用户名: 密码: 验证码:
电力系统谐波检测及有源抑制技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电力电子装置的广泛应用,在给电能的变换应用带来方便的同时也给电力系统带来了严重的谐波和无功污染。为此,研究有源电力滤波器以补偿电力电子装置所引起的谐波和无功污染已成为电力电子应用技术中的一个重大研究课题。由于有源滤波器的初期投资比较高,限制了其进一步应用与发展。将有源滤波器与无源滤波器相结合构成混合有源滤波器,可有效地降低有源滤波器的容量,更利于工程应用。本文首先研究了谐波及无功的检测问题,然后以补偿谐波和无功电流为目的,从控制理论和系统参数优化设计两个方面对并联有源滤波器和混合有源滤波器进行了深入的研究,研究内容包括以下几个方面:
     新型谐波及无功检测算法的研究。传统自适应谐波检测算法中步长的选择需要在收敛速度与稳态精度之间进行折衷考虑,降低了算法的实用性。为了克服此局限性,本文提出了一种改进的变步长自适应谐波电流检测方法,它利用滑动积分器提取出真正的跟踪误差,并采用带有自调整因子的模糊调整器来动态调整算法的步长,从而提高了谐波检测的动态响应速度与稳态精度。为了简化系统设计并易于硬件DSP实现,本文采用了非均匀量化的模糊化和清晰化规则,而且由于自调整因子的存在,此模糊调整器可以根据检测系统的实际情况对调整规则进行自动、实时地调整,增强了整个算法的鲁棒性。最后讨论了该算法在三相系统及各次谐波或无功均需检测情况下的应用,拓宽了算法的应用范围。
     并联有源滤波器控制策略的研究。为了实现并联有源滤波器的电流无差跟踪控制,本文将广义积分控制器引入APF电流跟踪控制环节中,并对有源滤波器广义积分控制策略及其无差特性进行了详细的分析研究。为了进一步提高控制系统的鲁棒性和抗干扰性,本文设计了一个辅助模糊调整器来根据系统的实际情况,实时地调整广义积分控制器的参数,以同时取得较好的稳态精度与动态响应速度。
     有源滤波器控制的另一个方面是直流侧电容电压的控制。为了更好地设计直流侧电压控制器,使直流电容电压稳定在参考值上,并实现有源滤波器平滑地投入启动,本文设计了直流侧电容电压的模糊和PI复合控制器。此控制器可以根据系统的实际情况对控制规则进行自动、实时地调整,具有PI控制稳态精度高、模糊控制鲁棒性强及自适应的优点。
     单调谐混合有源滤波器优化设计方法。本文推导分析了现有常用的并联混合有源滤波器中有源部分的容量与直流侧电容电压特性,并对各种混合拓扑结构的容量进行了详细的分析比较。在此基础上,针对单调谐混合有源滤波器,区别于已有的设计思路,基于有源滤波部分容量最小的原则,提出了单调谐混合有源滤波器中无源滤波支路参数的一种新的优化设计方法。并针对所设计的拓扑结构,提出了一种新型复合控制策略,在不影响系统稳定性的基础上,提高了系统的滤波性能,保证了混合有源滤波器小容量下良好的运行性能。适用于中、高压情况下的大容量混合有源滤波器多目标优化设计的研究。
     本文依托一个课题项目为背景,设计了一套并联混合有源滤波器,并将混合有源滤波器参数设计问题转化为一个多目标加约束的优化问题,详细地建立了其多目标优化模型,综合考虑了系统成本、滤波效果、无功补偿等因素,并将系统失谐性测试作为约束条件来处理。在此基础上,首次将粒子群优化算法引入混合有源滤波器多目标优化设计问题的求解当中。通过对混合滤波系统进行优化设计的研究,可以更加合理地设计和优化它们的各个参数,从而更好地发挥它们的作用,对保证系统的正常工作,提高整个混合有源滤波器的经济性、实用性起到了至关重要的作用。
The development of power electronics brings convenience to energy conversion and utilization on one hand and also causes harmonics and reactive power problems on the other hand. So the study on active power filter for compensating harmonics and reactive power becomes an important issue in the fields of power electronics. The initial investment of active power filter is very high, which limits the development and application of active power filter. The hybrid active power filter, which combines active power filter and passive power filter, can availably reduce the capacity of active power filter and is more appropriate for engineering applications. First the detection method of harmonics and reactive power is studied in this paper. Then the shunt active power filters and hybrid active power filters are detailed in two aspects of control strategies and system parameters design in order to compensate harmonic and reactive power. The investigated contents are shown as follows.
