用户名: 密码: 验证码:
稀土对低碳结构钢耐工业及海洋大气腐蚀性能的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着对钢材服役寿命要求的提高,在大气中使用的低碳结构钢(碳钢)除了需要更好的强韧性匹配外,同时还应具有较为良好的耐大气腐蚀性能。但Ni、Cu、Cr等合金元素的高成本使常规耐候钢的使用受到很大限制。因此,采用添加低成本元素进而研发经济型耐候钢逐渐成为国内外钢铁研究的新热点。而通过添加少量稀土元素,开发出具有较好耐大气腐蚀性的高效低碳结构钢符合我国国情,并对节约资源及钢铁材料的可持续发展有着重要的实际意义。
     早期文献表明,除稀土总量外,RE/S是稀土在钢中作用的重要参数,其数值直接影响了稀土在钢中的存在状态以及对钢铁材料力学性能的改善效果。然而,RE/S值与碳钢耐大气腐蚀性关系的研究缺乏报道。同时,随着钢铁冶金水平的提高,普通低碳结构钢的洁净度也有了显著的改善,这使稀土在钢中的存在形式有所改变。因此研究RE/S值及稀土的不同存在形式对碳钢耐大气腐蚀性的影响具有重要的现实意义。此外,早期文献中稀土对碳钢锈层保护性的影响缺乏论述,因而开展稀土对碳钢锈层作用的系统研究同样具有一定的理论价值。
     本文通过实验室周期浸润加速腐蚀试验和实地大气暴晒试验考察了在工业及海洋大气环境中稀土对低碳结构钢耐腐蚀性能的改善效果。借助物理化学相分析、夹杂物研究、微区pH值原位观察以及电化学等手段系统探讨了钢中稀土的不同存在形式对钢基体及锈层耐蚀性能改善作用的影响规律及机理。
     试验钢夹杂物的扫描电镜观察及热力学计算的研究结果表明,稀土在碳钢中能以多种形式存在,主要包括稀土硫化物、稀土氧化物、稀土氧硫化物、RE-Fe金属间化合物以及固溶稀土。除稀土总量以外,RE/S对钢中稀土的夹杂物性质及合金化量具有显著影响。对本文中研究的试验钢(RE~0.030wt%,O~0.0030wt%)而言,控制RE/S值在2.35-4.62之间时,钢中夹杂物球化完全,且数量最少;而当RE/S≥8.57时,钢中稀土的合金化量将占稀土总量的50%左右。此外,试验钢珠光体片间距随RE/S的升高而减小;且在较高RE/S试验钢中,珠光体的片层形貌有退化趋势。
     试验钢的周浸加速腐蚀试验和实地大气暴晒试验结果均显示,碳钢中添加适量稀土能够有效改善基体的耐工业及海洋大气腐蚀性能。在模拟大气环境中,随RE/S数值增大,试验钢的耐蚀效果逐渐提高。
     微区pH的原位分析结果显示,碳钢夹杂物引起的严重局部腐蚀能使其表面薄液膜的pH明显降低;与此相比,钢中的稀土硫化物和合金化稀土有利于抑制材料表面薄液膜的酸化。由腐蚀动力学方程可知,随碳钢表面薄液膜的pH的升高,基体的腐蚀电流将呈降低趋势。稀土硫化物和合金化稀土对薄液膜酸化效应的抑制作用,不仅使稀土钢在工业大气环境中的阳极溶解速率较低,还有利于其锈层中保护性腐蚀产物α-FeOOH的形成,并能减少稀土钢锈层中的缺陷数量。
     裸钢在0.2%NaCl溶液中的极化曲线结果表明,随着RE/S值的提高,试验钢的自腐蚀电位及腐蚀电流均呈降低趋势,阴极极化特征逐渐明显;此外,RE/S较高的试验钢极化曲线阳极区出现较为明显的钝化平台。点蚀源的微观观察发现,在含有氯离子的腐蚀溶液中,钢中的不同类型的夹杂物在腐蚀初期的点蚀行为有所不同。随着稀土的加入及RE/S的升高,试验钢的点蚀形貌发生变化。与碳钢夹杂物相比,稀土夹杂物的影响范围较大,由稀土夹杂物离解产生的Ce3+可以作为试验钢在Cl-溶液中的阴极沉淀型缓蚀剂,使钢基体体现出对Cl-腐蚀更强的抵御作用。同时,结合试验钢点蚀的微观形貌及电化学特征,本工作分别建立并比较了钢中四类不同夹杂物在海洋大气环境中的诱发点蚀模型。
     实地大气暴晒试验表明,在真实的工业大气环境中,试验钢暴晒两年的腐蚀产物均由α-FeOOH,γ-FeOOH,δ-FeOOH、Fe3O4以及非晶态锈组成。碳钢锈层疏松,与基体的结合力不强,且其中存在较多的裂纹和孔洞,且锈层中活性组元比例较大;而稀土可以促进锈层中保护性腐蚀产物的生成,并降低锈层中导电相Fe3O4的比例,从而可以有效保护基体,降低钢的腐蚀速率。在海洋大气环境下,稀土在锈层中不均匀分布,并能与Cl-和SO42-结合,进而有效阻止环境中的腐蚀性阴离子向基体的迁移,削弱了锈层阴离子选择性的倾向。同时,稀土能能细化锈颗粒,提高铁锈中非晶相比例和致密性,增强试验钢锈层的物理及化学保护性。
     大气暴晒试验带锈试样的电化学研究结果表明,稀土可以减缓钢基体的电化学腐蚀。在热力学方面,稀土钢自腐蚀电位高于对比碳钢,降低了基体离子化的倾向;在动力学方面,稀土钢的腐蚀电流密度较小,且随着暴晒时间延长,其锈层趋于钝化。结合锈层EIS谱的演化结果可知,经过两年的大气暴晒,稀土钢锈层电阻和电荷传输电阻均远大于碳钢,腐蚀产物对钢基体耐电化学腐蚀能力显著增强。
In order to extend the service life of the steel material, the excellent corrosion resistance apart from outstanding strength-toughness matching is required of the low carbon-structural steel (carbon steel) used in atmospheric environment. However, the usage of weathering steel is restricted by the increasing cost of alloying elements. Therefore, the research on economical weathering steel has gradually become a new focus of advanced steel. In general, most of the research was carried out by adding the low-cost alloying elements. It is conformed to the conditions of our country to develop high performance RE-bearing low carbon steel with better weatherability, which also possesses important significance in saving resource and for sustainable development of steel material.
