用户名: 密码: 验证码:
空间快速响应发射转移轨道设计与制导方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空间快速响应发射对空间系统的快速部署、重构、扩充和维护等操作具有十分重要的意义,它对发射任务的转移轨道设计和制导方法提出了新的要求。本文以此为背景,对相关理论、技术和方法进行了研究与探讨。
     首先研究了空间快速响应发射转移轨道的设计与优化方法,提出了考虑地球扁率影响的转移轨道快速设计方法。(1)分析了同时满足轨道面要求和相位要求的地面等待时间,研究了向前相位调整和向后相位调整的调相轨道设计方法,这种方法能在发射场固定的条件下提高发射的快速响应能力。(2)采用解析分析的方法设计了始末点位置固定的两冲量最短时间转移轨道。根据拉格朗日系数公式和连线速度一致性定理,得到了确定最优解的一元八次代数方程,并在一定假设下对方程进行了简化,得到了对理论分析具有较大意义的结果。(3)采用混合遗传算法设计多约束条件下四冲量最短时间转移轨道。采用一种具有自适应性的退火惩罚函数来处理轨道转移过程中的能量约束条件,设计了串联型、嵌入型两种算法混合结构,成功地解决了遗传算法的收敛结果存在概率性的问题,得到了一种兼具全局和局部搜索能力的优化算法。(4)针对考虑地球扁率的转移轨道快速设计问题,借鉴打靶法及虚拟目标的思想,提出了等时偏差迭代法,对该方法的收敛条件和奇异点存在的原因进行了理论分析。在此基础上,提出了收敛性能更好的改进的等时偏差迭代法。两种方法都采用解析公式计算地球扁率的影响,收敛速度快,设计精度高,能够用于快速任务规划和显式制导需要速度计算等任务。
     其次研究了星光/惯性复合制导在空间快速响应发射运载火箭上升段制导中的应用。(1)针对单星星光/平台惯性复合制导系统,分别建立了调平台与不调平台两种方案的数学模型,包括平台的基准偏差与初始误差、惯导工具误差的关系方程,星敏感器的测量方程和星光修正方程。(2)通过对弹道导弹星光/惯性复合制导实现原理的分析,提出了以当地速度倾角和轨道倾角为修正指标、以半长轴和轨道倾角为修正指标的两种运载火箭星光修正方案。研究了修正方程中最佳修正系数的确定方法。数值仿真结果表明,两种方案都能在保证同样的入轨精度下放宽对射前准备条件和惯导系统精度的要求,对空间快速响应发射是很有意义的。(3)针对单星不调平台方案,从信息传递与校验的角度,提出了信息等量压缩的概念,由此分别得到了解析的、半解析的最佳测星方位确定方法。针对单星调平台方案,提出了能够综合不同性质的修正指标性能的整体优化指标,选择单纯形调优法来确定最佳测星方位。针对单纯形法全局搜索能力不足的缺点,提出了通过编制简单条件下的最佳测星方位表来为算法提供良好初值的解决方案。
     最后研究了可用于轨道转移段的“速度增益制导+迭代制导”的组合显式制导方法,以达到快速应用空间的目的。(1)研究了速度增益制导方法在航天器转移轨道初制导中的应用。比较了γ制导和关机点需要速度预测制导两种方法的特点和优劣,分析了γ制导方法中推力的最佳施加方向,提出了采用小步长计算和关机时间线性预报的关机控制方法。(2)研究了迭代制导方法在航天器转移轨道末端制导中的应用。在简化轨道运动方程和引力计算的基础上,运用最优控制理论推导了满足终端约束条件的迭代制导方程,通过数值仿真验证了算法的有效性。
     随着空间应用的深入和航天技术的发展,空间快速响应发射将成为未来航天运输的发展趋势。本文的研究结果可为我国相关航天装备的发展提供方案参考和技术支持。
The development of responsive space lift could be significant to the rapid deployment, reconfiguration, expansion and maintenance of space systems. Taking that as the background, this thesis makes effort on the technologies of transfer orbit design and vehicle guidance, expecting to meet the new requirements proposed by responsive space lift.
     Firstly, transfer orbit design and optimization of responsive space lift are investigated, and the rapid design approach of transfer orbit, when the oblateness of the earth is taken into account, is presentd. (1) The ground waiting time during launch to satisfy the constraints of the orbit plane and the phase in the plane is discussed. The approach to design phasing orbit, both forward and backward, is addressed, which could improve the launch responsive capability with regard to an immovable range. (2) The two impulses minimum time transfer orbit design with fixed initial and terminal ends is studied, using an analytical method. Based on the Lagrange coefficient equation and the theorem of chord velocity, a one-unknown algebraic equation of eight degree is deduced to determine the optimum solution. Some assumptions are made to simplify the equation to get an approximate solution which is theoretically instructive. (3) A hybrid genetic algorithm (HGA) is chosen to design the four impulses minimum time transfer orbit with energy constraints. An adaptive annealing penalty function is contrived to deal with the energy constraints during orbit transfer, and two different hybrid algorithms, the serial HGA and the embed HGA, are designed. The HGAs both successfully dispose of the problem that the genetic algorithm usually converges on a probabilistic solution. Consequently, an optimum algorithm that has both local and global search competence is acquired. (4) Inspired by shooting method and virtual target, the equal-time deviation iterating approach is presented to rapidly design the transfer orbit when the oblateness of the earth is taken into account. Subsequently, the convergence conditions and singular points are discussed theoretically, based on which the improved equal-time deviation iterating approach is put forward. The two approaches both use analytical means to compute the influence of the earth’s oblateness, resulting in fast convergence and high precision. Thus, they are both competent for onboard tasks, such as fast mission programming, demanded velocity calculation.
