用户名: 密码: 验证码:
连作黄瓜土壤生态环境特征及对黄瓜生长的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄瓜(Cucumis sativus L.)是一种世界性蔬菜,同时作为我国设施园艺栽培的第一大蔬菜作物,在蔬菜产业中地位均十分重要。随着设施栽种面积的逐年增加,其生产趋于规模化发展,然而由于生产栽培条件的限制及经济利益的驱使,设施内种植蔬菜种类单一,黄瓜连作现象普遍存在,严重制约了设施的可持续利用,成为亟待解决的问题,黄瓜连作障碍问题越来越多的得到了人们的重视。
     本文以不同黄瓜连作茬次土壤为研究对象,结合地上部黄瓜的生长状况,全面研究了黄瓜自然连作状态下不同连作茬次土壤中酚酸类物质含量、土壤营养状况、主要土壤微生物菌群、土传病原菌群落结构及大小的变化,以进一步揭示设施黄瓜连作障碍的产生的规律和机理,为采取相应的农业措施来有效地减轻连作障碍、提高黄瓜产量和品质、保持土地的可持续利用提供理论依据。所得主要结果如下:
     1.盆栽黄瓜连作第7茬表现出明显的生理障碍,黄瓜的叶面积、根体积、植株干重、根系活力、净光合速率等指标均低于其它各茬次。连作第9茬黄瓜生长状况比第7茬又有所好转。
     2.连作黄瓜土壤pH值从第1茬到第7茬逐渐降低,第9茬比第7茬又有所升高。连作黄瓜土壤EC值从第1茬到第7茬逐渐升高,第9茬比第7茬又有所降低。
     3.连作黄瓜土壤从第1茬到第7茬呈现富营养化的趋势。土壤碱解氮和速效磷含量从第1茬到第7茬逐渐升高,第9茬比第7茬有所降低。土壤有机质含量变化不明显。
     4.土壤脲酶、中性磷酸酶和过氧化氢酶活性均在第7茬最低,第9茬高于第7茬。土壤中性磷酸酶活性从第1茬到第5茬逐渐升高,土壤脲酶和过氧化氢酶活性在其它茬次间变化规律不明显。各茬次间土壤多酚氧化酶活性变化不明显。
     5. PCR-DGGE结果表明,连作改变了土壤细菌和真菌群落结构。连作对黄瓜土壤活性细菌和真菌群落结构比对总细菌和真菌群落结构有更大的影响,采用基于RNA的方法更容易了解土壤微生物群落的变化。同时,生长时期对土壤细菌和真菌群落结构的影响要大于连作茬次对土壤细菌和真菌群落结构的影响。
     6. qPCR结果表明,黄瓜连作第3茬土壤细菌16S rRNA拷贝数显著高于第1茬p<0.05),土壤细菌16S rRNA拷贝数从连作第3茬到第9茬呈降低的趋势;黄瓜土壤真菌ITS rRNA拷贝数从第1茬到第7茬随着连作茬次的增加逐渐增加,第9茬黄瓜土壤真菌ITS rRNA拷贝数比第7茬显著下降(p<0.05)。
     7.连作改变了土壤Fusarium菌群落结构。Fusarium菌群在连作第3茬减小,从第3茬到第7茬随连作茬次的增加逐渐增大,第7茬达到最多,在第9茬又减小。
     8.用HPLC法在连作黄瓜土壤中共检测到6种酚类化合物,对羟基苯甲酸、丁香酸、香草酸、香草醛、p-香豆酸和阿魏酸。其中p-香豆酸的含量在各茬次均为最高。土壤总酚含量随着连作茬次的增加从第1茬到第5茬有增加的趋势,第7茬均显著下降,第9茬含量比第7茬又显著增加p<0.05)。
     9.不同酚类化合物处理均在不同程度上均抑制了黄瓜种子胚根伸长和黄瓜幼苗生长;同时提高了黄瓜幼苗土壤脱氢酶活性、土壤微生物生物量碳含量以及细菌和真菌群落大小,改变了土壤微生物群落结构,降低了土壤细菌DGGE图谱条带数和多样性指数,提高了土壤真菌DGGE图谱条带数和多样性指数。
     综上,黄瓜在连作第7茬表现出明显的生理障碍,黄瓜连作障碍的发生与土壤pH值的降低、EC值的升高、土壤养分含量的增加以及土壤生物学性状的变化紧密相关。连作第9茬黄瓜生长状况以及土壤质量状况比第7茬又有所好转。PCR-DGGE结果表明黄瓜连作对土壤总细菌和真菌、活性细菌、真菌、Fusarium菌群落结构产生了影响。在RNA水平比在DNA水平更能反映连作对土壤微生物群落结构的影响。qPCR结果表明黄瓜连作影响了土壤细菌、真菌和Fusarium菌群落大小。酚类化合物可以直接对黄瓜产生毒害作用,也可以通过改变土壤生物学性状来影响黄瓜生长。
As an economically important vegetable, cucumber (Cucumis sativus L.) is one of the most popular greenhouse plants. With the rapid development of horticulture in our country, the trend of a scale and specialization production in cucumber appears. Because of the restriction of plant condition and the urge of economic profits, soil sickness of cucumber is common, which severely restrichs the persistant use of horticulture and need to be solved urgently.
