用户名: 密码: 验证码:
基于FPBS的机械系统模块化设计方法与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为快速响应多样化机械装备产品的需求,在机械产品的方案设计过程中引入模块化设计方法与技术,建立与实施基于功能-原理(行为)-结构(Function-Principle-Behavior-Structure, FPBS)的产品模块化设计技术是解决问题的关键。本文对基于FPBS的产品方案设计、产品模块划分与创建、产品族规划设计、产品配置设计、模块适应性/变型设计、模块重构设计等问题进行了深入研究,主要内容与成果包括:
     (1)提出了基于功构独立性、行为相容性的产品FPBS设计建模方法。针对机械系统(产品)方案设计的复杂性,按照产品的总体技术目标特征,首先通过功能→原理(行为)→结构→功能的纵向设计迭代演进,实现产品方案设计过程中的功能-原理映射、原理-结构求解、结构-功能分解。同时,按照公理设计理论与行为相容性原则,进行产品功能、结构的不断解耦,直至分解到具有相对独立结构、独立功能、相容行为的基本功能-结构单元,实现产品FPBS分解模型的建立。其次,采用IDEF0和功能流建模相结合的方法进行产品功能建模,采用行为关联进行产品原理建模,采用装配联接进行产品结构建模,实现产品动态模型的建立。以此为基础,把机械产品方案设计拓扑模型与模块化设计方法相结合,提出基于产品方案设计模型的模块化设计方法。
     (2)提出了基于产品FPBS设计模型的产品模块识别、划分与创建方法。针对产品模块的创建问题,基于产品的FPBS设计模型,首先展开产品功构要素(功能、行为、结构、接口等)的相关性分析,建立功能-结构单元的相关度计算模型;然后采用模糊聚类算法进行自底向上的功能-结构单元的聚合,实现了产品层次性模块划分与创建。
     (3)提出了基于产品FPBS设计模型的产品族规划设计方法。针对产品族模块体系建立的问题,首先通过客户需求的聚类分析,建立满足市场细分的产品族,考虑产品性能参数的“量变”与“质变”,对产品族功能展开FPBS功构分解,建立不同层次的功能-结构单元,同时,通过QFD方法确定产品族功能-结构单元的特征参数及其取值范围;其次,建立产品族FPBS功构分解的底层功能-结构单元的功能模型,采用谱系聚类建立产品族的不同层次的功构模块,并确定基础功构模块、扩展功构模块。然后通过功能-结构单元的结构及其特征参数的综合而建立基本模块族、扩展模块族,从而实现产品族规划。
     (4)提出了基于产品族模块体系的产品可拓配置设计方法。针对基于模块体系的产品快速设计问题,以产品族模型为基础,针对具体的客户需求,首先采用QFD瀑布式分解方法对期望产品特征进行层次性展开,采用基于知识推理的方法进行产品配置求解,获得期望模块物元。在此基础上,采用相似匹配算法从模块族中模糊匹配出相似存在模块,形成产品的初步配置方案。然后通过ISM分析方法,确定相似存在模块变换的结构层次与变换需求,进行可拓变换,建立产品结构方案。
     (5)提出了基于FPBS设计模型的模块可拓适应性/变型设计方法。针对单个模块的变型设计问题,首先建立存在模块的FPBS设计模型,通过模型中功能、原理、行为、结构的可拓变换与分解而建立期望模块的FPBS分解模型;其次,建立期望模块的功能模型;然后基于功能模型的约束,通过结构单元的删减、聚合,并进行模块功构要素可拓变换、分解、聚合中传导变换分析,实现模块的适应性/变型设计。
     (6)提出了基于FPBS设计模型的模块重构设计方法。针对多个模块的重构设计问题,首先建立存在模块的FPBS设计模型;以此为基础进行基于功能流流转的功能重构、基于运动行为传递的原理构型、基于行为一致性的行为组合、基于行为相容性的结构聚合,建立期望模块的设计模型;进一步展开期望模块结构综合与设计,实现模块的重构设计。
     (7)建立了计算机辅助的产品模块化设计支持系统。针对模块化设计方法的工程应用问题,以论文研究成果为基础,遵循产品模块化设计的一般性流程,选择通用CAD作为产品结构设计工具,设计开发计算机辅助的产品模块化设计支持系统——MDSS,初步实现了论文提出的基于FPBS的机械系统模块化设计方法的工程应用。
To respond rapidly to the various requirements of mechanical equipments, the modular design methodology and technology are introduced in the process of conceptual design of mechanical products. The technology of product modular design based on Function-Principle-Behavior-Structure (FPBS) is one of the key solutions to meet the requirements. Several aspects including product conceptual design, product module identifying and module creation, product family planning and design, product configuration design, module adaptive/variant design, and module reconfiguration design are deeply discussed. The main achievements are described as follows:
     (1) The modeling method based on function-structure (FS) independence and behavior compatibility is brought forward. As to the complexity of conceptual design of mechanical system(product), several steps are taken according to the objective features of products. Firstly, function-principle mapping, principle-structure solution and structure-function decomposition in the process of product conceptual design are realized by means of the iterative vertical design of FPBS. At the same time, according to the axiomatic design theory and the behavior compatibility principle, the decoupling of functions and structures of a product is carried out. Once the basic FS units have relative independent structures, functions and compatible behaviors, the FPBS decomposition model of product is established. Secondly, the method combining IDEFO with function flow modeling is applied to product function modeling, behavior correlation is applied to product principle modeling, assembly joining is also applied to product structure modeling, and accordingly the horizontal dynamic models of product design are established. Based on the above, the topology model of conceptual design for mechanical products and the modular design method are integrated. So the modular design method based on the model of product conceptual design is presented.