     The early literatures showed that RE/S was an important parameters which could characterize the function of RE in steel, besides total RE contant. And the RE/S value could influence directly the existing form of RE and improvement effect on mechanical properties of RE-bearing steel. However, research reports on the relationships between the RE/S value and anti-atmospheric corrosion properties of carbon steel were few. Meanwhile, with the development of the metallurgical technology, the purity of the steel has been raised. The existing form and corrosion resistance mechanism of RE in the new carbon steel will certainly be corresponding changed. Therefore, it is practical significance to carry out the further study of the effect of the RE/S value and RE in different forms on carbon steel and the underlying mechanisms. In addition, since the influence of RE on the protection of rust layer of the carbon steel is not yet well understood, it is beneficial to engaged in systematically study in the contribution of RE to the rust layer of the carbon steel.
     The influence of RE on the industry and marine environmental corrosion resistance of low carbon-structural steel was studied by means of cycle immersion corrosion tests and atmospheric exposure tests. Meanwhile, considering the characteristics of the corrosive medium in different atmospheric environment, the rules and mechanisms of the different RE phase in improving atmospheric corrosion resistance of the steel substrate and the rust layer had been investigated by physical chemistry phase analysis, investigation of inclusions, in-situ observation of micro-area pH value as well as electrochemical methods.
     Based on the results of the SEM observation and the thermodynamic calculation, we found that RE could exist in low carbon steel in different forms, mainly including sulfides, oxides, oxysulfide, RE-Fe intermetallic and solid soluble RE. The properties of RE-inclusion and the RE alloying quantity were remarkably related to the RE/S value apart from the total RE. As far as experimental steel(RE-0.030wt%, O~0.0030wt%) was concerned, the amount of the inclusion was elevated and the shape of the inclusion was completely deteriorated, when the RE/S value was controlled in the range of 2.35 to 4.62. And the RE alloying quantity would account for about 50% of the total RE, while the RE/S value was higher than 8.57. Besides, the interval between pearlite slice was decreased with the increase of RE/S value. Moreover, the pearlite slice tended to degenerate in the steel with high RE/S value.
     As shown by the cycle immersion corrosion test and atmospheric exposure test, the addition of RE to low carbon-structural steel could effectively improve the industrial and marine atmospheric corrosion resistance. In the simulated atmospheric environment, the corrosion resistant effect of experimental steel was gradually improved with the increasing of the RE/S value.
     The in-situ observation result of micro-area pH value showed that a serious localized corrosion caused by the inclusion in the carbon steel could decrease the pH value of the thin liquid film of the carbon steel significantly. By contrast, RE sulfides and RE-Fe intermetallic as well as solid soluble RE were helpful to the inhibition of the acidification of the thin liquid film on RE-bearing steel. According to the corrosion kinetics, the corrosion current of the substrate was decreased with the increasing of the pH value of the thin liquid film of the steel. The inhibition of the acidizing caused by RE sulfides, RE-Fe intermetallic and solid soluble RE were not only able to decrease the anodic dissolution rate of RE-bearing steel in the industrial atmospheric environment, but also able to promote the formation ofα-FeOOH which was a steady protective corrosion product and make the rust layer more compact.
     Polarization curves of the bare steel were investigated in 0.2% NaCl solution. Experimental results revealed that both self-corrosion potential and corrosion current of experimental steels decreased with the increasing of the RE/S value, showing the developing trends of the characteristics of the cathodic polarization. Moreover, an obvious passivation phenomenon was found in the anode region of the polarization curves of high RE/S steel. As shown by the microscopic observation of pitting initiation, the initial pitting corrosion behaviors with various types of inclusion were different in chloride solution. The pitting morphologies of the experimental steel would be changed by adding RE and increasingthe RE/S value. Compared with the carbon steel, the corrosion influence scope of inclusion in RE-bearing steel had a much wider range. The dissociated Ce3+ form inclusion could be used as cathodal depositing inhibitor in NaCl solution with neutral pH value, and thus leaded to a much stronger corrosion resistance of the RE-bearing steel to Cl-Furthermore, based on the pitting micro-morphologies and electrochemical characteristics of experimental steel, the marine atmospheric pitting initiation models of four types inclusions were also established, respectively.