     Secondly, the ascending phase guidance scheme of responsive space lift is explored, and stellar/inertial composite guidance technology is selected to conquer the challenge. (1) With regard to the single star/inertial platform composite guidance system, the models with respect to platform leveling and decline are established. Besides the relations between the platform error angles and the inertial errors as well as the inertial instrument errors, the measurement equation of star sensor and the modification equation are also included. (2) Base on the analysis of ballistic missile composite guidance system working principles, two accuracy indices correction policies of the carrier rocket are put forward. One group of the indices is the local slope angle of trajectory and orbit inclination, and the other one is the semi-major axis and orbit inclination. The determination of the best correction coefficients is discussed. The numerical simulation results show that, with the same orbit injection precision, the two policies addressed in the thesis both need fewer requirements on the preparation before launch and the precision of inertial instruments. In other words, the composite guidance technology is fit for the responsive space lift. (3) With respect to the platform leveling scheme, the concept of equivalent information compression is presented, with which analytical and partly analytical approaches are derived to determine the optimum stellar direction. An optimum index that can compromise the performance of accuracy indices which have different properties is proposed, intending to get the best navigation star of the platform decline scheme,. The simplex method is chosen to do the optimization, and a best navigation star table under simple conditions is proposed to reinforce the global optimize capability of simplex method.
     Finally, according to the requirements of rapid space application, a combined explicit guidance shceme for orbit transfer phase, including the close-loop guidance and the iterative guidance, is studied. (1) The close-loop guidance approach is selected to steer the initial orbit maneuver. The velocity-to-gain guidance scheme and the cutoff demanded velocity prediction guidance scheme are discussed and compared. The best thrust direction of velocity-to-gain guidance scheme is surveyed, and a cutoff concept with smaller integral step and cutoff time linear forecasting is proposed. (2) The iterative guidance scheme is selected to steer the terminal orbit maneuver. With the simplification of motion equations and gravitation calculation, the iterative guidance equation is derived, using optimal control theory. The guidance algorithm is verified by numerical simulations finally.
     Along with the extension of space system application and development of astro- nautical technology, the responsive space lift will be the trends of space entrance and space application. The research conclusions of this thesis could be helpful in the development of our country’s related space vehicles, theoretically and technically.
引文
[1] ORS Office Formation Press Release [R]. Secretary of the Air Force, Office of Public Affairs, Release No.070507, May 17, 2007.
    [2] Simon P W, R R. Correll. Responsive Space and Strategic Information [J]. Defense Horizons, April 2004: 1-8.
    [3]殷兴良,申世光.构造快速进入空间与应用空间的能力[J].中国航天, 2002年第2期: 12-13.
    [4] John L. Mclucas, Kenneth J. Alnwick, Lawrence R. Benson. Reflections of a Technocrat: Managing Defense, Air, and Space Programs during Cold War [R]. ADA456851, Aug 2006.
    [5] Richard C. Doerer. National Security Implications of the Commercialization of Space [R]. A810873, Apr 2000.
    [6] Randll R. Correll. Responsive Space: Transforming U.S. Space Capabilities [Z]. The George Marshall Institute, Aug, 2004.
    [7] John M. Amrine. The Command of Space: A National Vision for American Pros- perity and Security [R]. ADA408743, Mar 2000.
    [8] Thomas D. Bell. Weaponization of Space: Understanding Strategic and Technological Inevitabilities [R]. AD425531, Jan 1999.
    [9] Scott F. Netherland. U.S. Policy on Weaponizing Space and Army’s Role in Space Control Operations [R]. ADA424220, Feb 2004.
    [10] David L. Frostman. Leveraging the Disruptive Innovation of Operationally Responsive Space[C]. AIAA Space 2007 Conference & Exposition, Long Beach, California, Sep 2007.
    [11] Terrance V. Yee. Optimizing for Responsive Space Design[C]. Space 2004 Conference and Exhibit, San Diego, CA, Sep 2004.
    [12] Jay Raymond, Grey Glaros, et al. A TacSat Update and the ORS/JWS Stand- ardized Bus[C] .Space 2005 Conference, Long Beach, California, Sep 2005.
    [13]郑同良.军用小卫星的发展及其应用[J].航天电子对抗,2000(1): 6-10.
    [14] Jeff Foust, Phil Smith. Small Launch Vehicle Services: Supply and Demand Through 2010[C]. Space 2004 Conference, San Diego, California, Sep 2004.
    [15]果琳丽,申麟,杨勇,胡德风.中国航天运输系统未来发展战略的思考[J].导弹与航天运载技术, 2006年第1期: 1-5.
    [16] Orbital Science Corporation. Pegasus XL Development and L-1011 Pegasus Carrier Aircraft[C]. AIAA/USU Small Satellite Conference, Sep, 1993.
    [17] Thomas E. Stevens, Paul Lockwood, Jason Mcinerney. Taurus: Small Launch Vehicle Technologies Development[C]. AIAA 1995 Space Programs and Tech- nologies Conference, Huntsville, AL, Sep 1995.