     (2) The methods of module identifying and creation of products based on FPBS design model are advanced. As to module creation, the correlative analysis of the product's FS elements (function, behavior, structure, interface, etc.) is spread to create correlation computation model of FS units based on the FPBS design model of product. Afterwards, the fuzzy clustering algorithm is used to perform a bottom-up polymerization for FS units. Finally hierarchical module identifying and module creation for the product are realized.
     (3) The methods for product family planning and design are brought forth based on FPBS design model of the product to creat module system. Firstly, the product family that satisfies market subdivision is constructed through cluster analysis of the customer requirements. Considering the quantitative change and the qualitative change of product's performance parameters, the FPBS decomposition is outspread from functions of the product family. Thereby the FS units of different hierarchies are set up. At the same time, feature parameters and their ranges of the product family's FS units are determined by means of the Quality Function Deployment (QFD) method. Secondly, the function model of bottom FS units for FPBS decomposition of product family is set up. FS modules of different levels of product family are built using pedigree clustering, and the basic FS modules and extended FS modules are determined. Accordingly, the basic module family and extended module family are set up by the synthesis of structures and characteristic parameters of FS units, thus the product family planning is achieved.
     (4) The methods of product extension configuration design based on the module system of product family are put forward. Directed towards rapid product design based on the module system, serveral approaches are carried out for customer requirements based on product family model. In the first place, expectant product features are spread hierarchically using waterfall decomposition method of QFD, while product configuration solution is performed using the method based on knowledge inference, as a result, the matter-elements of expectant module are obtained. In the next place, grounded on this, similar existent modules are elicited from module family using the similarity matching algorithm. Consequently, preliminary configuration plan is formed. Then, through ISM analysis, transformation structure hierarchies and transformation requirements of similar existing modules are determined, and extension transformation is carried out. Eventually the plan of product structure is gained.
     (5) The methods of extensive module adaptive design/variant design based on the model of FPBS design are proposed. Focused on the variant design of a single module, the FPBS decomposition model of the existing module is established firstly, and through extensive transformation and decomposition of functions, principles, behavior, and structures of the module, the FPBS design model of expectant module is created. Secondly, the function model of expectant module is built. Then based on the constraints of the function model, the adaptive design/variant design of the module is realized through the deletion and polymerization of the structure units and through the conduction transformation analysis in extensive transformation, decomposition, and polymerization of the module's FS elements.
     (6) The methods of module reconfiguration based on FPBS design model are given. As to the reconfiguration design of several modules, the FPBS design model of existing modules is established. Based on the above models, function reconfiguration by function flow joining, principle configuration by behavior transmitting, behavior combination by behavior coincidence, and structure polymerization by behavior compatibility are carried out. Thus, the design models of expectant module are constituted, and the module reconfiguration design is achieved through the structural synthesis and design of the expected modules.