     The result of the industrial atmospheric exposure test showed that the rust phase of the experimental steels were quite similar, which were composed ofα-FeOOH,γ-FeOOH,δ-FeOOH, Fe3O4 and amorphous rust. Binding weakly with the steel matrix, the rust layer of the carbon steel was loose and porous, which contained a large percentage of active components. Whereas, RE could promote the formation of the steady protective corrosion products, decrease the ratio of conductive phase Fe3O4, which could inhibit the corrosion effectively. On the other hand, the result of the marine atmospheric exposure test showed that RE distributed unevenly in the rust layer and could be combined with Cl- and SO42-. Thus, in the presence of RE, the electromigration of corrosive anion in the corrosion product would be prevented effectively and the anion-selective tendency of rust layer was weakened. Meanwhile, RE had the capability to refine the rust particles and raise the ratio of amorphous in the rust.
     The measurement results of electrochemical studies showed that RE could inhibit the electrochemical reaction of corrosion of the carbon steel exposed in Jiangjin area. Based on the thermodynamics analysis, the introduction of RE in the carbon steel could cause the free corrosion potential shift positively, and reduce the ionization tendency of the steel matrix. On the other hand, kinetics analysis indicated that RE in the steel could reduce corrosion current, and make the rust layer tend to be passivated with the extending of the exposure time. The equivalent circuit of the electrochemical reaction was obtained by analyzing EIS of the experimental steel. The parameters of Rr and Rct could characterize the anti-corrosion of the rust layer. After 2 years exposure test, both Rr and Rct of RE-bearing steel were much bigger than those of carbon steel. The test indicated that the rust layer on the surface of RE-bearing steel had strong ability to lower the corrosion rate.
引文
[1]World Steel Association. World Steel in Figures 2009. Brussels:World Steel Association,2009:15
    [2]曹楚南,王光雍,李兴濂,等.中国材料的自然环境腐蚀.北京:化学工业出版社,2005:69
    [3]杨德钧,沈卓身.金属腐蚀学.冶金工业出版社,1999:2
    [4]NACE, "NACE—Basic Corrosion Course",朱日彰等译,腐蚀与防护技术基础,北京:冶金工业出版社,1987
    [5]李金桂,郑家燊.表面工程技术和缓蚀剂.北京:中国石化出版社,2007:5
    [6]柯伟,中国工业与自然环境腐蚀调查的进展,腐蚀与防护,2004,1(1):3-8
    [7]唐丹,邢桂菊,王开明,等.钢材阻锈技术的研究与发展.腐蚀科学与防护技术,2009,21(6):556-559
    [8]Flavio D, Stefano R. Premature corrosion failure of structural highway components made from weathering steel. Engineering Failure Analysis,2002,9(5):541-551
    [9]Fuente D, Simancas J, Morcillo M. Effect of variable amounts of rust at the steel/paint interface on the behavior of anticorrosive paint systems. Progress in Organic Coatings,2003,46(4):241-249
    [10]崔晓莉,杨锡良,章壮健.光催化Ti02涂层在金属防腐蚀中的应用研究现状.腐蚀与防护,2004,24(3):102
    [11]Ohko Y, Sailoh S, Talsuma T, et al. Photoelectrochemical anticorrosion effect of SiTiO3 for carbon steel. Electrochemical and Solid-State Letters,2002,5(2):9
    [12]丁艳梅,许淳淳.复合气相缓蚀剂对铁质文物缓蚀机理的研究.腐蚀科学与防护技术,2007,18(4):241
    [13]Jemberg P, Sjostrom C, Lacasse M A. TC 140-TSL:Prediction of service life of building materials and components-state of the art report. Materials and Structures, Supplement,1997(3): 22.
    [14]王光雍,王海江,李兴濂,等.自然环境的腐蚀与防护.北京:化学工业出版社,1997:4-77
    [15]林玉珍,杨德钧.腐蚀和腐蚀控制原理.北京:中国石化出版社,2007:71
    [16]Evans U R著,华保定译.金属的腐蚀与氧化.北京:机械工业出版社.1976:401-448
    [17]Evans U R, Taylor C A J. Mechanism of atmospheric rusting. Corrosion Science,1972,12: 227-246
    [18]Mansfeld F, Kenkel J V. Electrochemical monitoring of atmospheric corrosion phenomena. Corrosion Science,1976,16(3):111-112
    [19]Mansfeld F, Tsai S. Laboratory studies of atmospheric corrosion—Ⅰ. Weight loss and electrochemical measurements. Corrosion Science,1980,20(7):853-872
    [20]Tomashov N D. Theory of corrosion and protection of matals [M]. New york:Macmillan edition,.1966:367
    [21][日]森冈进,久松敬弘,等著.沈达德,译.钢铁腐蚀学(下册).成都:成都科技大学出版社.1979:2
    [22]Stratmann M. The investigation of the corrosion properties of metals, covered with adsorbed electrolyte layers—A new experimental technique. Corrosion Science,1987,27(8):869-872
    [23]Stratmann M. The mechanism of the oxygen reduction on rust-covered metal substrates. Corrosion Science,1994,36(2):327-359