    [18] Ping Lu, Lijun Zhang, Hongsheng Sun. Ascent Guidance for Responsive Launch: a Fixed-Point Approach[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit, San Francisco, California, Aug 2005.
    [19] Bandu N. Pamadi, Paul V. Tartabini, Brett R. Starr. Ascent, Stage Separation and Glideback Performance of a Partially Reusable Small Launch Vehicle[C]. 42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, Jan 2004.
    [20] Department of Defense. Plan for Operationally Responsive Space[R]. A Report to Congressional Defense Committees, Apr 17, 2007.
    [21]陈杰.美国快速空间响应运载器发展研究[J].中国航天, 2007年8月: 33-37.
    [22]黄志澄.美国“太空快速响应”计划[J] .国际太空, 2006年10月: 14-17.
    [23]王景泉.美国加速“作战快速响应太空”计划[J].国际太空, 2007年2月: 8-14.
    [24] Joseph D Adams, Kenneth R. Hampsten, Robert A. Hickman. ARES: Affordable Responsive Spacelift——The U.S. Air Force’s Next Generation Launch System[C]. Space 2005 Conference, Long Beach, California, Aug 2005.
    [25] Jeff Foust. Operationally Responsive Spacelift: A Solution Seeking a Problem [J]. The Space Review, Oct 13, 2003.
    [26] Mike Holguin. AtlasⅤ: Safe and Affordable Human Spaceflight[C]. Space 2005, Long Beach, California, Aug 2005.
    [27] John Stockinger, Frank Shen, Guy Bowers et al. DeltaⅣEvolved Expendable Launch Vehicle Ordnance Overview[C]. 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Tucson, Arizona, July 2005.
    [28] Scott Schoneman, Lou Amorosi, Mike Laidley, et al. Minotaur-Family Launch Vehicles Responsive Launch Demonstration for the TacSat-2 Mission[C]. AIAA Space 2007 Conference & Exposition, Long Beach, California, Sep 2007.
    [29] Tim Thompon, David J. Weeks, Steven H. Walker, et al. The DARPA/USAF Falcon Program Update and SpaceX Maiden Launch, Mishap Investigation and Return to Flight[C]. AIAA Space 2007 Conference & Exposition, Long Beach, California, Sep 2007.
    [30] Marti Sarigul-Klijn, Nesrin Sarigul-Klijn, Gary C. Hundson, et al. Gravity Air Launching of Earth-To-Orbit Space Vehicle[C]. Space 2006, San Jose California, Sep 2006.
    [31] Andrew D.Wiilianms,Scott E Palo. Comparing Traditional Design Approaches to Thermal Management Design with Application to Responsive Space[C] .TheProceedings of the 4th International Energy Conversion and Engineering Conference, San Diego CA, July 2006.
    [32] Stanley D. S, Thomas M. D. Tactical Satellite 3: Requirements Development for Responsive Space Mission. Session Title: Earth Spacecraft and Sensors[R]. SSEC05, Session D, Georgia Institute of Technology, Nov 2005.
    [33] Edward E. Jones, Alisa M. Hawkins. Preliminary On-orbit Maneuver Analysis of Responsive Space Applications[C]. IEEE Aerospace Conference, Mar 2006.
    [34]王浩.俄罗斯的空射运载火箭系统[J].导航与航天运载技术, 2006年第6期: 33-37.
    [35]王刚.俄罗斯运载火箭的历史、现状和发展方向[J].导弹与航天运载技术, 2003年第4期: 17-21.
    [36] Vladimir A. Andreev, Vladimir S. Mikhailov, Vladislav A. Solovey etc. DNEPR Program: Prospects and Advantages for Responsive Space[C]. 1st Responsive Space Conference, Redondo Beach, CA, Apr 2003.
    [37] Stefano Bianchi. VEGA, the European small launcher: Development status, future perspectives, and applications [J]. ACTA Astronautica, 2008, 63: 416-427.
    [38]龙乐豪,王小军,果琳丽.中国进入空间能力的现状与展望[J].中国工程科学, 2006, 8(11): 25-32.
    [39]吴燕生.航天运载:中国新目标[J].瞭望新闻周刊, 2003年6月.
    [40] Wertz I. R., Larson W. J. Space Mission Analysis and Design[M]. Kluwer Academic Publishier, 1991.
    [41] Jerome T.. Orbital Mechanics and Mission Design[J] . Advances in the Astron- autical Science, Vol.69, 1989.
    [42] Chobotov V. A.. Orbital Mechanics[M]. AIAA Education Series, 1991.
    [43] Betts J.T.. Survey of Numerical Methods for Trajectory Optimization[J]. Journal of Guidance , Control and Dynamics, 22(2), 1998, 193-207.
    [44]罗亚中.系列化运载火箭总体优化设计技术研究[D].长沙:国防科技大学, 2003.
    [45] Lawden D F. Optimal Trajectories for Space Navigation [M]. Butterworths, London,1963.
    [46] Bryson A E, Ho Y C. Applied Optimal Control [M]. Hemisphere Publishing, Washington D.C., 1975.
    [47] Wu A K, Miele A. Sequential Conjugate Gradient-Restoration Algorithm for Optimal Control Problems with Non-Differntial Constrains and General Boundary Conditions [J]. Optimal Control Applications and Methods, Vol. 1, 1980: 69-88.
    [48] Gonzalez S, Rodriguez S. Modified Quasi-linearization Algorithm for Optimal Control Problems with Non-differential Constraints and General BoundaryConditions [J]. Journal of Optimization Theory and Applications, Vol. 50, 1986: 109-128.