     (7) The computer aided Modular Design Support System (MDSS) is developed to satisfy the engineering applications of modular design method. The system is designed and developed based on the research achievements of the thesis. The system runs on common CAD platforms and follows the common procedures of product modular design. Therefore the engineering application for the modular design method of mechanical system based on FPBS is accomplished primarily.
引文
[1]NEPAL B, MONPLAISIR L, SINGH N. Integrated fuzzy logic-based model for product modularization during concept development phase[J]. Int. J. Production Economics 96 (2005):157~174.
    [2]NANDA J, THEVENOT H J, SIMPSON T W, Product family representation and redesign:Increasing commonality using formal concept analysis [C]. ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference Long Beach, California, USA, September 24~28,2005.
    [3]SOUZA B D, SIMPSON T W. A genetic algorithm based method for product family design optimization[J]. Eng. Opt.,2003, Vol.35(1):1~18.
    [4]高飞,肖刚,潘双夏,等.产品功能模块划分方法[J].机械工程学报,2007,43(5):29~35.
    [5]刘夫云,祁国宁.配置模块关联系数计算方法及其应用研究[J].计算机集成制造系统-CIMS,2007,13(1):18~23.
    [6]高卫国,徐燕申,陈永亮,等.广义模块化设计原理及方法[J].机械工程学报,2007,43(6):48~54.
    [7]金其明.防空导弹工程[M].北京:宇航出版社,2005.
    [8]UMEDA Y, ISHII M, YOSHIOKA M, et al. Supporting conceptual design based on the Function-Behavior-State modeler[J]. Artificial Intelligence for Engineering Design, Analysis and Manufacturing,1996,10(4):275~288.
    [9]邹慧君,梁庆华,郭为忠,等.功能-运动行为-结构的概念设计模型及运动行为的多层表示[J].机械设计,2000,(8):1-4.
    [10]宋慧军,林志航.公理化设计支持的概念设计产品模型[J].计算机辅助设计与图形学学报,2002,14(7):632-636.
    [11]贾延林.模块化设计[M].北京:机械工业出版社,1993.
    [12]童时中.模块化原理、设计方法及应用[M].北京:中国标准出版社,1999.
    [13]张建明,魏小鹏,张德珍.产品概念设计的研究现状及其发展方向[J].计算机集成制造系统-CIMS,2003,9(8):613-620.
    [14]SUH N P. The Principle of Design[M]. Oxford:Oxford University Press,1990.
    [15]SUH N P. Axiomatic design theory for system[J]. Research in Engineer Design, 1998, (10):189~209.
    [16]QIAN L, GERO J S. Function-Behavior-Structure paths and their role in analogy-based design[J]. Artificial Intelligence for Engineering Design, Analysis and Manufacturing-AIEDAM,1996,10(4):289~312.
    [17]宋慧军,林志航.产品概念设计方案生成模型[J].计算机集成制造系统-CIMS,2002,8(5):342-346.
    [18]李健,邓家禔.基于功能的产品设计过程研究[J].计算机集成制造系统-CIMS,2002,8(4):289~293.
    [19]李健,邓家禔.产品原理结构设计模型[J].计算机辅助设计与图形学学报,2002,14(7):637-645.
    [20]叶志刚,邹慧君.概念设计中的F-B-S-E模型和作用流方法[J].机械设计与研究,2002,18(4):10~21.
    [21]祖耀,肖人彬,刘勇.具有迭代特征的复杂机械产品概念设计模型[J].机械工程学报,2006,42(12):197-205.
    [22]吴斌,沈精虎.概念产品设计模型的研究与实现[J].机械工程学报,2002,38(3):50-53.
    [23]刘晓冰,董建华,孙伟.面向产品族的建模技术研究[J].计算机辅助设计与图形学学报,2001,13(7):636~641.
    [24]苏宝华,祈国宁,顾新建,等.结构单元的基本原理及其在产品建模中的应用[J].机械科学与技术,1999,18(3):371-374.
    [25]STONE R B, WOOD K L, CRAWFORD R H. A heuristic method for identifying modules for product architectures [J]. Design Studies,2000,21(1):5~31.