    [24]Huang Y L, Zhu Y Y. Hydrogen ion reduction in the process of iron rusting. Corrosion Science, 2005,47(6):1545-1554
    [25]Yamashita M, Miyuki H, Maisuda Y, et al. The long term growth of the protective rust layer formed on weathering steel by atomsperic corrosion during a quarter of a century. Corrosion Science,1994,36(2):283-299
    [26]Cox A., Lyon S B. An electrochemical study of the atmospheric corrosion of mild steel-Ⅰ. Experimental method. Corrosion Science,1994,36(7):1167-1176
    [27]Stratmann M, Bohnenkamp K, Engell H J. An electrochemical study of phase-transitions in rust layers. Corrosion Science,1983,23(9):969-985
    [28]Stratmann M, Hoffmann K. In situ Mossbauer spectroscopic study of reactions within rust layers. Corrosion Science 1989,29 (11/12):1329-1352
    [29]Toshiaki O, Tomohiro K. Enhancement of electric conductivity of the rust layer by adsorption of water. Corrosion Science 2005,47(10):2571-2577
    [30]Asami K, Kikuchi M. In-depth distribution of rusts on a plain carbon steel and weathering steels exposed to coastal-industrial atmosphere for 17 years. Corrosion Science,2003,45(11): 2671-2688
    [31]刘国超,董俊华,韩恩厚,等.耐候钢锈层研究进展.腐蚀科学与防护技术,2006,18(4):268-272
    [32]黄健中,左禹.材料的耐蚀性和腐蚀数据.北京:化学工业出版社,2005:81-93
    [33]Vera R, Rosales B M, Tapia C. Effect of the exposure angle in the corrosion rate of plain carbon steel in a marine atmosphere. Corrosion Science 2003,45:321-33
    [34]Kim S T, Yasuaki M, Yoshio T. Assessment of the effect of air pollution on material damages in Northeast Asia. Atmospheric Environment,2004,38(1):37-48
    [35]于福州.金属材料的耐腐蚀性能.北京:科学出版社,1982:50
    [36]王笑天.金属材料学.北京:机械工业出版社,1987:63
    [37]Stratmann M, Bohnenkamp K, Ramchandran T. The influence of copper upon the atmospheric corrosion of iron. Corrosion Science 1987,27:905-926
    [38]Kan T. Metallurgical Transactions,1985,5:83
    [39]贾书君,刘清友,汪兵,等.磷对低碳钢耐大气腐蚀性能的影响.中国腐蚀与防护学报,2007,27(3):137-141
    [40]Dillmann P, Balasubramaniam R, Beranger G. Characterization of protective rust on ancient Indian iron using microprobe analyses. Corrosion Science 2002,44:2231-2242
    [41]杨红梅,王向东,卢吉,等.稀土对含磷钢耐腐蚀性能的影响.钢铁,2007,42(12):69-72
    [42]Kamimura T, Nasu S, Segi T. Corrosion behavior of steel under wet and dry cycles containing Cr3+ ion. Corrosion Science 2003,45:1863-1879
    [43]Zhang Q C, Wu J S, Wang J J, et al. Corrosion behavior of weathering steel in marine atmosphere. Materials chemistry and physics,2003,77(2):603-608
    [44]Minoru I, Kouji T, Satoshi I, et al. Performances of coastal weathering steel. Nippon Steel Technical Report,2000,81:79-84
    [45]Akira U, Hiroshi K, Takashi K.3%-Ni Weathering Steel Plate for Uncoated Bridges at High Airborne Salt Environment. Nippon Steel Technical Report,2003,87:21-23
    [46]Toshiyasu N, Hideki K, Kazuhiko N, et al. Effect of Co and Ni on the corrosion behavior of low alloy steels in wet/dry environments. Corrosion Science 2000,42:1611-1621
    [47]Н Л 托马晓夫,Г Н切尔诺娃,著.曹铁梁等译.腐蚀与耐腐蚀合金.北京:化学工业出版社,1982
    [48]朱相荣,王相润等.金属材料的海洋腐蚀与防护.北京:国防工业出版社,1999
    [49]Sei J. Oh, Cook D C, Townsend H E. Atmospheric corrosion of different steels in marine, rural and industrial environments. Corrosion Science,1999,41(9):1687-1702
    [50]Nishimura T. Corrosion resistance of Si-Al-bearing ultrafine-grained weathering steel. Corrosion Science,2008,50(5):1306-1312
    [51]Nishimura T. Corrosion resistance of Si and Ai-bearing ultrafine grained weathering steel. Materials Science Forum,2005,475(1):55-60
    [52]张起生.Si对碳钢耐大气腐蚀性能影响的研究.大连理工大学硕士论文,2006
    [53]Guo J, Yang S W, Shang C J, et al. Influence of carbon content and microstructure on corrosion behaviour of low alloy steels in a Cl- containing environment. Corrosion Science,2009,51(2): 242-251
    [54]Zhang C L, Cai D Y, Liao B, et al. A study on the dual-phase treatment of weathering steel 09CuPCrNi. Materials Letters,2004,58(9):1524-1529
    [55]Huang H H, Tsai W T, Lee J T. The influences of microstructure and composition on the electrochemical behavior of A516 steel weldment. Corrosion Science,1994,36(6):1027-1038
    [56]米丰毅,王向东,汪兵,等.显微组织对低碳钢耐蚀性的影响.中国腐蚀与防护学报,2010,30(5):391-395