    [49] Pesch H J. Offline and Online Computation of Optimal Trajectories in the Aero- space Field [C]. Applied Mathematics in Aerospace Sciences and Engineering, Plenum Press, New York, 1994: 165-220.
    [50] Betts J T, Huffman W P. Path-Constrained Optimization Using Sparse Sequential Quadratic Programming [J]. Journal of Guidance, Control and Dynamics, Vol.16, 1993: 59-68.
    [51] Hargraves C R, Paris S W. Direct Trajectory Optimization Using Nonlinear Progra- mming and Collocation [J]. Journal of Guidance, Control and Dynamics, Vol.10, 1987: 3378-342.
    [52] Jansch C, Schnepper K, Well K H. Multi-Phase Trajectory Optimization Methods with Applications to Hypersonic Vehicles[C]. Applied Mathematics in Aerospace Sciences and Engineering, Plenum Press, New York, 1994: 133-164.
    [53] Calise A J, Melamed N, Lee S. Design and Evaluation of Three-Dimensional Optimal Ascent Guidance Algorithm [J]. Journal of Guidance, Control, and Dynamics, Vol. 21, No. 6, 1998: 867-875.
    [54] Gath P F, Calise A J. Optimization of Launch Vehicle Ascent Trajectories with Path Constraints and Coast Arcs [J]. Journal of Guidance, Control, and Dynamics, Vol. 24, No. 2, 2001: 296-304.
    [55] Calise A J. Further Improvements to a Hybrid Method for Launch Vehicle Ascent Trajectory Optimization[C]. AIAA-2000-4261.
    [56] Fahroo F, Ross I M. Co-state Estimation by a Legendre Pseudo-spectral Method [J]. Journal of Guidance, Control, and Dynamics, Vol. 24, No. 2, 2001: 270-277.
    [57] Ross I M, Fahroo F. A Direct Method for Solving Non-smooth Optimal Control Problem[C]. Proceedings of the 2002 World Congress of The International Federation on Automatic Control, Barcelona, Spain, July 2002.
    [58] Gong Q, Kang W, Ross I M. A Pseudo-spectral Method for the Optimal Control of Constrained Feedback Linearizable Systems [J]. IEEE Transactions on Automatic Control, Vol. 51, No. 7, 2006: 1115-1129.
    [59] Kevin P B, Ryan L L, Pooya S et al. Pseudo-spectral Optimal Control: A Clear Road for Autonomous Intelligent Path Planning [C]. AIAA Info-tech & Aerospace Conference and Exhibit, Rohnert Park, CA, May 2007.
    [60] Ross I. M. A Fast Approach to Multi-Stage Launch Vehicle Trajectory Optimization [C]. AIAA Guidance, Navigation, and Control Conference and Exhibit, AIAA-5639, Austin Texas, Aug 2003.
    [61] Jeremy R. Launch Vehicle Trajectory Optimization Using a Legendre Pseudo- spectral Method[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit, AIAA-5640, Austin Texas, Aug 2003.
    [62] Enright P J, Conway E J. Optimal Finite-Thrust Spacecraft TrajectoriesUsing Collocation and Nonlinear Programming [J]. Journal of Guidance, Control, and Dynamics, Vol. 14, No.5, 1991:981-985.
    [63] Ilgen M R. A Hybrid Method for Computing Optimal Low-Thrust OTV Trajectories [C]. AAS Rocky Mountain Guidance Conference, AAS Paper 94-129, 1994.
    [64] Hohmann W. Die Erreichbarkeit der Himmelsk orper[M]. Oldenbourg: Munich, Germany, 1925.
    [65] Battin R H. An Introduction to the Mathematics and Methods of Astrodynamics [M]. Reston, VA, AIAA 1999.
    [66] Prussing J E. A Class of Optimal Two-Impulse Rendezvous Using Multiple–Revolution Lambert Solutions [J]. Advances in the Astronautical Science, 2000, 106:17-37.
    [67] Shen H. Optiaml Scheduling for Satellite Refueling in Circular Orbits [D]. Georgia Institute of Technology, 2003.
    [68]刘鲁华.航天器自主交会制导与控制方法研究[D].长沙:国防科技术大学研究生院, 2007.
    [69]任萱.人造地球卫星轨道力学[M].长沙:国防科技大学出版社, 1988.
    [70] John E C, Davy A H. Constrained Initial Guidance Algorithm [J]. Journal of Guidance, Control, and Dynamics, Vol.13, No. 2, 1990:193-197.
    [71] Stuart D G. A Simple Targeting Technique for Two-Body Spacecraft Trajectories [J]. Journal of Guidance, Control, and Dynamics, Vol. 9, No. 1, 1986, 27-31.
    [72]谌颖,黄文虎,倪茂林.多冲量最优交会的动态规划方法[J].宇航学报, 1993, 14(2):1-7.
    [73]赵宇,张洪华.一种基于启发式搜索的智能轨道规划[J] .航天控制, 2006, 24(4): 45-50.
    [74] Hughes S P, Mailhe L M, Guzman J G. A Comparison of Trajectory Optimization Methods for the Impulsive Minimum Fuel Rendezvous Problem [C]. AAS 03-006.
    [75] Prussing J E. Optimal Impulsive Linear Systems: Sufficient Conditions and Maxi- mum Number of Impulses [J]. The Journal of the Astronautical Sciences, 1995, 43(2): 195-206.