    [26]STONE R B, WOOD K L, CRAWFORD R H. Product architecture development with quantitative functional models[J].1999 ASME Design Engineering Technical Conference,1999,12:1~13.
    [27]STONE R B. Towards a theory of modular design[D]. The University of Texas at Austin,1997.
    [28]ERIXON G, YXKULL V A, ARNSTROM A. Modularity-the basis for product and factory reengineering[J]. Annals of CIRP-Manufacturing Technology,1996, 45(1):1~4.
    [29]姜慧,徐燕申,谢艳.机械产品模块划分方法的研究[J].制造技术与机床,1999,(3):7-9.
    [30]张宝辉,龚京忠,李国喜,等.产品模块化设计中的功能模块划分方法研究[J].组合机床与自动化加工技术,2004,(5):55-59.
    [31]TSAI Y T, WANG K S. The development of modular-based design in considering technology complexity[J]. European Journal of Operational Research 119 (1999): 692~703.
    [32]GU P, SOSALE S. Product modularization for life cycle engineering [J]. Robotics and Computer Integrated Manufacturing,1999,15(8):387~401.
    [33]JULIANA H. Impacts of supplier-buyer relationships on modularization in new product development[J]. European Journal of Purchasing & Supply Management, 1999,5(3/4):197~209.
    [34]宗鸣镝,蔡颖,刘旭东,等.产品模块化设计中的多角度、分级模块划分方法[J].北京理工大学学报,2003,23(5):552~556.
    [35]KUSIAK A. Modularity in design of products and systems[C].6th Industrial Engineering Research Conference, Proceedings, Miami Bench, USA,1997: 748~753.
    [36]王海军,孙宝元,王吉军,等.面向大规模定制的产品模块化设计方法[J].计算机集成制造系统-CIMS,2004,10(10):1171-1176.
    [37]潘双夏,高飞,冯培恩.批量客户化生产模式下的模块划分方法研究[J].机械工程学报,2003,39(7):1-6.
    [38]唐涛,刘志峰,刘光复,等.绿色模块化设计方法研究[J].机械工程学报,2003,39(11):149-154.
    [39]郑辉,徐燕申.基于KBE和CAE结合的液压机结构柔性模块创建[J].天津大学学报,2003,36(2):178~182.
    [40]刘小鹏,张卫国,钟毅芳.机床模块化设计中的模块创建及应用[J].华中理工大学学报,28(5):16-17.
    [41]李江,钟诗胜,刘金,等.基于可拓理论的模块化设计方法研究[J].计算机集成制造系统-CIMS,2006,12(5):641-647.
    [42]王忠宾,王宁生,叶文华.一种支持MCM的产品族信息模型的研究[J].南京航空航天大学学报,2002,34(3):301-305.
    [43]NAYAK R U, CHEN W, SIMPSON T W. A variation-based methodology for product family design[C]. ASME 2000 Design Engineering Technical Conferences and Computers and Information in Engineering Conference,2000,9:10~13.
    [44]王云霞,易红,汤文成.基于可调节变量的内圆磨床产品族设计[J].计算机集成制造系统-CIMS,2004,10(10):1191-1194.
    [45]王云霞,易红,汤文成.基于Internet的内圆磨床产品族定制系统[J].计算机集成制造系统-CIMS,2004,10(11):1437-1440.
    [46]朱斌,江平宇.产品族设计框架及其关键技术研究[J].西安交通大学学报, 2003,37(11):1110~1114.
    [47]朱斌,江平宇.面向产品族的设计方法学[J].机械工程学报,2006,42(3):1-8.
    [48]孟祥慧,蒋祖华.面向产品族设计的模块规划[J].上海交通大学学报,2006,40(11):1869~1876.
    [49]王爱民,孟明辰,黄靖远.聚类分析法在产品族设计中的应用研究[J].计算机辅助设计与图形学学报,2003,15(3):343-347.
    [50]王爱民,孟明辰,黄靖远.通过动态QFD实现需求驱动的产品族设计方法研究[J].中国机械工程,2003,14(8):666~670.
    [51]王海军,王吉军,孙宝元,等.基于核心平台的模块化产品族优化设计[J].计算机集成制造系统-CIMS,2005,11(2):0162-0167.