    [57]Kalmykov V V, Razdobreev V G. Effect of the structure of carbon steel on its corrosion in 3% NaCl solution under alternating immersion. Protection of metals,1999,35(6):660-662
    [58]Wan Y, Yan C W, Tan J, et al. Characterization of the rust on carbon steels pre-corroded by different gaseous pollutants. Journal of Materials Science,2003,38(17):3597-3602
    [59]汪兵,刘清友,贾书君,等.尺寸对普碳钢耐工业环境下大气腐蚀性能的影响.中国腐蚀与防护学报,2007,27(4):193-196
    [60]Yadav S, Narula M, Shrinivas R, et al. Effect of grain size on polarisation behaviour of some weather resisitant steels. Steel India,1999,22(2):20-26
    [61]陈小平,王向东,江社明,等.晶粒尺寸对耐候钢抗大气腐蚀性能的影响.材料保护,2005,38(7):14-17
    [62]Masao K, Hiroshi K. Nanoscopic Mechanism of Protective Rust Formation on Weathering Steel Surfaces. Nippon Steel Technical Report,2005, (90):86-91
    [63]Dubois F, Mendibide C, Pagnier T, et al. Raman mapping of corrosion products formed onto spring steels during salt spray experiments. A correlation between the scale composition and the corrosion resistance. Corrosion Science,2008,50(12):3401-3409
    [64]Dillmann P, Mazaudier F, Hoerle S, et al. Advances in understanding atmospheric corrosion of iron. I. Rust characterisation of ancient ferrous artefacts exposed to indoor atmospheric corrosion. Corrosion Science,2004,46(6):1401-1429
    [65]Keiser J, Brown C, Heidersbach R. Characterization of the passive film formed on weathering steels. Corrosion Science,1983,23(3):251-259
    [66]Antunes R A, Costa I, Faria D L A. Characterization of corrosion products formed on steels in the first months of atmospheric exposure. Materials Research,2003,6(3):403-408
    [67]王传雅,戚正风.耐候钢的化学成分和性能.特殊钢,1997,18(1):13-19
    [68]杨熙珍,杨武.金属腐蚀电化学热力学——电位—PH图及其应用.北京:化学工业出版社,1991
    [69]Florian M. Corrosion Mechanisms. Marcel Dekker, Inc, New York,1986:211-279
    [70]Dubois F, Mendibide C,.Pagnier T, et al. Raman mapping of corrosion products formed onto spring steels during salt spray experiments. A correlation between the scale composition and the corrosion resistance. Corrosion Science,2008,50(12):3401-3409
    [71]Keiser J T, Brown C W, Heidersbath R H. The electrochemical reduction of rust films on weathering steel surfaces. Journal of the Electrochemical,1982,129(12):2686-2689
    [72]Misawa T, Kyuno T, Suetaka W, et al. The mechanism of atmospheric rusting and the effect of Cu and P on the rust formation of low alloy steels. Corrosion Science.1971,11(24):35-48
    [73]张全成,吴建生,陈家光,等.暴露1年的耐大气腐蚀用钢表面锈层分析.中国腐蚀与防护学报,2001,21(5):297-300
    [74]杨晓芳,郑文龙.暴露2年的碳钢与耐候钢表面锈层分析.腐蚀与防护,2002,23(3):97-101
    [75]张全成,吴建生,郑文龙,等.耐候钢表面稳定锈层形成机理的研究.腐蚀科学与防护技术,2001,12(3):143-146
    [76]山下正人等.暴露25年的耐候钢稳定铁锈层.世界钢铁.1995,2:55-67
    [77]Kamimura T, Hara S, Miyuki H, et al. Composition and protective ability of rust layer formed on weathering steel exposed to various environments. Corrosion Science 2006,48:2799-2812
    [78]Sun-Tae K, Yasuaki M, Yoshio T. Assessment of the effect of air pollution on material damages in Northeast Asia. Atmospheric Environ.2004,38:37-48
    [79]Chen Y Y, Tzeng H J, Wei L I, et al. Mechanical properties and corrosion resistance of low-alloy steels in atmosphere conditions containing chloride. Materials Science and Engineering A,2005, 398(1-2):47-59.398
    [80]Kim K Y, Chung Y H, Hwang Y H, et al. Effects of calcium modification on the electrochemical and corrosion properties of weathering steel. Corrosion,2002,58(6):479-489
    [81]陈新华,董俊华,韩恩后,等.干湿交替环境下Cu、Mn合金化对低合金钢耐腐蚀行为的影响.材料保护,2007,40(10):19-22
    [82]吴红艳,杜林秀,刘相华,等.变形条件对Mn-Cu耐候钢连续冷却相变的影响.机械工程学报.2007,43(9):145-150
    [83]陈小平.磷-稀土复合经济型耐候钢耐大气腐蚀的机理研究.北京:钢铁研究总院博士论文.2009
    [84]Mi F Y, Wang X D, Liu Z P, et al. Study on Industrial Atmospheric Corrosion Resistance of P-RE Weathering Steel. Journal of Iron and Steel Research(International),2011,18(6)
    [85]Public Works Research Institute (Ministry of Construction), The Kozai Club, Japan Association of Steel Bridge Construction:Cooperative Research Report for Application of Weathering Steel Material to Bridge(ⅩⅩ).1993,88:1
    [86]Nakayama T, Yuse F, Haruya Kawano, et al. Development of atmospheric corrosion-resistant steel plates for unpaint or paint use in chloride environments. Kobe Steel Engineering Reports, 2001,51(1):29-33
