100]彭海燕,黄石生,蒋东.脉冲MIG焊熔滴过渡控制的发展现状[J].山东大学学报,2007,36(1):6-9.
    [101]吴开源,黄石生,李星林,等.基于PFM平均电流调节的脉冲MAG焊熔滴过渡控制术[J].华南理工大学学报,2008,36(4):14-17.
    [102]吴开源,黄石生,李星林,等.基于DSP的GMAW-P焊数字化控制系统[J].焊接学报,2008,28(11):41-44.
    [103]黄石生,吴祥森,王志强,等.现代焊接电源的新发展[J].中国机械工程,2002,13(14):1253-1256.
    [104]尹显华,康健,杜武.直流弧焊电源节能技术的发展动态[J].电焊机,2008, 39(1):69-72.
    [105]杨晓峰,童彦刚,尹登科.数字化焊接电源及其智能化设计研究[J].电焊机,2008,38(10):63-65.
    [106]郭红霞,杨金明.IGBT的发展[J].电源世界,2006,26(9):51-56.
    [107]倪倩,齐铂金.软开关全桥PWM逆变焊机主电路拓扑结构发展现状[J].焊接技术,2002,31(1):4-6.
    [108]K. Mark Smith, Keyue Ma Smedley. Engineering Design of Lossless Passive Soft Switching Methods for PWM Converters-Part Ⅰ: With Minimum Voltage Stress Circuit Cells[J]. IEEE Transactions On Power,2001(5):336-339.
    [109]王强,张化光,褚恩辉.软开关PWM逆变器拓扑结构及效率分析[J].电机与控制学报,2009,13(3):77-80.
    [110]张华军,蔡春波,张广军.背面CCD视觉传感焊缝成形参数的自动提取[J].电机与控制学报,2008,29(9):77-80.
    [111]Chen Ji, Wu ChuanSong. Effect of welding current and speed on occurrence of humping bead in high-speed GMAW[J]. China Welding,2009,18(2):35-40.
    [112]何建萍,吴毅雄,焦馥杰.短路过渡熔滴上的动态力平衡及其稳定性分析[J].上海交通大学学报,2008,42(1):6-10.
    [113]王广伟,蔡艳,华学明.气体保护焊短路过渡熔滴成形的建模分析[J].焊接学报,2007,28(8):73-76.
    [114]Arif N., Jae Hak Lee, Choong Don Yoo. Modelling of globular transfer considering momentum flux in GMAW[J]. Journal of Physics D:Applied Physics, 2008,41(19):503-509.
    [115]Ah-Young Park, Sun-Rak Kim, Hammad, M.A.,et al. Modification of pinch instability theory for analysis of spray mode in GMAW[J]. Journal of Physics D: Applied Physics,2009,42(22):225-230.
    [116]Hirata Y., Tsujimura K.. Modeling of molten drop oscillation in gas shielded metal arc welding[J]. Materials Science Forum,2009,539:3973-3978.
    [117]Lowke, J.J.; Tanaka, M.. Flow dynamics in arc welding[C]. Nanjing, AIP Conference Proceedings,2008,982 (1):547-553.
    [118]K. Lyttle, G. Stapon. Choosing shielding gases for gas metal arc welding[J]. Welding Journal,2008,87(5):32-35.
    [119]Valensi F., Pellerin S., De Izarra. Ch.. Experimental investigations on anode in GMAW[C]. Pine Mountain, Georgia, ASM Proceedings of the International Conference: Trends in Welding Research,2009:417-423.
    [120]Pellerin N., de Izarra C., Zielinska S., et al. Microstructural analysis of the anode in gas metal arc welding (GMAW)[J]. Journal of Materials Processing Technology,2009,209(7):3581-3591.
    [121]戴军,王宝,安静.C02气体保护焊实心焊丝电弧物理特征分析[J].焊接,2008,21(1):49-52.
    [122]傅希圣,李烨.焊丝熔化率公式研究[J].焊接学报,1995,16(4):226-232.
    [123]Hirata Y., Ohnishi K.. Numerical analysis of arc plasma with metal transfer in GMAW[J]. Materials Science Forum,2008,580(2):359-362.
    [124]翟磊,孙永兴.熔化极气体保护焊热过程的数值模拟[J].热加工工艺,2008,37(21):120-125.
    [125]Haidar, Jawad. The dynamic effects of metal vapour in gas metal arc welding[J]. Journal of Physics D: Applied Physics,2010,43(16):204-209.
    [126]薛家祥,董飞,王振民.弧焊过程的动态电阻波形分析[J].华南理工大学学报,2006,34(11):5-9.
    [127]Keller J. M, Yager R. R,Tahani H. Neural network implementing of fuzzy logic[J]. Fuzzy sets and systems,1992,45(1):1-12.
    [128]Martin T. H., Howard B.D., Mark H.B神经网络设计[M].北京:机械工业出版社,2004.
    [129]Z.Michalewicz演化程序[M].北京:科学出版社,2000.
    [130]关守平,张艳蕊.基于实数编码遗传算法的发酵过程优化控制[J].东北大学学报,2008,29(7):928-931.
    [131]侯彦东,方惠敏,杨国胜,等.一种改进的可变学习速率的BP神经网络算法[J].河南大学学报,2008,38(3):309-312.
    [132]权旺林.电弧波形与气体保护焊熔滴过渡模式关系研究[J].机械工程与自动化,2004,23(2):10-11.
    [133]林丽红,胡小建.逆变弧焊电源外特性控制技术[J].金属加工,2008,39(16):45-47.
    [134]梁建军,庞增拴.焊接自动送丝控制系统模糊控制的计算机仿真[J].河北省科学院学报,2008,25(2):6-9.
    [135]J. Hu, H. L. Tsai. Heat and mass transfer in gas metal arc welding. Part II:The metal [J].International Journal of Heat and Mass Transfer 2007,(50):808-820.
    [136]J. Broussard, O. O' brien. Feedforward control to track the output of a forced model[C].17th IEEE conference on decision and control.1979,42:1149-1155.
    [137]安世奇,孙一康,王京.简单自适应控制的算法与发展[J].电机与控制学报, 2004,8(3):263-267.
    [138]Kaufman H. Direct adaptive control algorithms:theory and applications[J]. Applied Mechanics Reviews,1995,48(6):74-79.
    [139]李年裕,刘藻珍.一种新的直接自适应控制方法及其在制导系统中的应用[J].控制理论与应用,2007,24(5):825-828.
    [140]尹怡欣,孙一康.一种离散时间直接自适应控制算法[J].北京科技大学学报,1999,21(5):502-504.
    [141]Tamate Michio, Sasaki Tamiko,Sasaki Akio,et al. Development of a low-noise IGBT module[J]. Electrical Engineering in Japan,2010,171(4):45-52.
    [142]Lee Chia-Wei, Leu Ching-Shan. A novel soft-switching full-bridge converter[C].2009 International Conference on Power Electronics and Drive Systems,2009,993-996.
    [143]Chenand J.J., Lin B.R..Analysis of ZVS/ZCS soft-switching dual-resonant converter[C].2009 International Conference on Power Electronics and Drive Systems,2009,411-416.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700