    [52]王爱民,孟明辰,黄靖远.面向产品族规划的核心平台数学描述及确定方法[J].清华大学学报(自然科学版),2002,42(8):1049-1052.
    [53]马辉,张树有,谭建荣.面向大批量定制的产品族可拓物元模型[J].计算机辅助设计与图形学学报,2005,17(4):2299~2304.
    [54]邵伟平,郝永平,刘永贤,等.基于产品族可变型结构的配置管理研究[J].计算机集成制造系统-CIMS,2006,12(6):876~881.
    [55]刘晓冰,袁长峰,高天一,等.基于特征面向客户的层次型产品配置模型[J].计算机集成制造系统-CIMS,2003,9(7):527~531.
    [56]DOBRESCU G, REICH Y. Progressive sharing of modules among product variants[J]. Computer-Aided Design,2003,35(9):791~806.
    [57]DEBORAH L, MCGUINNESS J, WRIGHT R. Conceptual modeling for configuration:A description logic-based approach[J]. Artificial Intelligence for Engineering Design, Analysis and Manufacturing,1998, (12).
    [58]FRIEDRICH G, STUMPTNER M. Consistency-based Configuration. http: //citeseer.ist.psu.edu/update/688920.
    [59]FREUDER E C, LIKITVATANAVONG C, MORETTI M, et al. Computing Explanations and Implications in Preference-based Configuration[J]. Recent Advances in Constraints,2003,2627:76~92.
    [60]艾新好,王启富.基于成长树模型的产品规则配置[J].计算机集成制造系统-CIMS,2003,9(4):305~308.
    [61]张劲松,王启付,刘清华,等.基于模型的产品智能化配置研究[J].机械工程学报,2003,39(6):128~134.
    [62]FRUHWIRTH T. Theory and practice of constraint handling rules[J]. The Journal of Logic Programming,1998,3(7).
    [63]阴向阳,童秉枢,滕东兴,等.产品配置到产品结构的转化算法[J].清华大学学报(自然科学版),2000,40(5):58~61.
    [64]梁樑,周俊等,罗彪.MC模式下基于顾客需求的产品配置优化分析[J].管理科学学报,2003,6(3):52-56.
    [65]慈元卓,龚京忠,李国喜,等.产品模块配置空间构建研究[J].组合机床与自动化加工技术,2004,(8):44~48.
    [66]钟诗胜.基于AHP法的模块化产品结构配置模型与应用[J].哈尔滨工业大学学报,2003,35(12):1461~1464.
    [67]楼健人,伊国栋,张树有,等.基于知识的产品可拓配置与进化设计技术研究[J].浙江大学学报(工学版),2006,40(6):466~470.
    [68]FUJITA K, SAKAGUCHIH, YONEDA T. Simultaneous optimization of product family sharing system structure and configuration[C]. Proceedings of ASME Design Engineering Technical Conferences, Atlanta:ASME Press,1998.
    [69]FUJITA K, SAKAGUCHI H, AKAGI S. Product variety deployment and its optimization under modular architecture and module communalization[C]. Proceedings of ASME Design Engineering Technical Conferences-Design for Manufacturing Conference, Las Vegas:ASME Press,1999.
    [70]王海军,孙宝元,张建明,等.客户需求驱动的模块化产品配置设计[J].机械工程学报,2005,41(4):85~91.
    [71]赵燕伟.机械产品可拓概念设计研究[J].中国工程科学,2001,3(5):67~71.
    [72]江力,何志均,孙守迁.基于实例的多推理机合作变型设计系统[J].软件学报,1998,9(11):861~865.
    [73]赵继云,高剑峰,黄山禾,等.支持概念及装配建模的智能变型设计系统框架[J].计算机辅助设计与图形学学报,1999,11(5):430-432.
    [74]吴伟伟,唐任仲,侯亮,等.基于参数化的机械产品尺寸变型设计研究与实现[J].中国机械工程,2005,16(3):218-222.
    [75]冯毅雄,程锦,谭建荣,等.面向大批量定制的配置产品变型设计[J].浙江大学学报(工学版),2007,41(2):315~318.
    [76]HSIAO S W, LIU E. A structural component-based approach for designing product family[J]. Computers in Industry,2005,56(1):13~28.
    [77]罗护,范大鹏,吴正洪,等.一种支持变型设计的产品结构分析方法[J].机械科学与技术,2006,25(8):887~890.
