用户名: 密码: 验证码:
挤压铸造SiC_w/Al-18Si复合材料凝固行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属基复合材料的凝固过程影响其组织结构,特别是界面结合状态。采用液相法制备金属基复合材料的过程中,基体金属在增强相存在情况下的凝固过程是影响其组织结构的关键。复合材料的凝固行为至今还没有一个统一的认识,因此复合材料组分和凝固条件对其凝固行为的影响需要进一步研究。本文以典型的铝硅合金为研究对象,研究了增强相、变质剂、冷却速度和冷却压力对复合材料凝固过程中形核、长大和组织结构的影响。
     利用纯铝和单晶硅配制Al-18Si合金,采用Al-10Sr合金作为变质剂进行变质处理。以变质前后的Al-18Si合金作为基体,以碳化硅晶须(SiC_w)作为增强相,采用挤压铸造法制备体积分数分别为15%、20%和25%的复合材料(SiC_w/Al-18Si)。采用金相显微镜、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、能谱分析(EDS)、差示扫描量热法(DSC)等分析手段,研究了压铸态、重熔态和定向凝固状态下复合材料的显微组织,分析了复合材料的初晶硅和铝硅共晶相的形核与长大过程。
     组织观察和理论计算表明,SiC_w作为SiC_w/Al-18Si复合材料中初晶硅相的形核衬底。初晶硅相沿着SiC_w表面生长,初晶硅相与SiC_w的界面结合较好。通过计算,(211)SiC∥(110)Si之间的面错配度为6.18%,(110)SiC∥(111)Si之间的面错配度为7.65%。SiC_w含量、变质剂Sr、重熔温度、冷却速度、冷却压力等不改变复合材料基体合金中初晶硅相的形核位置。
     随着SiC_w体积分数不断增加,压铸态SiC_w/Al-18Si复合材料的初晶硅、铝硅共晶相的尺寸逐渐变小,分布趋于均匀。SiC_w对初晶硅相的影响大于对铝硅共晶相的影响。初晶硅凝固起始温度和峰值温度随SiC_w含量的增加而降低,且初晶硅的数量逐渐减少。以未变质铝硅合金为基体的复合材料的初晶硅凝固起始温度和峰值温度随SiC_w含量变化的幅度大于以变质铝硅合金为基体的复合材料相应的温度变化幅度。
     变质剂Sr的加入使SiC_w/Al-18Si复合材料中的初晶硅由片状或雪花状转变为块状或颗粒状,平均尺寸缩小为原来的1/10~1/6。变质剂Sr使复合材料中铝硅共晶组织由粗条状、短棒状且成堆密集状态,转变为细短条状或颗粒状且均匀弥散分布,共晶组织尺寸分布范围缩小。变质剂Sr使复合材料初晶硅凝固起始温度和峰值温度降低,初晶硅数量减少。
     变质剂Sr与SiC_w协同作用时,基体合金的细化效果更加明显。变质剂Sr的加入使由SiC_w形成的小块熔融区对基体合金凝固组织的限制作用减弱。同时SiC_w减弱了变质剂Sr对复合材料凝固温度、过冷度以及初晶硅相分布的影响。
     随着冷却速度的增加,SiC_w/Al-18Si复合材料中初晶硅明显被细化,形貌由树枝状和雪花状逐渐转变为团絮状和颗粒状。当冷却速度为100~1000℃/min时,初晶硅呈颗粒状和棒状的混合态。随着冷却速度的增加,颗粒状的初晶硅数量减少,棒状初晶硅数量增加、长径比逐渐增大。当冷却速度达到3570℃/min时,初晶硅均呈现长棒状。冷却速度对铝硅共晶组织影响不大。随着冷却速度的增加,SiC_w/Al-18Si复合材料中初晶硅和铝硅共晶相的形核过冷度增大,凝固潜热逐渐增加。变质后复合材料的凝固潜热大于未变质的复合材料的凝固潜热。随着SiC_w体积百分含量的逐渐增加,复合材料凝固潜热逐渐变小。
     冷却压力改变了SiC_w/Al-18Si复合材料中初晶硅和铝硅共晶相的大小。压力为0~30MPa时,初晶硅和铝硅共晶相的尺寸随着压力增加不断减小;当压力为30~50MPa时,随着压力的逐渐增加,初晶硅和铝硅共晶相的尺寸逐渐变大。随着压力的增加,SiC_w含量对复合材料铝硅共晶组织的影响逐渐减弱。压力对变质剂Sr作用的发挥没有影响。
The microstructure of metal matrix composites (MMCs), especially the interfacial condition, was affected by their solidification processing. Solidification processing of matrix alloys with the presence of reinforcement is crucial in determining the matrix microstructure during the solid state processing of MMCs. However, at present the solidification theory of MMCs is not consistent. More studies need to be carried out in the effect of matrix alloys, cooling conditions on the MMCs solidification. In this paper, the influence of the reinforcement, modifier, cooling rate and cooling pressure on the nucleation, growth and microstructure will be investigated based on the common Al-Si matrix alloys.