     In this paper, cucumber was continuously monocropped in pots for nine growing seasons. The growth condition of cucumber was observed. Soil phenolic compound contents, soil nutrient condition, soil bacterial, fungal and Fusarium community structures and sizes were also analyzed. Main results of this paper were as flowing:
     1. Cucumber of the seventh growing season showed an obvious retarded growth behavior. The leaf area, root volume and activity, and net photosynthetic rate of cucumber in the seventh growing were lower than in other growing seasons. The cucumber growth condition of the ninth growing turned better compared with the seventh growing season.
     2. In the continuously monocropped cucumber system, soil pH decreased from the first growing season to the seventh growing season, and increased in the ninth growing season. Soil EC increased from the first growing season to the seventh growing season, and decreased in the ninth growing season.
     3. The soil nutrient contents tended to increase from the first growing season to the seventh growing season. Contents of soil available nitrogen and phosphorous increase from the first growing season to the seventh growing season, and decreased in the ninth growing season. Changes of soil organic matter were not obvious in these different treatments.
     4. Activities of soil urease, neutral phosphatase and catalase were the lowest in the seventh growing season among these five treatments. Soil neutral phosphatase activity increased from the first growing season to the seventh growing season. Soil urease and catalase activities showed no obvious changes in the other four treatments. Soil polyphenol oxidase activity showed no obvious changes in all treatments.
     5. PCR-DGGE results showed that the continuous monocropping of cucumber changed soil bacterial and fungal community structures. The continuous monocropping of cucumber had stronger effects on active soil bacterial and fungal community than on total soil bacterial and fungal community, indicating that the RNA-based method was more efficient in soil community researches. The influence of the cucumber growth period on soil bacterial and fungal community structures was stronger than that of the continuous monocropping.
     6. Quantative PCR was used to measure the sizes of soil bacterial and fungal communities. Soil bacterial 16S rRNA gene copy numbers were significantly higher in the third growing season than that in the first growing season (p<0.05), and soil bacterial 16S rRNA gene copy numbers tended to decrease from the third growing season to the ninth growing season. Soil fungal ITS rRNA copy numbers increased with growing season from the first to the seventh growing season, and decreased in the ninth growth season.
     7. Continuous monocropping of cucumber changed the Fusarium community structhre. The Fusarium community size (Efla gene copy numbers) decreased in the third growing season, and increased from the third to the seventh growing season, finally decreased in the ninth growing season.
     8. Six kinds of phenolic compounds were detected in the soils under cucumber in the continuously monocropped system. p-coumaric acid content was the most abundant, followed by p-hydroxybenzoic acid> syringic acid> ferulic acid> vanillin> vanillic acid. The content of soil total phenolics increased with growing season from the first to the fifth growing season, and decreased in the seventh growth season, and increased in the ninth growing season.
     9. Amendments of phenolic compound suppressed cucumber radical elongation and seedling growth, increased soil dehydrogenase activity, microbial biomass C content, and bacterial and fungal abundances. Amendments of phenolic compound also changed soil bacterial and fungal community structures, decreased DGGE band numbers and diversity indices of the soil bacterial community structure, while increased that of the soil fungal community structure.
     Overall, Cucumber of the seventh growing season showed an obvious retarded growth behavior. The increase of soil EC and soil nutrient contents, decrease of soil pH, and changes of soil biological characters were closely related to the soil sickness of cucumber. Methods at the RNA level could reflect the effects of continuous monocropping of cucumber on soil microbial community composition better than at the DNA level. Phenolic compounds could directly affect the growth of cucumber, and indirectly by changing soil biological characters.
引文
鲍士旦.2000.土壤农化分析[M].中国农业出版社,北京.
    陈捷,陈世云.1990.植株残体对黄瓜苗病的影响研究初报.辽宁农业科学,3:42-45.
    陈文新.1996.土壤和环境微生物学[M].北京农业大学出版社,北京.
    陈秀蓉,南志标.2002.细菌多样性及其在农业生态系统中的作用[J].草业科学,19:34-37.
    陈志杰,梁银丽,张淑莲,张锋,徐福利.2006.日光温室不同连作年限对黄瓜主要病害的影响[J].植物保护学报,33:219-220.
    杜慧玲,冯两蕊,郭平毅.2005.不同使用年限蔬菜大棚土壤溶质含量变化的试验研究[J].农业工程学报,21:127-130.
    杜社妮.2005.种植模式对日光温室黄瓜、番茄生长发育及土壤生物学特性的影响[D].西北农林科技大学硕士学位论文.
    范小峰,俞诗源,范亚娜,刘建新,王小玉,王贵.2006.黄土高原大棚黄瓜不同年限连作对土壤主要理化性状的影响[J].中国土壤与肥料,(6):20-22.
    封海胜,张思苏,万书波,隋清卫,左学青.1994.花生不同连作年限土壤酶活性的变化[J].花生科技,3:5-9.