    [78]鲁玉军,余军合,祁国宁,等.基于事物特性表的产品变型设计[J].计算机集 成制造系统-CIMS,2003,9(10):840-853.
    [79]余军合,祁国宁.事物特性表支持的变型设计方法[J].农业机械学报,2005,36(4):107~111.
    [80]朱斌,江平宇.回归分析及其在产品变型设计中的应用[J].计算机辅助设计与图形学学报,2003,15(6):746-750.
    [81]齐从谦,贾伟新.支持变型设计的装配模型建模方法研究[J].机械工程学报,2004,40(1):38-432.
    [82]贾伟新,齐从谦.支持变型设计的装配模型建模方法[J].同济大学学报,2002,30(12):1508~1511.
    [83]黄长林,谭建荣,张树有.结构-视图模型下零件可变型设计方法[J].计算机辅助设计与图形学学报,2005,17(10):2329~2333.
    [84]钱晓明,王宁生,姜澄宇,等.支持快速变型设计的产品模型研究[J].机械科学与技术,2003,22(4):670~674.
    [85]李敏,徐福缘,顾新建,等.面向大批量定制的产品设计方法研究[J].中国机械工程,2002,13(10):844~847.
    [86]肖新华,史明华,杨小凤,等.基于模块化产品实例的变型设计技术研究[J].中国机械工程,2007,18(7):803~807.
    [87]马辉,谭建荣,张树有,等.一种面向大批量定制的产品可拓设计方法[J].中国机械工程,2005,16(15):1344-1349.
    [88]马辉,张树有,谭建荣,等.基于事物元的产品设计过程可拓重用方法[J],机械工程学报,2006,42(3):110~123.
    [89]秦建军,姚燕安,刘永峰.基于可拓逻辑的机械装置概念设计[J],哈尔滨工业大学学报,2006,38(7):1199~1204.
    [90]罗振璧,于学军,刘阶萍,等.可重构性和可重构设计理论[J].清华大学学报(自然科学版),2004,44(5):577~580.
    [91]刘溪涓,蒋寿伟.产品重构设计中基于最小损失函数的零件选择算法[J].计算机辅助设计与图形学学报,2002,14(10):967~971.
    [92]TILBURY D M, KOTA S. Integrated machine and control design for reconfigurable machine tools[C]. Proceedings of the 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Atlanta: IEEE/ASME,1999:629~634.
    [93]冯宁,宾鸿赞.基于运动学的可重构方法及其应用[J],华中科技大学学报,2003,31(4):4-6.
    [94]于海波,于靖军,毕树生,等.基于图论的可重构机器人构型综合[J].机械工 程学报,2005,41(8):79-83.
    [95]魏延辉,赵杰,蔡鹤皋.基于任务的可重构模块机器人构形确定方法[J].机械工程学报,2006,42 Supp.(5):93-97.
    [96]李树军,张艳丽,赵明扬.可重构模块化机器人模块及构形设计[J].东北大学学报(自然科学版),2004,25(1):78-81.
    [97]冯培恩,张帅,潘双夏,等.复合功能产品概念设计循环求解过程及其实现[J].机械工程学报,2005,41(3):135~141.
    [98]高常青,黄克正,张勇.基于能量转换的机械产品概念设计自动化研究与实现[J].中国机械工程,2007,18(6):732-738.
    [99]慈元卓.装备模块化设计中的模块创建研究[D].长沙:国防科学技术大学,2004.
    [100]蒋祖华,金烨,杨海,等.面向DFMC的产品族设计研究和实践[J].机械设计与研究,2000,(3):38~40.
    [101]顾新建,金勇华,胡蓉,等.网上通用产品配置设计工具的研究[J].计算机集成制造系统~CIMS,2001,7(4):22~25.
    [102]汤文成,易红,幸研,等.面向敏捷制造的产品配置管理[J].计算机集成制造系统-CIMS,2002,8(2):137-140.
    [103]谭建荣,李涛,戴若夷.支持大批量定制的产品配置设计系统的研究[J].计算机辅助设计与图形学学报,2003,15(8):932-937.
    [104]赵燕伟.基于事例推理的加工中心智能CAD系统研究[J].系统仿真学报,2000,12(2):142-145.