     The Al-18Si alloy was prepared by high purity aluminum and single crystal silicon and was modified by Al-10Sr. The SiC whisker reinforced Al-18Si alloy matrix composites (SiC_w/Al-18Si composites) were prepared by squeeze casting method. The alloys used are Al-Si alloy and Al-Si alloy with Sr addition, respectively. The volume fractions of SiC whisker (SiC_w) are 15%, 20% and 25%. The microstructure of the composite matrix alloys was studied by optical microscope, Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Energy Dispersive Spectrometer (EDS) etc. The nucleation and growth behavior were also analyzed.
     The microstructure observation and theoretical calculation show that the primary Si nucleates on the SiC_w surface. SiC_w is surrounded by Si phase. The interfacial bonding between Si phase and SiC_w is strong. Calculations show that the mismatch between (211)SiC and (110)Si is 6.18% and the mismatch between (110)SiC and (111)Si is 7.65%. SiC_w content, Sr modifier, remelting temperature, cooling rate and cooling pressure do not affect the nucleation site of primary Si.
     With the increase of SiC_w volume fraction, the size of primary Si and Al-Si eutectic of MMCs prepared by squeeze casting decreases, distribution of these phases change from non-uniform to uniform state. The amplitude of primary Si size is greater than that of Al-Si eutectic. The onset and peak temperatures of primary Si decrease with increasing of whisker content and the quantity of primary Si decreases as well. The change of the onset and peak temperatures of primary Si in the SiC_w/Al-18Si composites is greater than that of the SiC_w/Al-18Si-Sr composites.
     The morphology of primary Si in SiC_w/Al-18Si-Sr composites changes from snow-like to platelet, even to particle shape. The size of primary Si reduces to 1/10~1/6 of the original size. The morphology of Al-Si eutectic varies from rodlike to nodular, and distribution shifts from close-packed to diffusion. The size distribution of Al-Si eutectic reduces. Sr make the onset and peak temperature of primary Si decreases and quantity of primary Si reduces in the SiC_w/Al-18Si composites.
     Synergism of SiC_w and Sr refines the primary Si and Al-Si eutectic deeply. Sr addition weakens the restriction of SiC_w on the solidification. SiC_w weaken the effect of Sr on the solidification temperature, undercooling and distributing of primary Si.
     The primary Si of the composites is refined and distribute evenly with the increasing of cooling rate. The primary Si of the composites changes from tree-like to granular. When the cooling rate is 100~1000℃/min, some primary Si are granular, others are rodlike. With the increasing of cooling rate, the number granular Si reduced gradually and the aspect ratio of the rodlike Si increased. When the cooling rate is 3570℃/min, the aspect ratio of rodlike Si increases. The cooling rate has no effect on the Al-Si eutectic morphology. The undercooling of primary Si and Al-Si eutectic in SiC_w/Al-18Si composites increases with increasing of cooling rate. The latent heat increases with increasing of cooling rate. The latent heat of SiC_w/Al-18Si-Sr composites is greater than that of SiC_w/Al-18Si composites. The latent heat of composites with lower volume fraction of SiC_w is larger than that of composites with higher volume fraction SiC_w.
     The size of primary Si changes with cooling pressure. When the pressure is 0~30MPa, the size of primary Si becomes smaller with the increasing of pressure. When the pressure is 30~50MPa, the size of primary Si changes to larger with the increasing of pressure. The changes of Al-Si eutectic with pressure is the same as primary Si. With the increase of pressure, the effect of SiC_w on the size of Al-Si eutectic is weakened gradually, but the role of Sr does not change yet.