    [76] Spencer D B, Kim Y H. Optimal Spacecraft Rendezvous Using Genetic Algorithms [J]. Journal of Spacecraft and Rockets, 2002, 39(6): 859-865.
    [77] Wuerl A, Crain T, Braden E. Genetic Algorithm and Calculus of Variations-Based Trajectory Optimization Technique [J]. Journal of Guidance, Control, and Dynamics, 2003, 26(6): 882-888.
    [78] Dewell L, Mennon P. Low-Thrust Orbit Transfer Optimization Using Genetic Search [C]. AIAA Guidance, Navigation, and Control Conference and Exihibit, AIAA Reston VA, 1999.
    [79]王石,祝开建,戴金海,任萱.用EA求解非固定时间轨道转移和拦截问题[J].国防科技大学学报, 2001, 23(5): 1-4.
    [80]王华,唐国金.用遗传算法求解双冲量最优交会问题[J].中国空间科学技术, 2003年第1期: 26-30.
    [81] Dukeman G A D, Calise A C. Enhancements to an Atmospheric Ascent Guidance Algorithm [C]. AIAA Guidance, Navigation, and Control Conference and Exhibit, AIAA-5638, Austin Texas, Aug 2003.
    [82] Brown K R, Harrold E F, Johson G W. Rapid Optimization of Multiple-Burn Rocket Trajectory [R]. NASA CR-1430, Sep1969.
    [83] Cohen A O, Brown K R. Real-Time Optimal Guidance for Orbital Maneuvering [J]. AIAA Journal, Vol.11 No.9, 1973: 1266-1272.
    [84] Jezewski D J. Optimal Analytic Multiburn Trajectories [J]. AIAA Journal, Vol.10 No.5, 1972: 680-685.
    [85] Hardtla J W. Gamma Guidance for the Inertial Upper Stage/IUS/ [C]. AIAA Paper 78-1292, Guidance and Control Conference, Palo Alto CA, Aug 1978.
    [86]余梦伦.地球同步卫星的发射轨道的选择[J].中国空间科学技术, 1990, 10(1): 21-27.
    [87] Yunjun Xu. Enhancement in Optimal Multiple-Burn Trajectory Computation by Switching Function Analysis[C]. AIAA Guidance, Navigation and Control Conference and Exhibit, Aug 2006, Keystone, Colorado.
    [88] Rahn M, Thomas U M. Decomposition Algorithm for Performance Optimization of a Launch Vehicle [J]. Journal of Spacecraft and Rockets, 1998, 35(6): 765-773.
    [89] Todd J B. Decomposition Approach to Solving the All-up Trajectory Optimization Problem [J]. Journal of Guidance, Control and Dynamics, 1992, 15(3): 707-716.
    [90] Craig A P, June C D. Trajectory Optimization for a Missile Using a Multitier Approach [J]. Journal of Spacecraft and Rockets, 2000, 37(5): 653-662.
    [91] Rowell L F, Braun R D, etc. Multidisciplinary Conceptual Design Optimization of Space Transportation System [J]. Journal of Aircraft, Vol.36, No.1, 1999: 218-226.
    [92] Carlos, Coello A C, etc. Evolutionary Algorithms for Solving Multi-Objective Problems [M]. Kluwer Academic Publishers, New York, May 2002.
    [93] T Jean-Marius. Multidisciplinary Optimization for Early System Design for Expandable Launchers [C]. 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, AIAA 2006-7125, Portsmouth VA, 2006.
    [94] Marat M, Eli L. Multidisciplinary Design Optimization of Reentry Vehicles: Trajectory Optimization and Sensitivities [C]. 47th AIAA/ASME/ASCE Structures, Structural Dynamics, and Materials Con, AIAA 2006-1718, Newport, 2006.
    [95] Ardema M D, Bowles J V, etc. Optimal Trajectories for Hypersonic Launch Vehi- cles [J]. Dynamics and Control, Vol.4 No.4, 1994:337-347.
    [96]徐延万等.控制系统(上册)[M].北京:宇航出版社, 1991.
    [97]陈世年,李连仲等.控制系统设计[M].北京:宇航出版社, 1996.
    [98]程国采.弹道导弹制导方法与最优控制[M].长沙:国防科技大学出版社, 1987.
    [99] John M H, Shrader M W, Craig A C. Ascent Guidance Comparisons [C]. AIAA Guidance, Navigation and Control Conference, AIAA 94-3568, Scottsdale, AZ, Aug 1994, 230-240.
    [100] Ping Lu. A General Nonlinear Guidance Law: Application to a Launch Vehicle[C]. AIAA Guidance, Navigation and Control Conference, AIAA 94-3632, Scottsdale, AZ, Aug 1994, 793-801.
    [101] Miele A, Wang T, Melvin W W. Guidance Strategies for Near-Optimum Take-Off Performance in a Windshear [J]. Journal of Optimization Theory and Applications, Vol.50, No.1, 1986, 1-47.
    [102] Lu P. Trajectory Optimization and Guidance for an Advanced Launch Vehicle[C]. AIAA-92-0732, 1992.
    [103] Radhakant P. An Optimal Explicit Guidance Scheme for Ballistic Missiles With Solid Motors[C]. AIAA-99-4140, 1999.
    [104] Smith I E. General Formulation of the Iterative Guidance Mode[R]. NASA TM X-53414, March, 1966.