    [105]王生发,顾新建,郭剑锋,等.面向实例推理的产品设计本体建模研究及应用[J].机械工程学报,2007,43(3):112-117.
    [106]姜慧.计算机辅助机床模块化方案设计的理论和实践[D].天津:天津大学,1998.
    [107]高广达.虚拟模块化设计技术的研究及其在数控机床中的应用[D].天津:天津大学,2001.
    [108]徐燕申,徐千理,侯亮.基于CBR的机械产品模块化设计方法的研究[J].机械科学与技术,2002,21(5):833-835.
    [109]黎旭,徐燕申,黄艳群.广义模块化设计及报价系统通用平台的构建及其应用[J].机械工程学报,2007,43(4):205~210.
    [110]董慧文.发动机模块化设计知识库系统研究[D].长沙:国防科学技术大学,2002.
    [111]吴伟仁.军工制造业与信息化[J].中国制造业信息化,2003,(12):4-9.
    [112]李莉编译.美国新一代综合潜艇作战系统[J].舰船电子工程,2000,(5):30-36.
    [113]刘淮.德国系列化舰艇发展现状[J].船舶工业技术经济信息,2005,(5):26-32.
    [114]刘江平.从近海防御走向远洋作战,德国海军奔向2005型.解放军报,2001.09.19.
    [115]王晓民译.美国陆军的模块化武器系统[J].轻兵器,1998,(2).
    [116]黄叶萍.德国高级防护模块化车[J].国外坦克,2006,(09):46~47.
    [117]杨增辉,杜东冬.模块化组合—德国GeFas装甲车[J].兵工科技,2006,(10):31-33.
    [118]丛珊,马丹.欧美的模块化导弹计划[J].现代军事,2006,(6):40~43.
    [119]O'GRADY P, LIANG W Y. An object oriented approach to design with modules[J]. Computer Integrated Manufacturing,1998,11(4):267~283.
    [120]候亮.机械产品广义模块化设计理论研究及其在液压机产品中的应用[D].天津:天津大学,2002.
    [121]KOERN Y, HEISEL U. Reconfigurable manufacturing systems[J]. Annals of the CIRP,1999,48(2).
    [122]徐燕申,候亮.液压机广义模块化设计原理及其应用[J].机械设计,2001,(7):1-3.
    [123]ROSENMAN M, WANG F J. A component agent basec open CAD system for collaborative design[J]. Automation in Construction,2001, (10).
    [124]龚京忠,李国喜,吴宝中.武器装备单元化模块化设计技术[R].长沙:国防科学技术大学,2006.
    [125]李洪杰,肖人彬.基于功能构造的复杂产品进化设计基因模型[J].机械工程学报,2003,39(5):41-48.
    [126]李健.基于功能的产品装配设计理论和方法研究[D].北京:北京航空航天大学,2001.
    [127]赵有珍,李健,邓家褆.产品功能结构建模研究[J].计算机应用研究,2003,(11):32~36.
    [128]李健,邓家禔.产品原理结构设计模型[J].计算机辅助设计与图形学学报,2002,14(7):637-645.
    [129]梁庆华,郭为忠,莫锦秋,等.行为结构变型方法研究[J].机械工程学报,2004,40(1):43~49.
    [130]邓家禔,韩晓建,曾硝,等.产品概念设计理论、方法与技术[M].北京:机 械工业出版社,2002:104-105.
    [131]SUH N P. Axiomatic Design[M]. Oxford:Oxford University Press,2001,9.
    [132]林志航.计算机辅助质量系统[M].北京:机械工业出版社,1997.
    [133]宋慧军,林志航.基于改进Freeman-Newell模型的机械产品概念设计过程研究[J].机械工程学报,2002,38(10):54~58.
    [134]宋慧军,林志航.多色集合及其在概念设计产品模型形式化描述中的应用[J].系统工程理论与实践,2003,(2):68~72.
    [135]谢清,谭建荣,冯毅雄,等.面向配置设计的产品功构单元粒度划分方法[J].机械工程学报,2006,42(11):109-114.
    [136]陈禹六,周之英,裴少鹏,等.复杂系统通用的设计分析方法[M].北京:电子工业出版社,1991.