    [87]Isamu K, Kazuhiko S, Masahiro T, et al.. Estimating corrosion loss of Ni-added highly corrosion resistant weathering steel based on field exposure testing. Corrosion Engineering.2006, 55(4):191-205
    [88]Choi B K, Jung W T, Kim K Y. Role of Alloying Elements in Corrosion Resistance of Ca-Modified Weathering Steel in Seaside Environment. The 3rd China-Korea Joint Symposium on Advanced Steel Technology. Shanghai, Weimin Mao and Kyoo young Kim,2003:147-157
    [89]Miki C. High strength and high performance steels and their use in bridge structures. Journal Constructional Steel Research.2002,58:4
    [90]杨卫平.高性能钢在美国的开发及应用.建设用钢,2005,20(4):80-83
    [9]]徐光宪.稀土.北京:冶金工业出版社,1995
    [92]杜挺,王龙妹,吴夜明,等.稀士在钢中应用的热力学基础作用、问题和前景.中国稀土学会稀土在钢中应用委员会·稀土在钢中应用技术研讨会论文集.包头:包钢冶金研究所,1999:1-7
    [93]Waudby P E. Rare earth additions to steel. International Metal Reviews,1978,23(2):74-98
    [94]Lin Q, Guo F, Zhu X Y. Behaviors of Lanthanum and Cerium on Grain Boundaries in Carbon Manganese Clean Steel. Journal of the Chinese Rare Earth Society,2007,25(4):485-489
    [95]李春龙.稀士在钢中的应用及需注意的一些问题.稀土,2001,22(4):1-6
    [96]Guo F, Lin Q. Study on Interaction between Lanthanum and Phosphor in Purity Steel. Journal of the Chinese Rare Earth Society,2006,24(special issue):409-412
    [97]Xu T D. Non-equilibrium co-segregation to grain boundaries. Scripta Materialia,1997,37(11): 1643-1650
    [98]Binggel C J, Scott L V. Rare earth usage in BOF steelmaking. Electric Furnace Proceedings,1973, 31:171
    [99]Luyckx. Lanthanide additions for S, P, Pb, Sn, Sb… control through slab casting, Chicago: Steelmaking conference proceedings,1994:649-657
    [100]Liu Y H, Lin Q, Ye W, et al. Behavior of Rare Earths in Ultra Low Sulfur Microalloyed Steel. Journal of the Chinese Rare Earth Society,1997,17(3):207-212
    [101]余景生,余宗森,章复中.稀土处理钢手册[M].北京:冶金工业出版社,1993:25
    [102]余宗森,胡颖,兰高志,等.稀土元素与磷、锡杂质在α铁晶界上的交互作用.中国稀土学报,1991,9(3):238-242.
    [103]Lin Q, Fu T L, Yu Z S, et al. Study on the interaction between rare earth and carbon in high carbon steel. Journal of the Chinese Rare Earth Society,1995,13(3):190-195
    [104]李丕钟,罗尔夫·乌托伯格.第二届稀土在钢中应用学术会议论文摘要.中国稀士学会.漳州,1984,36(3):56
    [105]路世英,杨长强,李文成,等.第二届稀土在钢中应用学术会议论文摘要.中国稀士学会.漳州,1984,36(3):54
    [106]王龙妹,杜挺,王跃奎09CuPTi(RE)耐候钢中稀土作用机制研究.中国稀士学报,2003,21(5):491-494
    [107]米丰毅,刘志璞,于向东,等.稀士对低碳钢耐工业大气腐蚀作用研究.腐蚀与防护.2010,31(4):279-282
    [108]岳丽杰,王龙妹,朴秀玉,等10PCuRE钢的耐大气腐蚀性及腐蚀机理.钢铁研究学报,2006,18(1):34-38
    [109]王龙妹,杜挺,王跃奎09CuPTi(RE)耐候钢中稀土作用机制研究.中国稀士学报,2003,21(5): 491-494.
    [110]林勤,李军,张路明.高强度耐大气腐蚀钢中稀土提高耐蚀机理研究.稀土,2008,29(1):63-66
    [111]张蕙文,毛裕文,孙明华,等.稀土对钢耐大气腐蚀性能的影响.北京科技大学学报,1994,16(5)491-495
    [112]李春艳,王向东,江社明,等.稀土对低碳钢耐大气腐蚀性能影响的研究.稀士,2005,26(6):23-28
    [113]林勤,陈帮文,郭峰,等.稀士改善09CuPTiRE耐候钢耐蚀性的作用机理.稀土,2003,24(5):26-28
    [114]郭峰,林勤,张志平,等.稀土对碳锰钢耐蚀性能的影响.稀土,2003,24(5):29-32
    [115]汪兵,刘清友,王向东等.稀土Ce和La对碳钢在NaCl溶液中的缓蚀机理.中国腐蚀与防护学报.2007,27(3):151-155
    [116]GB/T 223.49-1994钢铁及合金化学分析方法萃取分离-偶氮氯膦mA分光光度法测定稀土总量
    [117]赵楠,穆海玲,周丽萍,等35CrMoA钢连杆螺栓断裂失效分析.金属热处理,2008,33(9):111-114
    [118]张春亚,陈德斌,陈学群,等.低碳钢的点蚀诱发敏感性研究.海军工程大学学报,2001,13(3):1-6
    [119]褚幼义,余宗森,袁建明,等.稀土在低硫16Mn钢中的作用.北京科技大学学报,1987,3
    [120]沈佩芳.稀土金属在钢中的应用.金属学报,1978,14(2):188-216
    [121]Guo F, Lin Q, Sun X Y. Effect of Rare Earths on Corrosion Resisting Properties of Carbon-Manganese Clean Steels. Journal of Rare Earths,2004,22(4):533-536
    [122]王福明,黄正混,郭笑傲,等.铈对重轨钢中珠光体相变及组织的影响.中国稀土学报,1994,12(3):239-242
    [123]Li C L, Wang Y S, Chen J J, et al. Effects of Rare Earth on Structure and Mechanical Properties of Clean BNbRE Steel. Journal of Rare Earths,2005,23(4):470-473
    [124]Yue L J, Wang L M, Han J S. Effects of rare earth on inclusions and corrosion resistance of 10PCuRE weathering steel. Journal of Rare Earths,2010,28(6):952-956
    [125]林勤,叶文,杜垣胜,等.稀土在钢中的作用规律与最佳控制.北京科技大学学报,1992,14(2):225-231
    [126]魏寿昆.冶金过程热力学.上海:上海科学技术出版社,1980
    [127]王龙妹,杜挺,吴夜明.稀土元素在铁基溶液中与硫作用生成RES与RE2S3的热力学研究.稀土,1987,6:11-18
    [128]张路明.高强度耐大气腐蚀钢中稀土作用机理及最佳化研究.北京科技大学硕士论文,2006
    [129]黄希枯.钢铁冶金原理(第三版).北京:冶金工业出版社,2002:104-111
    [130]李代钟.钢中的非金属夹杂物.北京:科学出版社,1983
    [131]Smallman R E, Bishop R J, Modern physical metallurgy and materials engineering [M]. UK: Butterworth Heinemann,1963:113
    [132]Mclean D, Northcott L. Journal of the Iron and Steel Institute,1948,159(2):169
    [133]李平安,吴承建.铈在Fe-0.10%Ce合金中晶界偏聚的测定及合金中Fe-5Ce相的物相分析.钢铁,1983,18(9):32-36.