引文
1张国定,赵昌正.金属基复合材料.上海交通大学出版社. 1996:1~8, 51~86
    2吴人洁.金属基复合材料的现状与展望.金属学报. 1997, 33(1):78~84
    3师昌绪,李恒德,周廉.材料科学与工程手册.化学工业出版社. 2003, 6:144~150
    4赖华清,姚雄杰,胡沉,徐翔.铝硅合金变质技术的研究和应用.汽车科技. 1999, 5:8~12
    5冯端,师昌绪,刘治国.材料科学导论.化学工业出版社. 2002:458~465
    6袁建君,方琪.晶须的研究进展.材料科学与工程. 1996, 14(4):1~4
    7 N. Chawla, K. K. Chawla. Metal Matrix Composites. Library of Congress Cataloging-in-Publication Data, 2006:65~108
    8于春田.金属基复合材料.冶金工业出版社. 1995:1~3
    9耿林,姚忠凯. SiCw/Al复合材料研究进展.材料导报. 1996, 1:64~67
    10吴人杰. 21世纪新材料丛书—复合材料.天津大学出版社. 2000:305~352
    11耿林.压铸SiCw/LD2复合材料中晶须及界面的微观结构.哈尔滨工业大学工学博士学位论文. 1990:34~45
    12 C. T. Lynch, J. P. Kershan. Metal Matrix Composite. CRC Press. 1972:68~70
    13 T. Isao. High Temperature Mechanical Properties ofβ-Si3N4 Whisker Reinforced Aluminium Alloy Composite Produced by Squeeze Casting. Scripta Metall. 1995, 32(11):1801~1806
    14 K. Zhang, G. N. Chen. Effect of SiC Particles on Crystal Growth of Al-Si Alloy during Laser Rapid Solidification. Mater. Sci. Eng. A 2000, 292:229~231
    15朱兆军.高强韧铸造A357合金组织和性能的研究.哈尔滨工业大学博士学位论文. 2003:14~30
    16张绍兴.稀土与锶对铸造铝合金的协同变质作用.材料工程. 1990, (4):24~27
    17姚书芳,毛卫民,赵爱民,钟雪友.过共晶铝硅合金细化变质剂的研究.特种铸造及有色合金. 2000, 5:1~4
    18王伟民,边秀房,秦敬玉.液态Al-Si合金中的共价键及Sr的影响.金属学报. 1998, 6:645~649
    19鲁薇华,王汝耀.铝-硅合金锶变质作用衰退的研究.特种铸造及有色合金. 1995, 2:1~5
    20姜兆梦,兰民国,高泽生. Al-Sr合金变质处理的研究和应用.轻合金加工技术.1993, 10:13~15
    21 E. L. Pan, Y. C. Cheng, C. A. Lin, H. S. Chiou. Roles of Sr and Sb on Silicon Modification of A356 Aluminum Alloy. AFS Trans. 1994, 102:609~629
    22李月珠.快速凝固技术与材料.国防工业出版社. 1993:8~10
    23 M. C. Flemings, Y. Shiohara. Solidification of Undercooled Metals. Mater. Sci. Eng. A 1984, 65:157~170
    24 M. Barth, K. Eckler, D. M. Herlachn, H. Alexander. Rapid Crystal Growth in Undercooled Fe-Ni Melts. Mater. Sci. Eng. A 1991, 133:790~794
    25胡汉起.金属凝固原理.机械工程出版社. 2000:175~190
    26周尧和,胡壮麒,介万奇.凝固技术.机械工业作出版社. 1998:21~26
    27付珍,城建根,朱秀红.硅对锌铝合金凝固组织的影响.陕西机械. 1998, 3:29~31
    28侯增寿,卢光煦.金属学原理.上海科学技术出版社. 1990:38~75
    29闵乃本.晶体生长的物理基础.上海科学技术出版社. 1982:190~340
    30冯端.金属物理学(第二卷)相变.科学出版社. 1998:114~126
    31 R. W. Cahn.物理金属学(上).吴兵,田中卓译.科学出版社. 1985:157~159
    32 M. C. Flemings.凝固过程.关玉龙,屠宝洪,许城信译.冶金工业出版社. 1981:304~310
    33崔忠圻,刘北兴.金属学与热处理原理.哈尔滨工业大学出版社. 2004:50~56, 78~87
    34 W. Kurz, D. J. Fisher.凝固原理.毛协民,包冠乾译.西安工业大学出版社. 1987:32~56
    35 F. W. Smith. Structure and Properties of Engineering Alloy. Mc Graw-Hill, Inc. 1993:26~50
    36 J. E. Gruzlesk. Aluminum-Silicon Eutectic Modification-Sodium or Strontium. Production and Electrolysis of Light Metals. Canada, 1988. Pergomon Press, 1989:131~141
    37倪红军,孙宝德,蒋海燕,丁文江.新型铝合金熔剂的研究.特种铸造及有色合金. 2001, 2:13~14
    38 J. Zhou, S. Shivkumar, D. Apelian. Modeling of Microstructure Evolution and Microporosity Formation in Cast Aluminum Alloys. AFS Trans. 1990, 98(15):897~904