    葛红莲,胡春红.2009.日光温室连作黄瓜根际微生物区系的变化[J].安徽农业科学,37:248-249.
    关荫松.1986.土壤酶及其研究方法[M].中国农业出版社,北京.
    郭晓冬.2003.设施栽培条件下土壤的连作障碍及防治措施[J].甘肃农业科技,7:38-40.
    郝再彬.苍晶,徐仲,2004.植物生理实验[M].哈尔滨工业大学出版社,哈尔滨.
    何文寿.2004.设施农业中存在的土壤障碍及其对策研究进展[J].土壤,36:235-242.
    贺丽娜,梁银丽,高静,熊亚梅,周茂娟,韦泽秀.2008.连作对设施黄瓜产量和品质及土壤酶活性的影响[J].西北农林科技大学学报(自然科学版),36:155-159.
    胡元森,刘亚峰,吴坤,窦会娟,贾新成.2006.黄瓜连作土壤微生物区系变化研究[J].土壤通报,37:126-129.
    黄锦法,李艾芬,马树国.2001.浙江嘉兴保护地土壤障碍的农化性状指标研究[J].土壤通报,32:160-162.
    焦晓丹,吴凤芝.2004.土壤微生物多样性研究方法的进展[J].土壤通报35,789-792.
    孔维栋,朱永官,傅伯杰,陈保冬,童依平.2004.农业土壤微生物基因与群落多样性研究进展[J].生态学报,24:2894-2900.
    李阜棣.1996.土壤微生物学[M].中国农业出版社,北京.
    李刚,文景芝,吴凤芝,张齐凤,叶楠.2006.连作条件下设施黄瓜根际微生物种群结构及数量消长[J].东北农业大学学报,37:444-448.
    李文庆,杜秉海,骆洪义.1996.大棚栽培对土壤微生物区系的影响[J].土壤肥料,(2):31-33.
    李文庆,贾继文,李贻学.1997.大棚蔬菜种植对土壤理化及生物性状影响规律的研究,菜园土壤肥力与蔬菜合理施肥[M].河海大学出版社,pp.76-79.
    梁银丽,陈志杰.2004.设施蔬菜土壤连作障碍原因和预防措施[J].西北园艺,(7):4-5.
    梁银丽,陈志杰,徐福利,严勇敢,杜社妮,张成娥.2003.日光温室不同连作年限对黄瓜生理特性的影响[J].西北植物学报23:1398-1401.
    刘建国,卞新民,李彦斌,张伟,李崧.2008.长期连作和秸秆还田对棉田土壤生物活性的影响[J].应用生态学报,19:1027-1032.
    刘兆辉,李小林,祝洪林.2001.保护地土壤养分特点[J].土壤通报,25:206-208.
    吕卫光,余廷园,诸海涛,沈其荣,张春兰.2006.黄瓜连作对土壤理化性状及生物活性的影响研究[J].中国生态农业学报,14:119-121.
    吕卫光,张春兰,袁飞.2002.有机肥减轻连作黄瓜自毒作用的机制[J].上海农业学报,18:52-56.
    马云华.2004.日光温室黄瓜连作土壤微生物区系与酶活性变化研究[D].山东农业大学硕士学位论文.
    马云华.魏珉,王秀峰,2004.日光温室连作黄瓜根区微生物区系及酶活性的变化[J].应用生态学报,15:1005-1008.
    任天志.2000.持续农业中的土壤生物指标研究[J].中国农业科学,33:68-75.
    唐咏,梁成华,刘志恒.1999.日光温室蔬菜栽培对土壤微生物和酶活性的影响[J].沈阳农业大学学报(自然科学版),30:16-19.
    童有为,陈淡飞.1991.温室土壤次生盐渍化的形成和治理途径的研究[J].园艺学报,18:159-162.
    王柳,张福墁,高丽红.2003.京郊日光温室土壤养分特征的研究[J].中国农业大学学报,8:62-66.
    王茹华,张启发,周宝利,廉华,马光恕.2007.浅析植物根分泌物与根际微生物的相互作用关系[J].土壤通报,38:167-172.
    吴凤芝,刘德,栾非时.1999.大棚土壤连作年限对黄瓜产量及品质的影响[J].东北农业大学学报,30:245-248.
    吴凤芝,刘德,王东凯.1998.大棚蔬菜连作年限对土壤主要理化性状的影响[J].中国蔬菜,(4):5-9.
    吴凤芝,孟立君,王学征.2006.设施蔬菜轮作和连作土壤酶活性的研究[J].植物营养与肥料学报,12:554-558.
    吴凤芝,王学征.2007.设施黄瓜连作和轮作中土壤微生物群落多样性的变化及其与产量品质的关系[J].中国农业科学,40:2274-2280.
    吴凤芝,赵凤艳,谷思玉.2002.保护地黄瓜连作对土壤生物化学性质的影响[J].农业系统科学与综合研究,18:20-22.
    吴凤芝,赵凤艳,刘元英.2000.设施蔬菜连作障碍原因综合分析与防治措施[J].东北农业大学学报,31:241-247.