    [134]林勤,姚庭杰,刘爱生,等.稀土在石油套管钢中的应用研究.中国稀士学报.1996,14(2):160-165
    [135]余宗森,褚幼义等.钢中稀士[M].北京:冶金工业出版社.1982:15
    [136]张芳,杨吉春,刘亚辉.镧对SS400钢组织及力学性能的影响.中国稀土学报,2008,26(6):738-743
    [137]韩其勇,霍成章,钟伟珍,等.Ce在FeCrAl耐热合金和16Mn等钢中的显微分布.金属学报1986,22(4):A293-296
    [138]林翠,李晓刚,王光雍.金属材料在污染大气环境中初期腐蚀行为和机理研究进展.腐蚀科学与防护技术,2004,16(2):90-96
    [139]刘思峰,郭天榜,党耀国,等.灰色系统理论及其应用.北京:科学出版社
    [140]杜挺.稀土碱土等元素的物理化学及在材料中的应用.北京:科学出版社,2005:224-225
    [141]陈小平,王向东,刘清友,等.P-RE复合添加提高钢铁材料耐大气腐蚀性能的机制研究.钢铁,2010,45(2):90-94
    [142]Weissenrieder J, Leygraf C. In site studies of filiform corrosin of iron. Journal of the electrochemical society,2004,151(3):165-171
    [143]Leidheiser H, Music S. The atmospheric corrosion of iron as studied by Mossbauer spectroscopy. Corrosion Science,1982;22(12):1089-1096
    [145]Tsai S Y, Shih H C. A statistical failure distribution and lifetime assessment of the hsla steel plates in H2S containing environments. Corrosion Science,1996,38(5):705-719
    [146]Hoerl S, Mazaudier F, Dillmann P, et al. Advances in understanding atmospheric corrosion of iron. (Ⅱ). Mechanistic modelling of wet-dry cycles. Corrosion Science,2004,46(6):1431-1465
    [147]廖国栋,吴国华,苏少燕.金属材料暴露试验与人工加速试验腐蚀速率的研究.环境试验.2005,12:13
    [148]柯伟.中国腐蚀调查报告.北京:化学工业出版社,2003.10
    [149]Nishimura T, Katayama H, Noda K, et al. Electrochemical behavior of rust formed on carbon steel in a wet/dry environment containing chloride ions. Corrosion,2000,56(9):935-941
    [150]Yoon S C, Jae J S, Kim JG. Effects of Cr, Cu, Ni and Ca on the corrosion behavior of low carbon steel in synthetic tap water. Journal of Alloys and Compounds,2005,391 (1-2):162-169
    [151]林高用,杨伟,万迎春,等.微量稀土对Ha177-2铜合金组织及耐腐蚀性能的影响.中国腐蚀与防护学报,2010,30(4):262-268
    [152]Bethencourt M, Botanal F, Calvino J, et al. Lanthanide compounds as environmentally-friendly corrosion inhibitors of aluminium alloys:a review. Corrosion Science,1998,40(11):1803-1819
    [153]汪兵,刘清友,王向东,等.稀土对普碳钢在0.3 mol/L氯化钠溶液中耐蚀性能的影响研究.金属学报,2008,44(7):863-866
    [154]魏宝明.金属腐蚀理论及应用.北京:化学工业出版社,1984:83
    [155]吴萌顺,方智,何积铨,等.腐蚀试验方法与防腐蚀检测技术.北京:化学工业出版社,1996:40-43
    [156]张春亚,胡裕龙,于国荣,等.低碳钢点蚀诱发部位的实验研究.腐蚀科学与防护技术,2007,19(3):174-177
    [157]Wranglen G, Inam Khokhar M. On the relation between corrosion potential and galvanic corrosion of C-steels in acid solutions. Corrosion Science,1969,9(6):439-441
    [158]Srivastava S C, Ives M B. Dissolution of inclusion in low-alloy steel exposed to chloride-containing environments. National association of corrosion engineers,1987,43(11): 687-692
    [159]Isaacs H S, Davenport A J, Shipley A. The electrochemical response of steel to the presence of dissolved cerium. J Electrochem Soc,1991,138(2):390-393
    [160]曹楚南,张鉴清.电化学阻抗谱导论.北京:科学出版社,2002:188-189
    [161]王佳,曹楚南,林海潮.孔蚀发展期的电极阻抗频谱特征.中国腐蚀与防护学报,1989;9(4):271-279
    [162]杨仲年,张昭,苏景新,等.耐候钢在2.0% NaCl中性溶液中的腐蚀过程.金属学报.2005,41(8):860-864
    [163]Tousek J. Theoretical aspects of the localized corrosion of metals[M]. Trans Technol Publ, Ltd. Switzland,1995
    [164]屈庆,严川伟,白玮,等NaCl在A3钢大气腐蚀中的作用.中国腐蚀与防护学报,2003,23(3):160-163
    [165]Eklund G S. Initiation of pitting at sulfide inclusion in stainless steel. Journal of the Electrochemical Society,1974,121(4):467-473