    39王兆昌,铝硅合金的结晶与钠变质机制.特种铸造及有色金属. 1990, 4:13~17
    40 D. Emadi, J. E. Gruzleski, J. M. Togari. The Effect of Na and Sr Modification on Surface Tension and Volumetric Shringkage of A356 Alloy and Their Influence on Porosity Formation. Metall. Trans. 1993, 24B:1055~1063
    41魏鹏义,傅恒志, W. Reif.熔体温度对快凝Al-Si过共晶合金条带微观组织及性能的影响.金属学报. 1996, 32(8):817~820
    42 D. G. Benghalem, M. A. Morris-Munoz. Influence of Solidification Conditions Thermomechanical Processing and Alloying Additions on the Structure and Properties of in situ Composite Al-Si Alloys. Scripta Mater. 1999, 41(10):1123~1130
    43 F. Ourdjini, O. Yilmaz, S. Hamed, R. Elliott. Microstructure and Mechanical Properties of Directionally Solidified Al-Si Eutectic Alloys with and without Antimony. Mater. Sci. Tech. 1992, 8(9):774~776
    44 S. Das, A. H. Yegneswaran, P. K. Rohatgi. Characterization of Rapidly Solidified Aluminium-Silicon Alloy. J. Mater. Sci. 1987, 22:3173~3177
    45魏鹏义,傅恒志, W. Reif.熔体搅拌Al-12Si合金的组织细化.中国有色金属学报. 1996, 6(1):98~102
    46 M. Kalka, J. Adamiec. Complex Procedure for the Quantitative Description of an Al-Si Cast Alloy Microstructure. Mater. Charact. 2006, 56:373~378
    47 D. G. R. Sharma, M. Krishnan, C. Ravindran. Determination of the Rate of Latent Heat Liberation in Binary Alloys. Mater. Charact. 2000, 44:309~320
    48 C. M. Allen, K. A. Q. O. Reilly, B. Cantor, P. V. Evans. Heterogeneous Nucleation of Solidification of Equilibrium and Metastable Phases in Melt-Spun Al-Fe-Si Alloys. Mater. Sci. Eng. A 1997, 226~228:784~788
    49 R. Asthana. Effect of Isothermal Hold on Settling in SiCp-A359 Composites. J. Mater. Sci. Lett. 2000, 19:2259~2262
    50储双杰,刘永峰,王浩伟,吴人洁,赵昌正.挤压铸造碳纤维增强A356金属基复合材料凝固过程的研究.上海交通大学学报. 1996, 30(8):25~39
    51王桂松,耿林,郑镇洙,王德尊,姚忠凯.液-固两相区压缩变形速率对SiCw/6061Al复合材料组织和性能的影响.材料工程. 2000, 7:37~39
    52边房秀,张国华,赵生旭.熔体处理对Al-Si合金铁相形貌的影响.特种铸造及有色金属. 1992, 4:19~21
    53李培杰,曾大本,贾均,李庆春.铝硅合金中的结构遗传及其控制.铸造. 1999, 6:12~14
    54 S. X. He, J. Wang, B. D. Sun, Y. H. Zhou. Effect of Composition on A356 Alloy Processed by Melt Temperature Treatment. The Chinese Journal of Nonferrous Metals. 2002, 12(4):770~774
    55桂满昌. Al-Si合金液态若干物性及其与凝固组织的相关性.哈尔滨工业大学博士学位论文. 1994:76~79
    56 J. Zhang, Z. Fan, Y. Q. Wang, B. L. Zhou. Effect of Cooling Rate on theMicrostructure of Hypereutectic Al-Mg2Si Alloys. J. Mater. Sci. Lett. 2000, 19:1825~1828
    57 M. Hitchcock, Y. Wang, Z. Fan. Secondary Solidification Behaviour of the Al-Si-Mg Alloy Prepared by the Rrheo-Diecasting Process. Acta Mater. 2007, 55:1589~1598
    58 A. Sundarrajan. Solidification Behavior of Al-30%Si in the Presence of Continuous Alumina Fibers. Doctor of Philosophy in Engineering at the Massachusetts Institute of Technology. 1996:66~80