    吴凤芝,周新刚.2009.不同作物间作对黄瓜病害及土壤微生物群落多样性的影响[J].土壤学报,46:899-906.
    吴金水,林启美,黄巧云,肖和艾.2006.土壤微生物生物量测定方法及其应用[M].气象出版社,北京.
    许艳丽,王光华,韩晓增.1995.连、轮作大豆土壤微生物生态分布特征与大豆根部病虫害关系的研究[J].农业系统科学与综合研究,11:311-314.
    杨海君,肖启明,刘安元.2005.土壤微生物多样性及其作用研究进展[J].南华大学学报,19:22-26.
    杨建霞.2005.日光温室黄瓜连作障碍研究及防治对策[J].甘肃农业,(11):209.
    杨建霞,范小峰,刘建新.2005.温室黄瓜连作对根际微生物区系的影响[J].浙江农业科学,(6):441-443.
    姚圣梅,杨晓红,郑雪虹.1997.蔬菜大棚土壤微生物种类及数量的初步研究[J].华中农业大学学报,16:347-350.
    由海霞.2007.设施黄瓜不同种植模式的环境效应及其化感作用研究[D].西北农林科技大学博士学位论文.
    于慧颖,吴凤芝.2008.不同蔬菜轮作对黄瓜病害及产量的影响[J].北方园艺,5:97-100.
    张昌爱,毕军,夏光利.2002.大棚土壤的理化状况和微生物状况[J].安徽农业科学,30:275-276.
    张国红,任华中,高丽红.2005.京郊日光温室土壤微生物状况和酶活性[J].中国农业科学, 138:1447-1452.
    张乃明,董艳.2004.施肥与设施栽培措施对土壤微生物区系的影响[J].生态环境,13:61-62.
    张学军,陈晓群,王黎民,赵桂芳,朱文清.2003.设施蔬菜连作障碍原因与防治措施研究[J].科学技术与工程,3:591-593.
    张雪艳,田永强,刘军,高丽红.2009.不同栽培制度下温室黄瓜土壤生物学特性的变化.应用生态学报,20(4):829-835.
    张翼,张长华,王振民.2007.连作对烤烟生长和烟地土壤酶活性的影响[J].中国农学通报,15:280-284.
    张志良,瞿伟菁.2003.植物生理学实验指导(第3版)[M].高等教育出版社,北京.
    赵凤艳,吴凤芝,刘德.2000.大棚菜地土壤理化特性的研究[J].土壤肥料,2:11-13.
    赵萌,李敏,王淼焱,王玉,张学义.2008.西瓜连作对土壤主要微生物类群和土壤酶活性的影响[J].微生物学通报,35:1251-1254.
    赵尊练,杨广君,巩振辉,郭建伟.2007.克服蔬菜作物连作障碍问题之研究进展[J].中国农学通报,23:278-282.
    郑军辉,叶素芬,喻景权.2004.蔬菜作物连作障碍产生原因及生物防治[J].中国蔬菜,(3):56-58.
    周晓芬,杨军芳.2004a.不同施肥措施及EM菌剂对大棚黄瓜连作障碍的防治效果[J].河北农业科学,8:89-92.
    周晓芬,杨军芳.2004b.设施蔬菜土壤连作障碍及防治措施探讨[J].河北农业科学,8:92-94.
    Anderson, I.C., Parkin, P.I., Campbell, C.D.2008. DNA- and RNA-derived assessments of fungal community composition in soil amended with sewage sludge rich in cadmium, copper and zinc [J]. Soil Biol. Biochem.40:2358-2365.
    Asao, T., Pramanik, M.H.R., Tomita, K., Ohba, Y., Ohta, K., Hosoki, T., Matsui, Y.1999. Influences of phenolics isolated from the nutrient solution nourishing growing cucumber(Cucumis sativus L.) plants on fruit yield [J]. J. Japan. Soc. Hort. Sci.68:847-853.
    Bais, H.P., Park, S.W., Weir, T.L., Callaway, R.M., Vivanco, J.M.2004. How plants communicate using the underground information superhighway [J]. Trends Plant Sci.9:26-32.
    Blum, U.1995. The value of model plant-microbe-soil systems for understanding processes associated with allelopathic interaction:One example, In:Inderjit, Dakshini, K.M.M., Einhellig, F.A. (Eds.), Allelopathy:Organisms, processes, and applications [D]. American Chemical Society, Washington, DC, pp.127-131.
    Blum, U.1996. Allelopathic interactions involving phenolic acids [J]. J. Nematol.28:259-267.
    Blum, U.1998. Effects of microbial utilization of phenolic acids and their phenolic acid breakdown products on allelopathic interactions[J]. J. Chem. Ecol.24:685-708.
    Blum, U., Gerig, T.M., Weed, S.B.1989. Effects of mixtures of phenolic acids on leaf area expansion of cucumber seedlings grown in different pH Portsmuth Al soil materials [J]. J. Chem. Ecol. 15:2413-2423.
    Blum, U., Shafer, S.R.1988. Microbial populations and phenolic acids in soil [J]. Soil Biol. Biochem.20:793-800.