    [105] McHenry R L, Brand T J etc. Space Shuttle Ascent Guidance, Navigation and Control [J]. Journal of Astronautical Sciences,Vol.27, No.1 1979: 1-38.
    [106] Pesch H J. Real-Time Computation of Feedback Controls for Constrained Optimal Control Problems [J]. Optimal Control Application & Methods, Vol.10 1989: 129-171.
    [107] Pamadi B N, Taylor L W, Price D B. Adaptive Guidance for an Aero-Assisted Boost Vehicle [J]. Journal of Guidance, Control, and Dynamics, Vol.13, No. 4, 1990: 586-614.
    [108] Zarchan P. Tactical and Strategic Missile Guidance [M]. Progress in Astronautics and Aeronautics (AIAA Tactical Missile Series, Vol. 176), Third Edition, 1997.
    [109] Sinba S K, Shrivastava S K. Optimal Explicit Guidance of Multistage Launch Vehicle Along Three-Dimensional Trajectory [J]. Journal of Guidance, Control and Dynamics, Vol.13, No. 3, 1990: 394-403.
    [110]刘新建,袁天保.弹道式火箭制导两点边值问题的一种有效数值解法[J].应用数学与力学, 2005, 26(10): 1247-1252.
    [111] P Lu, H Sun, B Tsai. Closed-Loop Endo-atmospheric Ascent Guidance [J]. Journal of Guidance, Control, and Dynamics, Vol.26 No.2, 2003, 283-294.
    [112] Greg A Dukeman. Atmospheric Ascent Guidance for Rocket-Powered Launch Vehicles [C]. AIAA Guidance, Navigation and Control Conference and Exhibit, AIAA 2002-4559, Monterey CA, Aug 2002.
    [113] Brown K R, Harrold E F, Johnson G W. Some New Results on Space Shuttle Atmospheric Ascent Optimization[C]. AIAA Paper No. 70-978, 1970.
    [114] Kelly W D. Formulation of Aerodynamic Quantities for Minimum Hamiltonian Guidance[C]. AIAA Paper 92-4380, 1992.
    [115] Bradt J E, Jessich M V, Hardtla J W. Optimal Guidance for Future Space Appli- cations[C]. AIAA Paper 87-2401, Aug 1987.
    [116] Hanson J S, Shrader M, Curzen C. Ascent Guidance Options[C]. AIAA Paper 94-3568, 1994.
    [117] Leung M S, Calise A J. A Hybrid Approach to Near-Optimal Launch Vehicle Guidance[C]. AIAA Paper 92-4304, 1992.
    [118]胡德风.导弹与运载火箭制导系统的回顾与发展方向设想[J].导弹与航天运载技术, 2002, No.5: 44-48.
    [119]陈新民,谢全根.可应用于运载火箭上的组合制导方法研究[J].宇航学报, 2004, 25(3): 346-349.
    [120] Curtis D E. The Design and Analysis of Integrated Navigation Systems Using Real INS and GPS Data [D]. Air Force Institute of Technology, 1994.
    [121] Sasiadek J Z, Wang Q, Zeremba M B. Fuzzy Adaptive Kalman Filtering for INS/GPS Data Fusion[C]. Proceedings of the 15th IEEE International Symposium on Intelligent Control, July 2000:181-186.
    [122]王永刚,王顺宏.改进Sage-Husa滤波及在GPS/INS容错组合制导中的应用[J].中国惯性技术学报, 2003, 11(5): 29-32.
    [123]曹娟娟,房建成,盛蔚.一种组合导航系统快速滤波方法及半物理仿真[J].北京航空航天大学学报, 2006, 32(11): 1281-1285.
    [124] Roscoe K. Equivalency between Strapdown Inertial Navigation Coning and Sculling Integrals/Algorithms [J]. AIAA Journal of Guidance, Navigation and Dynamics, 2001, Vol. 24, No.2: 201-205.
    [125] Savage P. Strapdown Inertial Navigation Integration Algorithm Design Part 2: Velocity and Position Algorithm [J]. AIAA Journal of Guidance, Navigation and Dynamics, 1998, Vol. 21, No.2: 208-221.
    [126] Wahba G. A Least Squares Estimate of Spacecraft Attitude [J]. SIAM Review, 1965, 7(3): 409-415.
    [127] Bar-Itzhack I Y, Harman R R. Optimized TRIAD Algorithm for Attitude Determination [J] .Journal of Guidance, Control and Dynamics, 1997, 20(1): 208-211.
    [128] Schmidtbauer B. High-Accuracy Sounding Rocket Attitude Estimation Using Star Sensor Data [J]. IEEE Transactions on Aerospace and Electronic Systems, 1978, 14(5): 891-897.
    [129] Crassidis J L, Markley F L. Minimum Model Error Approach for Attitude Estimation [J]. Journal of Guidance,Control and Dynamics, 1997, 20(6): 1241-1247.
    [130] IDAN M. Estimation of Rodrigues Parameters from Vector Observations [J]. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(2): 578-585.
    [131]陈雪芹,耿云海.一种利用星敏感器对陀螺进行在轨标定的算法[J].系统工程与电子技术, 2005, 27(12): 2112-2116.
    [132]张红梅,邓正隆,林玉荣.一种基于模型误差预测的UKF方法[J].航空学报, 2004, 25(6): 598-601.