    59 J. Shen, Z. D. Xie, Y. L. Gao, B. D. Zhou, Q. C. Li, Z. J. Su, H. S. Le. Microstructure Characteristics of a HyperAl-Si eutectic Alloy Manufactured by Rapid Solidification/Powder Metallurgy Process. J. Mater. Sci. Lett. 2001, 20:1513~1515
    60 A. Mortensen. Steady State Solidification of Reinforced Binary Alloys. Mater. Sci. Eng. A 1993, 173:205~212
    61 S. P. Li, S. X. Zhao, M. X. Pan, D. Q. Zhao, X. C. Chen, O. M. Barabash. Solidification Process of Nonfaceted–Faceted Eutectic Alloys. J. Mater. Sci. Lett. 1997, 16:171~173
    62 C. C. Chama. Mechanisms of Silicon Crystal Growth. J. Mater. Sci. Lett. 1998, 17:1857~1859
    63 B. Dutta, M. Rettenmayr. Effect of Cooling Rate on the Solidification Behavior of Al-Fe-Si Alloys. Mater. Sci. Eng. A 2000, 283:218~224
    64 R. Dasgupta. Property Improvement in Al-Si Alloys through Rapid Solidification Processing. J. Mater. Process. Technol. 1997, 72:381~384
    65 M. Faraji, I. Todd, H. Jones. Effect of Solidification Cooling Rate and Phosphorus Inoculation on Number per Unit Volume of Primary Silicon Particles in HyperAl-Si eutectic Alloys. J. Mater. Sci. 2005, 40:6363~6365
    66 Y. Bayraktar, D. Liang, H. Jones. The Effect of Growth Velocity and Temperature Gradient on Growth Characteristics of Matrix Eutectic in a HyperAl-Si eutectic Alloy. J. Mater. Sci. 1995, 30:5939~5943
    67张虎. Al-Si共晶微观结构与生长机制.哈尔滨工业大学博士学位论文. 1990:98~100
    68李顺朴,陈熙琛. Al-Si合金的共晶共生区及组织形成规律.金属学报. 1995, 31(2):49~54
    69 J. H. Kim, J. W. Choi, J. P. Choi, C. H. Lee, E. P. Yoon. A Study on the Variation of Solidification Contraction of A356 Aluminum Alloy with Sr Addition. J. Mater. Sci. Lett. 2000, 19:1395~1398
    70 D. Liang, Y. Bayraktar, H. Jones. Formation and Segregation of Primary Silicon inBridgman Solidified Al-18.3wt.%Si Alloy. Acta Metal. Mater. 1995, 43(2):579~585
    71 M. D. Peres, C. A. Siqueira, A. Garcia. Macrostructural and Microstructural Development in Al–Si Alloys Directionally Solidified under Unsteady-State Conditions. Journal of Alloys and Compounds. 2004, 381:168~181
    72 H. G. Seong. Solidification of Aluminum Alloys Reinforced with Externally Cooled Continuous Graphitic Fibers. Doctor of Philosophy in Engineering at the University of Wisconsin-Milwaukee. 2005:44~50
    73 E. N. Pan, M. W. Hsieh, S. S. Jang. C. R. Loper. Study of the Influence of Processing Parameters of A356 Aluminum Alloy. AFS Trans. 1989, 97:397~414
    74赵玉涛.过共晶Al-23%Si合金中硅相生长的研究.铸造技术. 1996, 6:43~46
    75 J. E. Gruzleski. Al-Si Eutectic Modification-Sodium or Strontium. Production and Electrolysis of Light Metals. Canada, 1988. Pergomon Press, 1989:131~141