    Blum, U., Weed, S.B., Dalton, B.R.1987. Influence of various soil factors on the effects of femlic acid on leaf expansion of cucumber seedlings [J]. Plant Soil 98:111-130.
    Blum, U., Wentworth, T.R., Klein, K., Worsham, A.D., King, L.D., Gerig, T.M., Lyu, S.W.1991. Phenolic acid content of soils from wheat-no till, wheat-conventional till, and fallow-conventional till soybean cropping systems [J]. J. Chem. Ecol.17:1045-1068.
    Bochner, B.R.2009. Global phenotypic characterization of bacteria [J]. FEMS Microbiol. Rev.33: 191-205.
    Box, J.D.1983. Investigation of the Folin-Ciocalteau reagent for the determination of polyphenolic substances in natural waters[J]. Water Res.17:511-525.
    Choesin, D.N., Boerner, R.E.J.,1991. Allyl isothiocyanate release and the allelopathic potential of Brassica napus (Brassicaceae) [J]. Am. J. Bot.78:1083-1090.
    Clement, B.G., Kehl, L.E., DeBord, K.L., Kitts, C.L.1998. Terminal restriction fragment patterns (TRFPs), a rapid, PCR-based method for the comparison of complex bacterial communities [J]. J. Microbiol. Methods 31:135-142.
    Coelho, M.R.R., Marriel, I.E., Jenkins, S.N., Lanyon, C.V., Lucy Seldin, L., O'Donnell, A.G.2009. Molecular detection and quantification of nifH gene sequences in the rhizosphereof sorghum (Sorghum bicolor) sown with two levels of nitrogen fertilizer [J]. Appl. Soil Ecol.42:48-53.
    Dalton, B.R., Weed, S.B., Blum, U.1987. Plant phenolic acids in soils:a comparison of extraction procedures [J]. Soil Sci. Soc. Am. J.51:1515-1521.
    Doran, J.W., Zeiss, M.R.2000. Soil health and sustainability:managing the biotic component of soil quality [J]. Appl. Soil Ecol.15:3-11.
    Duineveld, B.M., Kowalchuk, G.A., Keijzer, A., Van Elsas, J.D., Van Veen, J.A.2001. Analysis of bacterial communities in the rhizosphere of chrysanthemum via denaturing gradient gel electrophoresis of PCR amplified 16S rRNA as well as DNA fragments coding for 16S rRNA [J]. Appl. Environ. Microbiol.67:172-178.
    Fischer, N.H., Williamson, G.B., Weidenhamer, J.D., Richardson, D.R.1994. In search of allelopathy in the Florida scrub:the role of terpenoids [J]. J. Chem. Ecol.20:1355-1380.
    Frandberg, E., Schnurer, J.1994. Chitinolytic properties of Bacillus pabuli K1 [J]. J. Appl. Bacteriol.76:361-367.
    Frank, S.1998. Christophe new approach to utilize PCR-single-strand-conformation polymorphism for 16s rRNA gene-based microbial community analysis [J]. Appl. Environ. Microbiol.64:4870-4876.
    Gagliardo, R.W., Chilton, W.S.1992. Soil transformation of 2(3H)- benzoxazolone of rye into phytotoxic 2-amino-3Hphenoxazin-3-one [J]. J. Chem. Ecol.18:1683-1691.
    Garbeva, P., van Veen, J.A., van Elsas, J.D.2004. Microbial diversity in soil:selection of microbial populations by plant and soil type and implication on disease suppressiveness [J]. Annu. Rev. Phytopathol.42:243-270.
    Gardes, M., Bruns, T.D.1993. ITS primers with enhanced specificity for basidiomycetes: application to the identification of mycorrhiza and rusts [J]. Mol. Ecol.2:113-118.
    Garland, J.L., Mills, A.L.1991. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community level sole-carbon-source utilization [J]. Appl. Environ. Microbiol.57:2351-2359.
    Gelsomino, A., Keijzer-Wolters, A.C., Cacco, G., Van Elsas, J.D.1999. Assessment of bacterial community structure in soil by polymerase chain reaction and denaturing gradient gel electrophoresis [J]. J. Microbiol. Methethods 38:1-5.
    Gomes, N.C., Fagbola, O., Costa, R., Rumjanek, N.G., Buchner, A., Mendona-Hagler, L., Smalla, K.2003. Dynamics of fungal communities in bulk and maize rhizosphere soil in the tropics [J]. Appl. Environ. Microb.69:3758-3766.
    Goncalves, R.B., Vaisanen, M-L., Van Steenbergen, T.J.M. Sundqvist, G., Mouton, C.1999. Genetic relatedness between oral and intestinal isolates of Porphyromonas endodontalis by analysis of random amplified polymorphic DNA [J]. Res. Microbiol.150:61-68.
    Guenzi, W.D., McCalla, T.M.1966. Phytotoxic substances extracted from soil [J]. Soil Sci. Am. Proc.30:214-316.
    Hartmann, M., Widmer, F.2006. Community structure analyses are more sensitive to differences in soil bacterial communities than anonymous diversity indices [J]. Appl. Environ. Microbiol.72: 7804-7812.