    [133] Bounds S F, Marmar G. Stellar-Inertial Guidance Capability for Advanced ICBM [C]. Guidance and Control Conference, Gatlinburg, TN, 1983: 849-885.
    [134] Topping R L. Submarine Launched Ballistic Missile– Improved Accuracy [C]. AIAA Annual Meeting and Technical Display on Frontiers of Achievement, Long Beach, CA, May 1981.
    [135] Fan Zhengwen. Current State of the Development of Star Light Inertial Guidance Technology and Performance Analysis[R]. ADA310487, May 1996.
    [136]李连仲.星光—惯性制导系统总体方案阶段报告[A].惯性与器件,预研文集第五册, 1988: 1-23.
    [137]肖称贵.捷联星光制导方案与误差研究[J].导弹与航天运载技术, 1997,第四期: 1-8.
    [138]肖称贵.单星—星光制导方案[J].航天控制, 1997,第1期: 11-16.
    [139]金振山,申功勋.适合于机动弹道导弹的星光-惯性组合制导系统研究[J].航空学报, 2005, 26(2): 168-172.
    [140]刘朝山,马瑞萍等.基于星图匹配的导弹初始定位定向方法研究[J].系统工程与电子技术, 2005, 27(8): 1428-1431.
    [141]郑伟.地球物理摄动因素对远程弹道导弹命中精度的影响分析及补偿方法研究[D].长沙:国防科技大学研究生院,2006.
    [142] Barrar R B. Some Remarks on the Motion of a Satellite of an Oblate Planet [J]. The Astronomical Journal, Vol.66, No.1, 1961: 11-14.
    [143]刘林,赵德滋.中间轨道摄动法及其应用[J].宇航学报, 1982, No.2: 50-61.
    [144]刘林,赵德滋.人造地球卫星轨道摄动的三阶解[J].中国科学, 1980, No.11: 1066-1080.
    [145] A A Kanter. Method of Calculating Lunisolar Perturbations in the Intermediate Elements of Satellite Orbits[J]. Kosmicheskie Issledovaniya, 1997, Vol. 35,No. 4: 378-386.
    [146] V A Kuz'minykh. Effect of Light Pressure on Intermediate Satellite Motion[J]. Kosmicheskie Issledovaniya, 1997, Vol. 35,No. 1:107-110.
    [147] A P TRISHCHENKO, N V EMEL'IANOV. Accuracy Estimates for Monitoring the Orbit of the Meteor-3 Series Satellites Using the Satellite Motion Forecasting System of the Radiation Balance International Project[J], Issledovanie Zemli iz Kosmosa, 1993.No. 2, pp. 40-47
    [148] CHUN-FANG CUI. The Notion of Artificial Satellites in the Anisotropic Gravitational Field of a Uniformly Rotating Solid Earth Model - A Second Order Analytical Solution[R]. ETN-91-90012, 1990.
    [149]朱龙根.改进的Barrar型中间轨道[J].国防科学技术大学学报, 1985, No. 2: 61-75.
    [150]李振涛.自由飞行轨道解析解的中间轨道方法[J].导弹与航天运载技术, 1993, No. 5: 16-26.
    [151]李晓明.经典fg级数的修正法[J].国防科技大学学报, 1991, 13(2): 59-67.
    [152]李济生.航天器轨道确定[M].北京:国防工业出版社, 2003.
    [153]汤锡生,陈贻迎,朱明才.载人飞船轨道确定和返回控制[M].北京:国防工业出版社, 2002.
    [154] Shaoran Liu, Guoqiang Zeng. A Nonlinear Control of Formation Flying Based on Mean Elements [J]. Chinese Space Science and Technology, 2005, Vol. 25, No. 5: 24-26.
    [155] Hanspeter Schaub, Kyle T. Alfriend. Hybrid Cartesian and Orbit Element Feed- back Law for Formation Flying Spacecraft [J]. Journal of Guidance, Control, and Dynamics, 2002, Vol. 25, No. 2: 387-393.
    [156] Hanspeter Schaub. Relative Orbit Geometry Through Classical Orbit Element Differences [J]. Journal of Guidance, Control, and Dynamics, 2004, Vol. 27, No. 5: 839-848.
    [157] Liyan Zhang, Faren Qi. Study on Accuracy of Long-Range Navigation of Rendezvous [C]. Proceedings of SPIE - The International Society for Optical Engineering, Wuhan, China, 2005.
    [158] You-Xi Tang, Hong-Zhi Zhao, Hao Liu, etc. Optimum Low-thrust Power Rende- zvous between Neighboring Elliptic Orbits Considering the Oblateness of Earth [J]. Journal of Northwestern Polytechnical University, 2005, Vol.23, No.3: 401-405.
    [159] Xin Wang, Lin Liu. Analytical Solution of Low Thrust Transfer Orbit [C]. 54th International Astronautical Congress of the International Astronautical Federation (IAF), the International Academy of Astronautics and the International Institute of Space Law, Bremen, Germany, 2003.
    [160]朱龙根.平均根数法在研究弹道飞行器运动中的应用[R].国防科技大学论文报告资料, 83-3016.
    [161]潘刚.远程弹道导弹快速诸元计算方法研究[D].长沙:国防科技大学研究生院硕士学位论文, 2002.
    [162]李连仲.弹道飞行器自由飞行轨道的解析解法[J].宇航学报, 1982, No. 1: 1-17.