    76 S. Z. Lu, A. Hellawell. Modification of Al-Si Alloys: Microstructure, Thermal Analysis and Mechanisms. JOM. 1995, 47(2):38~40
    77 P. Waite, D. Bernand. Recent Experience with the Use of Sufpher Hexaflouride for Aluminum Fluxing. Light Metals. 1990:775~784
    78 P. S. Mohanty, J. E. Gruzleski. Mechanism of grain Refinement in Aluminum. Acta Metall. Mater. 1995, 43(5):2110~2012
    79 A. Mortensen, J. A. Cornie. Fundamental Aspects of Solidification Processing of Metal Matrix Composites by Pressure Iiinfiltration Techniques. Isr. J. of Tech. B. 1998, 24(3~4):7~8
    80 M. A. Khan, P. K. Rohatgi. Numerical Solution to the Solidification of Aluminium in the Presence of Various Fibers. J. Mater. Sci. 1995, 30(14):3711~3719
    81 W. Wang, F. Ajersch. Si Phase Nucleation on SiC Particulate Reinforcement in HyperAl-Si eutectic Alloy Matrix. Mater. Sci. Eng. A 1994, 187(1):65~75
    82 K. Rohatgi, C. S. Narendranath, S. Ray. Nucleation of Phases during Solidification Processing of Metal Matrix Composites. Microstructure Formation during Solidification of Metal Matrix Composites. Minerals, Metals Materials Soc(TMS). 1993:1~6
    83 J. Hashim, L. Looney, M. S. J. Hashmi. The Wettability of SiC Particles by Molten Aluminium Alloy. Materials. Processing Technology. 2001, 119:324~328
    84 O. Garbellini, H. Palacio, H. Biloni. Solidification Microstructure of Al-Cu-Si Alloys Metal Matrix Composites. Materials Research Society Symposium Proceedings. 1997, 481(1-5):77~82
    85 Q. F. Li, D. G. Mccartney, A. M. Walker. Development of Solidification Microstructures on a Fiber Reinforced Alloy. J. Mater. Sci. 1991, 26:3565~3574
    86王煜明,冯庆玲. TiC和Ti2C在铝合金结晶过程中的核心作用.中国有色金属学报. 1996, 6(1):130~135
    87 S. Das, S. V. Prasad, T. R. Ramachandran. Microstructures of Cast Al-Si Alloys in the Presence of Dispersed Graphite Particles. Mater. Trans. 1991, 32(2):189~194
    88 A. Luo. Heterogeneous Nucleation and Grain Refinement in Cast Mg(AZ91)/SiCp Metal Matrix Composites. Canadian Metallurgical Quarterly. 1996, 35(4):375~383
    89 J. A. Cornie, A. Mortensen, M. N. Gungor. Solidification Process during Pressure Casting SiC and Al2O3 Reinforced Al-4.5%Cu Metal Matrix Composites. Fifth International Conference on Composite Materials, ICCM-V. 1985:809~823
    90 X. F. Liu, X. F. Bian, X. G. Qi. Study of the Nucleation Mechanism ofα-Al Grains after Addition of Al-Ti-B Master Alloys. Journal of Hydrodynamics. 1998, 10(2):157~162
    91 P. Schumacher, A. L. Greer. Enhanced Heterogeneous Nucleation ofα-Al in Amorphous Aluminum Alloys. Mater. Sci. Eng. A 1994, 181~182(2):1335~1339
    92张学习.氧化铝短纤维增强铝基复合材料的凝固机理.哈尔滨工业大学博士学位论文. 2003:105~120
    93 S. S. Wu, H. Nakae. Nucleation Effect of Alumina in Al-Si/Al2O3 Composites. J. Mater. Sci. Lett. 1999, 18(4):321~323