    He, C.N., Gao, W.W., Yang, J.X., Bi, W., Zhang, X.S., Zhao, Y.J.2009. Identification of autotoxic compounds from fibrous roots of Panax quinquefolium L. [J]. Plant Soil 318:63-72.
    Hermosa, M.R., Keck, E., Chamorro, I., Rubio, B., Sanz, L., Vizcaino, J.A., Grondona, I., Monte, E. 2004. Genetic diversity shown in Trichoderma biocontrol isolates [J]. Mycol. Res.108:897-906.
    Hirsch, P.R., Mauchline, T.H., Clark, I.M.,2010. Culture-independent molecular techniques for soil microbial ecology. Soil Biol. Biochem.42:878-887.
    Hoshino, Y.T., Matsumoto, N.2007. DNA- versus RNA-based denaturing gradient gel electrophoresis profiles of a bacterial community during replenishment after soil fumigation [J]. Soil Biol. Biochem.39:434-444.
    Huang, H.C., Chou, C.H., Erickson, R.S.2006. Soil sickness and its control [J]. Allelopathy J.18: 1-21.
    Hubetr, D.M., Schneider, R.W.1982. Suppressive soils and plant disease [M]. American Phytopathological Soicety.
    Inbar, J., Abramsky, M., Cohen, A., Chet, I.1994. Plant growth enhancement and disease control by Trichoderma harzianum in vegetable seedlings grown under commercial conditions [J]. Europ. J. Plant Pathol.100:337-346.
    Inderjit.1996. Plant phenolics in allelopathy [J]. Bot. Rev.62:182-202,
    Inderjit.2001. Soils:environmental effect on allelochemical activity [J]. Agron. J.93:79-84.
    Inderjit.2005. Soil microorganisms:An important determinant of allelopathic activity [J]. Plant Soil 274:227-236.
    Inderjit, Duke, S.0.2003. Ecophysiological aspects of allelopathy [J]. Planta 217:529-539.
    Kandeler, E., Deiglmayr, K., Tscherko, D., Bru, D., Philippot, L.2006. Abundance of narG, nirS, nirK, and nosZ genes of denitrifying bacteria during primary successions of a glacier foreland [J]. Appl. Environ. Microbiol.72:5957-5962.
    Karlen, D.L., Andrews, S.S., Doran, J.W.2001. Soil quality:current concepts and applications [J]. Adv. Agron.74:1-40.
    Kawai, M., Matsutera, E., Kanda, H., Yamaguchi, N.2002.16S ribosomal DNA-based analysis of bacterial diversity in purified water used in pharmaceutical manufacturing processes by PCR and denaturing gradient gel electrophoresis [J]. Appl. Environ. Microbiol.68:699-704.
    Kreye, C., Bouman, B.A.M., Faronilo, J.E., Llorca, L.2009. Causes for soil sickness affecting early plant growth in aerobic rice [J]. Field Crop. Res.114:182-187.
    Kong, C.H., Wang, P., Gu, Y., Xu, X.H., Wang, M.L.2008. Fate and impact on microorganisms of rice allelochemicals in paddy soil. Agri. Food Chem.56:5043-5049.
    Lalande, R., Gagnon, B., Simard, R.R., Cote, D.2000. Soil microbial biomass and enzyme activity following liquid hog manure application in a long-term field trial [J]. Can. J. Soil Sci.80:263-269.
    Li, C., Li, X., Kong, W., Wu, Y., Wang, J.,2010. Effect of monoculture soybean on soil microbial community in the Northeast China [J]. Plant Soil 330:423-433.
    Li, Y.T., Rouland, C., Benedetti, M., Li, F.B., Pando, A., Lavelle, P., Dai, J.2009. Microbial biomass, enzyme and mineralization activity in relation to soil organic C, N and P turnover influenced by acid metal stress [J]. Soil Biol. Biochem.41:969-977.
    Lipson, D.A., Schadt, C.W., Schmidt, S.K.2002. Changes in soil microbial community structure and function in an alpine dry meadow following spring snow melt [J]. Microb. Ecol.43:307-314.
    Marilley, L., Vogt, G., Blanc, M.1998. Bacterial diversity in the bulk soil perenne and Trifolium repens as revealed by PCR restriction and rhizosphere fractions of analysis [J]. Plant Soil 198:219-224.
    Marschner, P., Grierson, P.F., Rengel, Z.2005. Microbial community composition and functioning in the rhizosphere of three Banksia species in native woodland in Western Australia [J]. Appl. Soil Ecol. 28:191-201
    Marsh, T.L.1999. Terminal restriction fragment length polymorphism (T-RFLP):an emerging method for characterizing diversity among homologous populations of amplification products [J]. Curr. Opin. Microbiol.2:323-327.
    Meincke, R., Weinert, N., Radl, V., Schloter, M., Smalla, K., Berg, G.2010. Development of a molecular approach to describe the composition of Trichoderma communities [J]. J. Microbiol. Meth.80: 63-69.