    [163]严卫钢.考虑J2、J3、J4的弹道飞行器自由飞行轨道解析解[J].固体导弹技术, 1986, No. 1: 24-26.
    [164]任萱.地球引力势J2项引起的弹道飞行器自由飞行运动参数偏差的近似解析解[R].国防科技大学论文报告资料, 1982, 82-3017.
    [165]任萱.自由飞行时摄动方程的状态转移矩阵的解析解[J].中国空间科学技术, 1983, No. 1: 1-16.
    [166] Davis L D. Handbook of Genetic Algorithms [M]. Van Nostrand Reinhold, 1991.
    [167] Eckel K G. Optimal Impulsive Transfer with Time Constraint [J]. Acta Astronautica, Vol. 9, No. 3, 1982.
    [168]李绿萍,南树军,李卿. FY-2C星发射轨道计算与分析[J].上海航天, 2005年增刊: 12-15.
    [169]雷勇,汤国建,王旭东.联盟TM交会对接的地面远程导引段制导方法分析与研究[J].航天控制, 1999年第4期.
    [170] Matthew G R, Nirav B S, Daniel E H. Agent Model of On-Orbit Servicing Based on Orbital Transfers [C]. AIAA Space 2007 Conference & Exposition, AIAA 2007-6115, Long Beach, CA, Sep 2007.
    [171]周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社, 2001.
    [172]任远,崔平远,栾恩杰.基于退火遗传算法的小推力轨道优化问题研究[J].宇航学报, 2007, 28(1): 162-166.
    [173] Seungwon L. Design and Optimization of Low-Thrust Orbit Transfers Using the Q-Law and Evolutionary Algorithms [C]. IEEE Aerospace Conference Proceedings, Big Sky Montanna, 2005: 1-15.
    [174] Seungwon L. Comparison of Multi-Objective Genetic Algorithms in Optimizing Q-Law Low-Thrust Orbit Transfers [C]. Genetic and Evolutionary Computation Conference, Washington DC, MIT, 2005: 221–226.
    [175]粟塔山等.最优化计算原理与算法程序设计[M].长沙:国防科技大学出版社, 2001.
    [176]吴翊,屈田兴.应用泛函分析[M].长沙:国防科技大学出版社, 2002.
    [177]刘林.人造地球卫星轨道力学[M].北京:高等教育出版社, 1992.
    [178] Efroimsky M, Goldreich P. Gauge Symmetry of the N-body Problem in the Hamilton-Jacobi Approach [J]. Journal of Mathematical Physics, 2003, 44(12): 5958-5977.
    [179] Pini Gurfil. Analysis of J2-Perturbed Motion Using Mean Non-Osculating Orbital Elements[C]. AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Rhode Island, Aug, 2004.
    [180] Wiesel W E. Relative Satellite Motion about an Oblate Planet [J]. AIAA Journal of Guidance, Control, and Dynamics, 2002, 25(4): 776-785.
    [181]安雪滢,张为华,杨乐平,郗晓宁.考虑地球扁率的大椭圆轨道编队飞行优化设计[J].宇航学报, 2006, 27(2): 306-311.
    [182]林晓辉,孙兆伟,杨涤.地月转移轨道的快速设计方法研究[J].哈尔滨工业大学学报, 2005, 37(2): 234-237.
    [183]李庆扬.常微分方程数值解法[M].北京:高等教育出版社, 1992.
    [184]王大轶,李铁寿,严辉,马兴瑞.月球软着陆的一种燃耗次优制导方法[J].宇航学报, 2000, 21(4): 55-63.
    [185]刘云凤,罗俊,赵世范.闭路制导在小型固体运载火箭中的应用[J].航天控制, 2005, 23(3): 46-50.
    [186] P. Teofilatto,E. De Pasquale. A Fast Guidance Algorithm for an Autonomous Navigation System [J]. Planet Space Science, 1998, 46(11): 1627-1632.
    [187] Michael E Hough. Explicit Guidance Along an Optimal Space Curve. Journal of Guidance, Control and Dynamics, 1989, 12(4): 495-500.
    [188]王继平,王明海.导弹闭路制导最优化控制研究[J].飞行力学, 2005, 23(4): 49-51,55.
    [189]马丹山,刘新学,王力纲.闭路制导推力方向研究[J].飞行力学, 2005, 23(3): 64-66.
    [190] M. Delporte, F. Sauvinet. Explicit Guidance Law for Manned Spacecraft[C]. Aerospace Design Conference, Irvine, CA, Feb 1992.
    [191]陈磊,王海丽,周伯昭,任萱.弹道导弹显式制导的分析与研究[J].宇航学报, 2004, 22(9): 44-50.
    [192] Ernest J Ohlmeyer, Craig A. Phillips. Generalized Vector Explicit Guidance [J]. Journal of Guidance, Control, and Dynamics, 2006, 29(2): 261-269.
    [193] S H Jalali-Naini. Modern Explicit Guidance Law for High-Order Dynamics [J]. Journal of Guidance, Control, and Dynamics, 2004, 27(5), 918-920.
    [194]韩祝斋.用于大型运载火箭的迭代制导方法[J].宇航学报, 1983年第一期: 9-20.
    [195]李华滨,李伶.小型固体运载火箭迭代制导方法研究[J].航天控制, 2002年第二期: 29-37.
    [196]杨维廉.有限推力近地点机动的分析与优化.全国第十一届空间及运动体控制技术学术会议[C].云南, 2004, 8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700