     The study on a novel detection method of harmonic and reactive current is carried out. The selection of the step-size in conventional adaptive harmonic detection method will make a compromise between convergence speed and steady precision, which restrict its practicability. In order to conquer this disadvantage, an improved variable step-size method is proposed in this paper. This proposed method adopts a sliding integrator to obtain the real tracing error and then uses a fuzzy adjustor with a self-adjustable factor to modify the step- size, so it can obtain both fast convergence speed and high steady precision. For simplifying system design and realization with DSP, the method of non-uniform quantization is adopted during the process of fuzzification and defuzzification in the proposed fuzzy adjustor. The self-adjustable factor can regulate in the whole region and modify the adjusting strategies according to the system state instantaneously, which assures good robustness and excellent dynamic responses. Finally the applications of the proposed adaptive harmonic detection method in three-phase system and some other situations are investigated, which generalizes the application range of the proposed algorithm.
     The control strategies of active power filter are investigated. In order to realize zero-error-control, the generalized integrator is introduced into the current controller of active power filter. The control strategies of active power filter and its zero-error characteristics are detailed. Additionally, a fuzzy adjustor is designed to improve the robustness of current controller through modifying parameters of the generalized generator, thus both excellent steady performance and fast dynamic response can be obtained.
     Another control issue for active power filter is the control of DC-link voltage. In order to maintain the DC-link voltage value and realize soft startup, a combined controller, containing conventional PI and fuzzy controllers, is designed to control DC-link voltage. This combined controller absorbs the merits of PI and fuzzy controllers, so it has high accuracy in steady state and strong robustness and excellent self-adaptability in transient state.
     The optimal design of single-tuned hybrid active power filter is developed. In this paper the capacities and DC-link voltage characteristics of active power filters in hybrid active power filters are derived, and the capacities of several hybrid active power filters are compared in detail. Based on that, a novel optimal design method is proposed for the single-tuned hybrid active power filters in order to minimize the capacity of its active power filters. Additionally, a combined controller is designed for the novel hybrid topology, which contributes to both filtering characteristics and system stability.
     The multi-objective optimal design of hybrid active power filter set at medium and high voltage bus is developed. A hybrid active power filter is designed for a project. And the design of parameters for this hybrid active power filter is turned into a multi-objective optimal problem with restrictions. The factors of system investment, filtering performance, reactive power compensation, and detuning effects are all considered in this optimal design. And the particle swarm optimization algorithm is first introduced into the optimal design of hybrid active power filter. Through the optimal design method proposed in this paper, the parameters can be designed better so the hybrid active power filter can gain more excellent performance.
引文
1 B. K. Bose. Power Electronics– An Emerging Technology. IEEE Trans. on Industrial Electronics. 1989, 36(3): 403~412
    2 John Stones, Alan Collinson. Power Quality. Power Engineering Journal. 2001, (4): 58~64
    3王兆安,杨军,刘进军.谐波抑制和无功功率补偿.机械工业出版社, 1998: 21~40, 172~198
    4 H. Akagi, H. Fujita. A New Power Line Conditioner for Harmonic Compensation in Power Systems. IEEE Trans. on Power Delivery. 1995, 10(3): 1570~1575
    5 L.H.Tey, P.L.So, Y.C.Chu. Improvement of Power Quality Using Adaptive Shunt Active Filter. IEEE Trans. on Power Delivery. 2005, 20(2): 1558~1568
    6吴非,张延迟,解大,等.电力有源滤波器的技术现状.华东电力. 2006, 34(7): 71~74
    7李战鹰,任震,杨泽明.有源滤波装置及其应用综述.电网技术. 2004, 28(12): 40~43
    8 B.Singh, V.Verma, A.Chanda, K.Al-Haddad. Hybrid Filters for Power Quality Improvement. IEE Proceedings-Generation Transmission and Distribution, 2005, 152 (3): 365~378.