    94刘政,刘小梅.铸造Al2O3/Al-Si合金复合材料的组织与断口形貌分析.矿冶. 2000, 9(4):75~77
    95刘政,刘小梅,周彼德.挤压铸造Al2O3/Al-Si合金复合材料的凝固组织与凝固模型.南方冶金学院学报. 1996, 17(4):260~265
    96刘政,刘小梅.短纤维增强铝硅合金复合材料的组织与断口形貌分析.兵器材料科学与工程. 2002, 25(3):22~25
    97蓝国秋,涂铭旌,李伟. Al2O3短纤维增强Al-Si合金复合材料的界面研究.中山大学学报. 1995, 34(3):40~44
    98刘政,朱应禄,陈慈诰.氧化铝颗粒增强铝硅合金复合材料凝固组织的研究.南方冶金学院学报. 1995, 16(4):48~53
    99 G. H. Cao, Z. G. Liu, J. M. Liu. Interface Investigations of Alumina and Aluminosilicate Short-Fiber-Reinforced Aluminum-Alloy Composites. Compos. Sci. Technol. 2001, 61(4):545~550
    100 S. Nagarajan, B. Dutta, M. K. Surappa. Effect of SiC Particles on the Size and Morphology of Eutectic Silicon in Cast A356/SiCp Composites. Compos. Sci. Technol. 1999, 59(6):897~902
    101 J. A. Sekhar, R. Trivedi. Development of Solidification Microstructures in the Presence of Fibers or Channels of Finite Width. Mater. Sci. Eng. A 1989,114(1~2):133~146
    102 P. K. Rohatgi, K. Pasciak, C. S. Narendranath, S. Ray, A. Sachdev. Evolution of Microstructure and Local Thermal Conditions during Directional Solidification of A356-SiC Particle Composites. J Mater. Sci. 1994, 29(20):5357~5366
    103毕刚,王浩伟,吴人洁.铸造铝基复合材料的凝固过程.稀有金属材料与工程. 2000, 1:4~7
    104 D. J. Lloyd. The Solidification Microstructure of Particulate Reinforced Aluminium/SiC Composites. Compos. Sci. Technol. 1989, 25:159~179
    105储双杰,吴人洁,李建国,魏朋义,傅恒志.凝固速度对金属基复合材料液-固界面形态选择的影响.人工晶体学报. 1998, 3:84~88
    106 W. T. Kim, D. L. Zhang, and B. Cantor. Nucleation of Solidification in Liquid Droplets. Metall. Trans., A. 1991, 22:2487~2500
    107 A. Labib, H. Liu, F.H. Samuel. Effect of Solidification Rate (0.1~100°C/s) on the Microstructure, Mechanical Properties and Fractography of Two Al-Si-10vol.%SiC Particle Composite Castings. Mater. Sci. Eng. A 1993, 160(1):81~90
    108 B. Dutta, M. K. Surappa. Microstructure Evolution during Multidirectional Solidification of Al-Cu-SiC Composites. Composites Part A 1998, 29(5~6):565~573
    109 A. Mortensen, T. Wong. Infiltration of Fibrous Preforms by a Pure Metal: Part III. Capillary Phenomena. Metall. Trans. A. 1990, 21:2257~2263
    110齐丕骧.挤压铸造.冶金工业出版社. 1980:89~95
    111 B. Cantor, K. A. Q. O’Reilly. Cyclic Differential Scanning Calorimetry and the Melting and Solidification of Pure Metals. Math. Phys. Eng. Sci. 1996, 452(1952):2144~2152
    112陈琦,陈亚军,王自东.真空熔化氩气保护连续定向凝固设备的研究.铸造设备研究. 2004, 2:6~8
    113王贵清,张晓波,薛飞,王自东,卢宁,胡汉起.连续定向凝固设备的设计和制造.铸造设备研究. 2002, 5:21~24
    114毕晓勤,胡锐,李金山.高梯度定向凝固设备.铸造技术. 2003, 24(3):184~185
    115鲁薇华,王汝耀.锶变质铝硅合金的组织、性能及其变质工艺.铸造. 1997, (9):44~50
    116 A. Mortensen, M. C. Flemings. Solidification of Binary Hypoeutectic Alloys Matrix Composites Casting. Metall. Mater. Trans. A 1996, 27:595~609