    [137]OTTO K N, WOOD K L. Product Design:Techniques in Reverse Engineering and New Product Development[M]. Pearson Education, Inc.,2001.
    [138]高飞,潘双夏,冯培恩.基于广义有向图的产品功能建模方法研究[J].浙江大学学报(工学版),2005,39(5):648-651.
    [139]蔡倩倩,许履瑚,梁在中,等.实用数学手册[M].北京:科学出版社,2005.
    [140]王树禾.图论[M].北京:科学出版社,2004.
    [141]MILLER T D, ELGARD P. Defining Modules, Modularity and Modularization[J]. Proceedings of the 13th IPS Research Seminar,1998.
    [142]余俊.中国机械设计大典[M].南昌:江西科学技术出版社,2002.
    [143]张宝辉.装备模块化总体设计研究[D].长沙:国防科学技术大学,2004.
    [144]郭津津,徐燕申,朱世和,等.产品快速设计系统中的模块划分及建模方法[J].组合机床与自动化加工技术,2003,(9):9-11.
    [145]钱平凡,黄川川.模块化:解决复杂系统问题的有效方法[J].国务院发展研究中心调查研究报告[R],2003,10.
    [146]吴锡英.论相似性思维与技术创新[J].制造业自动化,2000,22(5):1-3.
    [147]贡智兵,李东波,史翔.面向产品配置的模块形成及划分方法[J].机械工程学报,2007,43(11):160-167.
    [148]王海军,孙宝元,王吉军,等.面向大规模定制的产品模块化设计方法[J].计算机集成制造系统-CIMS,2004,10(10):1172-1176.
    [149]李国喜.快速研制系统、技术及应用研究[D].长沙:国防科学技术大学,2005.
    [150]谌红.模糊数学在国民经济中的应用[M].武汉:华中理工大学出版社,1994.
    [151]王海军,魏小鹏.面向规模化产品族的数值规划方法[J].计算机辅助设计与图形学学报,2005,17(3):473-478.
    [152]程军红,梁睦,李铬,等.齿轮齿条直线差动行程增倍机构的设计与应用[J].机械传动,2005,29(4):73-74.
    [153]王海军,王吉军,孙宝元,等.基于核心平台的模块化产品族优化设计[J].计算机集成制造系统-CIMS,2005,11(2):162-167.
    [154]高新波.模糊聚类分析及其应用[M].西安:西安电子科技大学出版社,2004.
    [155]蔡文.物元模型及其应用[M].北京:科学技术文献出版社,1994.
    [156]张劲松,王启富,万立,等.基于本体的产品配置建模研究[J].计算机集成制造系统-CIMS,2003,9(5):344-350.
    [157]汪应洛.系统工程理论、方法与应用[M].第2版.北京:高等教育出版社,2000.
    [158]刘晓冰,杨春立,孙伟.产品设计知识库建立方法研究[J].计算机集成制造系统-CIMS,2003,9(8):621~625.
    [159]钟诗胜,李江,刘金,等.面向模块化设计的产品模块系统结构建模[J].中国制造业信息化,2004,33(5):91-94.
    [160]蔡文,杨春燕,何斌.可拓逻辑初步[M].北京:科学出版社,2003.
    [161]关晓光,刘力卓,白彦东.解释结构建模在业务流程再造中的应用研究[J].燕山大学学报,2003,27(1):31-34.
    [162]宋慧军,林志航,罗时飞.机械产品概念设计中的知识表示[J].计算机辅助设计与图形学学报,2003,15(4):438-443.
    [163]张跃洪.基于特征模块的零件快速工艺准备[D].长沙:国防科学技术大学,2005.
    [164]王成恩.制造系统的可重构性[J].计算机集成制造系统-CIMS,2000,6(4):2~5.
    [165]罗振璧,盛伯浩,赵晓波,等.快速重组制造系统[J].中国机械工程,2000,11(3):300~303.
    [166]李修睦.图论导引[M].武汉:华中工学院出版社,1982,12.
    [167]赵庆志,刘正,谷安,等.电火花线切割机床可重构模块划分的理论和应用研究[J].机械工程学报,2005,41(9):175~179.
    [168]梁睦,李春广,李铬.可重构机床模块化设计的分析与研究[J].煤矿机械,2006,27(8):68~70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700