    Muscolo, A., Sidari, M.2006. Seasonal fluctuations in soil phenolics of a coniferous forest:effects on seed germination of different coniferous species [J]. Plant Soil 284:305-318.
    Muyzer, G., de Waal, E.C., Uitterlinden, A.G.1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes encoding for 16S rRNA [J]. Appl. Environ. Microb.59:695-700.
    Nair, M.G., Whiteneck, C.J., Putnam, A.R.1990.2,2'-oxo-1,1'-azobenzene, a microbially transformed allelochemical from 2,3-benzoxazorinone:Ⅰ [J]. J. Chem. Ecol.16:353-364.
    Nishio, M., Kusano, S.1975. Effect of root residues on the growth of upland rice [J]. Soil Sci. Plant Nutr.21:391-395.
    O'Donnell, K., Kistler, H.C., Cigelnik, E., Ploetz, R.C.1998. Multiple evolutionary origins of the fungus causing Panama-disease of banana:concordant evidence from nuclear and mitochondrial gene genealogies [J]. Proc. Natl. Acad. Sci. U.S.A.95:2044-2049.
    Pace, N.R.1997. A molecular view of microbial diversity and the biosphere [J]. Science 276: 734-740.
    Paul, E.A.2007. Soil microbiology, ecology, and biochemistry [M]. Academic Press, San Diego.
    Pennanen, T., Caul, S., Daniell, T.J., Griffiths, B.S., Ritz, K., Wheatley, R.E.2004. Community-level responses of metabolically-active soil microorganisms to the quantity and quality of substrate inputs[J]. Soil Biol. Biochem.36:841-848.
    Phillips, D.A., Fox, T.C., King, M.D., Bhuvaneswari, T.V., Teuber, L.R.2004. Microbial products trigger amino acid exudation from plant roots [J]. Plant Physiol.136:2887-2894.
    Pramanik, M.H.R., Nagai, M., Asao, T., Matsui, Y.2000. Effects of temperature and photoperiod on phytotoxic root exudates of cucumber (Cucumis sativus) in hydroponic culture [J]. J. Chem. Ecol.26: 1953-1967.
    Qu, X.H., Wang, J.G.2008. Effect of amendments with different phenolic acids on soil microbial biomass, activity, and community diversity [J]. Appl. Soil Ecol.39:172-179.
    Ramasoota, P., Chansiripornchai, N., Kallenius, G.2001. Comparison of Mycobacterium avium complex(MAC) strains from pigs and humans in Sweden by random amplified polymorphic DNA(RAPD) using standardized reagents [J]. Ve. Microbiol.78:251-259.
    Rice, E.L.1984. Allelopathy [M]. Academic Press, Orlando.
    Romeo, J.T.2000. Raising the baem:moving beyond phytotoxicity. J. Chem. Ecol.26,2011-2014.
    Schmidt, S.K., Lipson, D.A.2004. Microbial growth under the snow:implications for nutrient and allelochemical availability in temperate soils [J]. Plant Soil 259:1-7.
    Shafer, S.R., Blum, U.1991. Influence of phenolic acids on microbial populations in the rhizosphere of cucumber [J]. J. Chem. Ecol.17:369-389.
    Singh, H.P., Batish, D.R., Kohli, R.K.1999. Autotoxicity:Concept, organisms and ecological significance [J]. Crit. Rev. Plant Sci.18:757-772.
    Siqueira, J.O., Nair, M.G., Hammerschmidt, R., Safir, G.R.1991. Significance of phenolic compounds in plant-soil-microbial systems [J]. Crit. Rev. Plant Sci.10:63-121.
    Smith, E., Leeflang, P., Wernars, K.1997. Detection of shifts in microbial community structure and diversity in soil caused by copper contamination using amplified ribosomal DNA restriction analysis [J]. FEMS Microbiol. Ecol.23:249-261.
    Tharayil, N., Bhowmik, P.C., B., X.2006. Preferential sorption of phenolic phytotoxins to soil: implications for altering the availability of allelochemicals [J]. J. Agric. Food Chem 54:3033-3040.
    Tokunaga, T.K., Wan, J.M., Hazen, T.C., Schwartz, E., Firestone, M.K., Sutton, S.R., Newville, M., Olson, K.R., Lanzirotti, A., Rao, W.2003. Distribution of chromium contamination and microbial activity in soil aggregates [J]. J. Environ. Qual.32:541-549.
    Torsvik, V., Daae, F.L., Sandaa, R.-A., Ovreas, L.1998. Review article:novel techniques for analysing microbial diversity in natural and perturbed environments [J]. J. Biotechnol.64:53-62.
    Vallaeys, T., Topp, E., Muyzer, G.1997. Evaluation of denaturing gradient gel electrophoresis in the detection of 16SrDNA sequence variation in rhizobia and methanotrophs [J]. FEMS Microbiol. Ecol.,24: 279-285.
    van Elsas, J.D., Duarte, G.F., Keijzer-Wolters, A.C., Smit, E.2000. Analysis of the dynamics of fungal communities in soil via fungal-specific PCR of soil DNA followed by denaturing gradient gel electrophoresis [J]. J. Microbiol. Methods 43:133-151.