    [166]Wranglen G. Pitting and surphide inclusion in steel. Corrosion Science,1974,14(5):331-349
    [167]Silva M, Williams F G. Pitting of plain carbon steels in acidic solution. Surface Technology,1977, 6(2):131-137
    [168]Szklarska Z, Lunarska E. The effect of inclusions on the susceptibility of steels to pitting, stress corrsion cracking and hydrogen embrittlement. Materials and Corrosion,1981,32(11):478-485
    [169]张全成,吴建生,郑文龙,等.合金元素的二次分配对耐候钢抗大气腐蚀性能的影响.材料保护,2001,34(4):4-5
    [170]Tatsuo I, Minori K, Akemi Y, et, al. Influences of metal ions on the formation of y-FeOOH and magnetite rusts. Corrosion Science,2002,44(5):1073-1086
    [171]Itagaki M, Nozue R, Watanabe K, et, al. Electrochemical impedance of thin rust film of low-alloy steels. Corrosion Science,2004,46(5):1301-1310
    [172]Corvo F, Mendoza A R, Autie M, et, al. Role of water adsorption and salt content in atmospheric corrosion products of steel. Corrosion Science,1997,39(4):815-820
    [173]梁彩凤,候文泰.碳钢、低合金钢16年大气暴露腐蚀研究.中国腐蚀与防护学报,2005,25(1):1-6
    [174]侯文泰,于敬敦,梁彩凤.钢的大气腐蚀性4年调查及其机理研究.腐蚀科学与防护技术,1994,6(2):137-142
    [175]屈庆,严川伟,张蕾,等NaCl和SO2在A3钢初期大气腐蚀中的协同效应.金属学报,2002,38(10):1062-1066
    [176]鲁伟明.晶体学与岩相学.北京:化学工业出版社,2008
    [177]Yamashita M, Miyuki H, Matsuda Y, et al. Compositional gradient and ion selectivity of Cr substituted fine goethite as the final protective rust layer on weathering steel. 鉄 と 鋼, 1997,:83(7):36-41
    [178]Okada H, Hosoi Y, Yukawa K, et al. Structure of the Rust Formed on Low Alloy Steels in Atmospheric Corrosion. 鉄 と 鋼,1969,55(5):355-365
    [179]Raman A, Kuban B, Razvan A. The application of infrared spectroscopy to the study of atmospheric rust systems-I standard spectra and illustrative applications to identify rust phases in natural atmospheric corrosion products. Corrosion Science.1991,32(12):1295-1306.
    [180]于全成,王振尧,汪川.表面沉积NaCl和NaHSO3的低合金钢和碳钢在干湿交替条件下的腐蚀行为.金属学报,2010,46(9):1133-1140
    [181]Li Q X, Wang Z Y, Han W, et al. Characterization of the rust formed on weathering steel exposed to Qinghai salt lake atmosphere. Corrosion Science,2007,50(2):365-371
    [182]陈亮,刘正生,吴立新等.耐大气腐蚀钢锈层的X射线衍射与SEM分析.钢铁研究,1994,1:32-36
    [183]董俊华,曹楚南,林海潮.稀酸溶液中氯离子对工业纯铁的腐蚀机理研究.物理化学学报,1995,11(3):279-282
    [184]林勤,陈帮文,郭峰,等.稀土改善09CuPTiRE耐候钢耐蚀性的作用机理.稀土,2003,24(5):26-28
    [185]Ma Y T, Li Y, Wang F H. Corrosion of low carbon steel in atmospheric environments of different chloride content. Corrosion Science,2009,51(5):997-1006
    [186]Kwon S K, Suzuki S, Saito M, et al. Atomic-scale structure and morphology of ferric oxyhydroxides formed by corrosion of iron in various aqueous media. Corrosion Science,2006, 48(11):3675-3691
    [187]郭佳,杨善武,尚成嘉,等.大气腐蚀在低合金钢显微组织中的发生与发展.北京科技大学学报,2009,31(7):848-854
    [188]Mayne J E O. J. Appl. Chem. Ind.1964:1027
    [189]Lyon S B, Thomson G E, Johnson J B, et al. Accelerated atmospheric corrosion testing using a cyclic wet/dry exposure test:aluminum, galvanized steel and steel.Corrosion,1987, 43(12):719-726
    [190]刘卫强.烧结NdFeB永磁的腐蚀行为及机理研究.北京工业大学博士论文.2006
    [191]刘光华,孙洪志,李红英.稀土材料与应用技术.北京:化学工业出版社,2005:60

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700