    9吴竞昌,孙树勤,宋文南,等.电力系统谐波. (第一版).北京:水利电力出版社, 1988
    10许克明,徐云,刘付平.电力系统高次谐波.重庆:重庆大学出版社, 1991
    11张一中,宁元中,宋永华,朱光永.电力谐波.成都:成都科技大学出版社, 1992
    12夏道止,等.高压直流输电系统的谐波分析及滤波.北京:水利电力, 1994
    13林海雪,孙树勤.电力网中的谐波.北京:中国电力出版社, 1998
    14罗安.电网谐波治理和无功补偿技术及装备.北京:中国电力出版社, 2006
    15姜齐荣,赵东元,陈建业.有源电力滤波器-结构·原理·控制.北京:科学出版社, 2005
    16電力用アクティブフィルタ技術.日本電気学会,電気学会技術報告(Ⅱ部)第425号, 1992(6): 25~34
    17翁利民,张莉,舒立平,龙翊.电弧炉对电网的不利影响及其抑制措施.供用电. 2000, 17(3): 45~47
    18 C. K. Duffey, R. P. Startford. Update of Harmonic Standard IEEE-519: IEEE Recommended Practices and Requirements for Harmonic Control in Electric Power Systems. IEEE Trans. on Industry Applications. 1989, 25(6): 1025~1034
    19 W. Xu, Y. Mansour, C. Siggers, M. B. Hughes. Developing Utility Harmonic Regulations Based on IEEE STD 519-B. C. Hydro’s Approach. IEEE Trans. on Power Delivery. 1995, 10(3): 1423~1431
    20中国国家标准GB/T14549-93.电能质量公用电网谐波.北京:中国标准出版社, 1994
    21 Juan Carlos Montano Asquerino, Manuel Castilla Ibanez, Antonio Lopez Ojeda, Jaime Gutierrez Benitez. Measurement of Apparent Power Components in the Frequency Domain. IEEE Trans. on Instrumentation and Measurement. 1990, 39(4): 583~587
    22 Piotr Filipski. The Measurement of Distortion Current and Distortion Power. IEEE Trans. on I.M.. 1984, 33(1): 36~40
    23 Y. T. Chan, J. B. Plant. A Parameter Estimation Approach to Estimation of Frequencies of Sinusoids. IEEE Trans. Acoust. Speech Signal Process., 1981, 29(2): 214~219
    24 M. EI-Habrouk, M. K. Darwish. Design and Implementation of a Modified Fourier Analysis Harmonic Current Computation Technique for Power Active Filters Using DSPs. IEE Proc. Electr. Power Appl. 2001, 148(1): 21~27
    25潘文,钱愈涛,周鹗.基于加窗插值FFT的电力谐波测量理论窗函数研究.电工技术学报, 1994, 9(1): 50~54
    26李圣清,朱英浩,周友庆,等.电网谐波检测方法的综述.高电压技术, 2004, 30(3): 39~43
    27潘文,钱愈涛,周鹗.基于加窗插值FFT的电力谐波测量理论(II)双插值FFT理论.电工技术学报, 1994, 9(2):53~56.
    28 Xi Jiangtao. A New Algorithm for Discrete Fourier Transforms of Weighted Signals. IEEE Trans. on IM., 1996, 8: 827~830
    29庞浩,李东霞,俎云霄,等.应用FFT进行电力系统谐波分析的改进型算法.中国电机工程学报, 2003, 23(6): 50~54
    30 Ferrero A. High Accuracy Fourier Analysis Based on Synchronous Sampling Techniques. IEEE Trans. on IM, 1994, 4(16): 780~785
    31 Akagi H, Kanazawa Y, Nabae A. Instantaneous Reactive Power Compensators Comprising Switching Devices without Energy Storage Component. IEEE Trans. Industry Applications, 1984, 20(3): 625~630
    32杨君,王兆安.三相电路谐波电流两种检测方法的对比研究.电工技术学报. 1995, (2): 43~48
    33杨露露,单葆国.基于自适应噪声抵消技术的谐波电流检测电路研究.西北电力技术. 2002, (2): 16~17
    34李圣清,彭玉楼,周友庆.一种改进型自适应谐波电流检测方法的研究.高电压技术, 2002, 28(12): 3~5
    35王群,吴宁,谢品芳.一种基于神经元的自适应谐波电流检测法.电力系统自动化, 1997, 21(10): 13~16
    36 J.R.Vazquez, P.Salmeron. Active Power Filter Control using Neural Network Technologies. IEE Proceedings Electronic power application, 2003, 150(2): 139~145
    37 DASH.P.K, PANDA.S.K, MISHRA.B, et al. Fast Estimation of Voltage and Current Phasors in Power Networks using an Adaptive Neural Network. IEEE Transactions on power system, 1997, 12(4): 1494~1499