    Varma, A., Oelmuller, R.2007. Advanced Techniques in Soil Microbiology. Springer-Verlag, Berlin.
    Wakelin, S.A., Warren, R.A., Kong, L., Harvey, P.R.2008. Management factors affecting size and structure of soil Fusarium communities under irrigated maize in Australia [J]. Appl. Soil Ecol.39: 201-209.
    Welbaum, G.E., Sturz, A.V., Dong, Z., Nowak, J.2004. Managing soil microorganisms to improve productivity of agro-ecosystems [J]. Crit. Rev. Plant Sci.23:175-193.
    White, T.J., Buns, T.D., Lee, S., Taylor, J.1990. Analysis of phylogenetic relationships by amplification and direct sequencing of ribosomal RNA genes, In:Innis, M.A., Gefland, D.H., Sninsky, J.J., White, T.J. (Eds.), PCR protocols:A guide to methods and applications [M]. Academic, New York, pp.315-322.
    Wilkinson, S.C., Anderson, J.M.2001. Spatial patterns of soil microbial communities in a Norway spruce (Piceaabies) plantation [J]. Micro. Ecol.42:248-255.
    Williamson, G.B., Obee, E.M., Weidenhamer, J.D.1992. Inhibition of Sckizachyrium scoparium (poaceae) by the allelochemical hydrocinnamic acid [J]. J. Chem. Ecol.18:2095-2105.
    Wu, F., Wang, X., Xue, C.2009. Effect of cinnamic acid on soil microbial characteristics in the cucumber rhizosphere [J]. Euro. J. Soil Biol.45:356-362.
    Xu, Y., Wang, G., Jin, J., Liu, J., Zhang, Q., Liu, X.2009. Bacterial communities.in soybean rhizosphere in response to soil type, soybean genotype, and their growth stage [J]. Soil Biol. Biochem. 41:919-925.
    Ye, S.F., Yu, J.Q., Peng, Y.H., Zheng, J.H., Zou, L.Y.2004. Incidence of Fusarium wilt in Cucumis sativus L. is promoted by cinnamic acid, an autotoxin in root exudates [J]. Plant Soil 263:143-150.
    Yergeau, E., Filion, M., Vujanovic, V., St-Arnaud, M.2005. A PCRdenaturing gradient gel electrophoresis approach to assess Fusarium diversity in asparagus [J]. J. Microbiol. Meth.60:143-154.
    Yu, J.Q.2001. Autotoxic potential of cucurbit crops:Phenomenon, chemicals, mechanisms and means to overcome [J]. J. Crop Prod.4:335-348.
    Yu, J.Q., Matsui, Y.1994. Phytotoxic substances in the root exudates of Cucumis sativus L. [J]. J. Chem. Ecol.20:21-31.
    Yu, J.Q., Matsui, Y.1997. Effects of root exudates of cucumber (Cucumis sativus) and allelochemicals on ion uptake by cucumber seedling [J]. J. Chem. Ecol.23:817-827.
    Yu, J.Q., Shou, S.Y., Qian, Y.R., Zhu, Z.Z., Hu, W.H.2000. Autotoxic potential of cucurbit crops [J]. Plant Soil 223:147-151.
    Yu, J.Q., Ye, S.F., Zhang, M.F., Hu, W.H.2003. Effects of root exudates, aqueous root extracts of cucumber (Cucumis sativus L.) and allelochemicals on photosynthesis and antioxidant enzymes in cucumber [J]. Biochem. Syst. Ecol.31:129-139.
    Zak, D.R., Holmes, W.E., White, D.C., Peacock, A.D., Tilman, D.2003. Plant diversity, soil microbial communities, and ecosystem function:are there any links? [J]. Ecology 84:2042-2050.
    Zelles, L., Bai, Q.Y., Rackwitz, R., Chadwick, D., Beese, F.1995. Determination of phospholipid-and lipopolysaccharide-derived fatty acids as an estimate of microbial biomass and community structures in soils[J]. Biol. Fert. Soil.19:115-123.
    Zhang, Y., Gu, M., Xia, X., Shi, K., Zhou, Y., Yu, J.2009. Effects of phenylcarboxylic acids on mitosis, endoreduplication and expression of cell cycle-related genes in roots of cucumber (Cucumis sativus L.). J. Chem. Ecol.35:679-688.
    Zheng, G., Slavik, M.F.1999. Isolation, partial purification and characterization of a bacteriocin produced by a newly isolated Bacillus subtilis strain [J]. Lett. Appl. Microbiol.28:363-367.
    Zhong, W.H., Cai, Z.C.2007. Long-term effects of inorganic fertilizers on microbial biomass and community functional diversity in a paddy soil derived from quaternary red clay [J]. Appl. Soil Ecol.36: 84-91.
    Zhou, X., Wu, F.2009. Differentially expressed transcripts from cucumber (Cucumis sativus L.) root upon inoculation with Fusarium oxysporum f. sp. cucumerinum Owen [J]. Physiol. Mol Plant Pathol.74:142-150.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700