    117 C. R. Ho, B. Cantor. Hereogeneous Nucleation of Solidification of Si in Al-Si and Al-Si-P Alloys. Acta Metall. Mater. 1995, 43(8):3239~3242
    118李培杰,桂满昌,贾均. Al-16%Si合金熔体的电阻率及其结构遗传.铸造. 1995, 9:15~20
    119 S. R. Nutt. Defects in Silicon Carbide Whiskers. J. Am. Ceram. Soc. 1984, 67(6):428~431
    120 S. R. Nutt. Microstructure and Growth Model for Rice-Hull-Derived SiC Whiskers. J. Am. Ceram. Soc.1988, 71(3):149~156
    121曹利.碳化硅晶须增强铝复合材料的微观结构及断裂规律.哈尔滨工业大学博士学位论文. 1989:88~90
    122周玉,武高辉.材料分析测试技术.哈尔滨工业大学出版社. 2000:24~25
    123徐恒钧.材料科学基础.北京工业大学出版社. 2001:285~289
    124余金中,王杏华.异质结构和量子结构.物理. 2001, 30(3):169~174
    125 B. L. Bramfitt. The Effect of Carbide and Nitride Additions on the Heterogeneous Nucleation Behavior of Liquid Iron. Metall. Trans. 1970, 1(7):1987~1995
    126何菊生,张萌,肖祁陵.半导体外延层晶格失配度的计算.南昌大学学报. 2006, 30(1):64~66
    127冯端.固体物理学大辞典.北京高等教育出版社. 1995:2~566
    128徐恒钧.材料科学基础.北京工业大学出版社. 2001:223~227
    129毕刚,王浩伟,吴人杰.铸造铝基复合材料的凝固过程.稀有金属材料与工程. 2000, 29(1):5~7
    130 A. Sundarrajan, A. Mortensen, T. Z. Kattamis, M. C. Flemings. Kinetic Undercooling in Solidification of a HyperAl-Si eutectic Alloy; Effect of Solidifying within a Ceramic Preform Composite. Acta Mater. 1998, 46(1):97~99
    131廖长明.碳.北京人民出版社. 1978:9~11
    132 J. M. Molina, A. Rodríguez-Guerrero, M. Bahraini, L. Weber, J. Narciso, F. Rodríguez-Reinoso, E. Louisb, A. Mortensen. Infiltration of Graphite Preforms with Al-Si Eutectic Alloy and Mercury. Scripta Mater. 2007, 56:991~994
    133 X. X. Zhang, D. Z. Wang, Z. K. Yao. Nucleation and Growth Behavior of Primary Silicon in Alumina Fiber Reinforced HyperAl-Si eutectic Composite. J. Mater. Sci. Lett. 2002, 21:921~922
    134 V. Laurent, D. Chatain, N. Eustathopoulos. Wettability of SiC by Aluminium and Al-Si alloys. J. Mater. Sci. 1987, 22:244~250
    135 X. Tong, J. A. Khan, S. Dutta. Unidirectional Infiltration and Solidification/ Remelting of a Binary alloy in a Porous Perform. American Society of Mechanical Engineers, Heat Transfer Division. 1996:39~48
    136 H. G. Kang, P. R. G. Anderson, B. Cantor. Infiltration of Al2O3 Short-Fibre Preforms during Squeeze Casting of A357 Al Alloys. Minerals, Metals &Materials Soc(TMS). 1995:153~174
    137赵平,高升吉,陈睿,沈保罗,涂铭旌.挤压铸造中压强对复合材料强度的影响.材料工程. 1998, 12:11~14
    138 J. I. Song, Y. C. Yang, K. S. Han. Squeeze-Casting Conditions of Al2O3/Al Metal Matrix Composites with Variations of the Preform Drying Process. J. Mater. Sci. 1996, 31(10):2615~2621
    139于思荣,何震明,任露泉. Al2O3短晶须/ZA22合金复合材料凝固的方式及组织.中国有色金属学报. 1998, 8(SI):106~110
    140李冬剑.高压下亚稳相相变机制.中国科学院金属研究所博士学位论文. 1993:86~87
    141 W. H. Sutton. Whisker Technology. Wiley Interscience. 1970:273~342
    142汪海云,张莲华.浸渗压力对金属基复合材料液相浸渗过程的影响.铸造. 1998, 2:31~32

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700