    38 Raymond H Kwong, Edward W Johuston. A Variable Step Size LMS Algorithm. IEEE Trans on signal processing, 1992, 40(7): 1633~1642
    39高鹰,谢胜利.一种变步长LMS自适应滤波算法及分析.电子学报, 2001, 29(08): 87~90
    40李明,杨成梧.基于模糊推理的变步长LMS自适应滤波算法.控制工程, 2006, 13(3): 237~239
    41李辉,吴正国,邹云屏,等.变步长自适应算法在有源滤波器谐波检测中的应用.中国电机工程学报, 2006, 26(9): 99~103
    42高大威,孙孝瑞.基于自适应线性神经元网络的三相畸变电流检测方法及实现.中国电机工程学报, 2001, 21(03): 50~53
    43曾喆昭,文卉,王耀南.一种高精度的电力系统谐波智能分析方法.中国电机工程学报, 2006, 26(10): 23~27
    44汤胜清,程小华.一种基于多层前向神经网络的谐波检测方法.中国电机工程学报, 2006, 26(18): 90~94
    45向东阳,王公宝,马伟明,等.基于FFT和神经网络的非整数次谐波检测方法.中国电机工程学报, 2005,25(9): 35~39
    46付光杰,曲玉辰,郭静. RBF神经网络在谐波检测中的应用.大庆石油学院学报, 2005, 29(6): 76~78
    47李威,王建赜,冉启文,等.一种新的电力系统暂态波形检测方法.电力系统自动化, 2002, 26(5): 45~47
    48任震,等.小波分析及其在电力系统中的应用.电力系统自动化, 1997, 21(12): 13~17
    49杨桦,任震,唐卓尧.基于小波变换检测谐波的新方法.电力系统自动化. 1996, 21(10): 39~41
    50李天云,赵妍,李楠,冯国,高宏慧.基于HHT的电能质量检测新方法.中国电机工程学报. 2005, 25(17): 52~56
    51肖雁鸿,毛筱,周靖林,等.电力系统谐波测量方法综述.电网技术. 2002, 26(6): 61~34
    52涂春鸣.新型谐振阻抗型混合有源滤波器RITHAF研究.中南大学博士论文. 2003
    53 Gonzalez D A, Mccall J C. Design of Filters to Reduce Harmonic Distortion in Industrial Power System. IEEE Trans on Industry Applications, 1987, 23(3): 504~511
    54马大铭,朱东起,谢磊.综合电力滤波系统中无源滤波器的设计.电工电能新技术, 1997, 16(3): 1~4
    55 Basic Duro, V.S.Ramsden, Peeter Muttik. Minimization of Active Filter Rating in High Power Hybrid Filter Systems. IEEE 1999 International Conference on Power Electronics and Drive Systems, July 1999, Hong Kong
    56涂春鸣,罗安,刘娟.无源滤波器多目标优化设计.中国电机工程学报, 2002, 22(3): 17~21
    57赵曙光,焦李成,王宇平.混合滤波系统中无源滤波器的自适应进化设计方法.电力系统自动化, 2004, 28(2): 54~57
    58 C.J. Chou, C.W. Liu, J.Y. Lee, K.D. Lee. Optimal Planning of Large Passive-Harmonic-Filter Set at High Voltage Level. IEEE Trans. Power Syst., 2000, 15(1): 433~441
    59 Ying-Pin Chang, Chi-Jui Wu. Optimal Multiobjective Planning of Large-scale Passive Harmonic Filters using Hybrid Differential Evolution Method Considering Parameter and Loading Uncertainty. IEEE Trans. On Power Del, 2005, 20(1): 408~416
    60 J.C. Das. Passive Filters-Potentialities and Limitations. IEEE Trans on Industry Applications. 2004, 40(1): 232~241
    61杨茂,苏文龙.电力有源滤波器(APF)技术的探讨.四川电力技术. 2006, 29(6): 27~29
    62张忠伟,王金玉.数控有源电力滤波器的研究.自动化技术与应用. 2006, 25(7): 73~76
    63 H. Sasaki, T. Machida. A New Method to Eliminate AC Harmonic Current by Magnetic Compensation Consideration on Basic Design. IEEE Trans. on P.A.S. 1971, 90(5): 2009~2019
    64 L. Gyugyi, E.C. Strycula. Active AC Power Filters. Proceedings of IEEE Industry Applications Society Annual Meeting, Chicago,1976: 529~535
    65 Fang Zhengpeng. Application Issues of Active Power Filters. IEEE Industry Applications Magazine. Sept/Oct., 1998.pp: 21~30
    66 W. M. Grady, M. J. Samotyj, A. N. Noyola. Survey of Active Power Line Conditioning Methodologies. IEEE Trans. on PD, 1990, 5(3): 1536~1542
    67 M.EI-Habrouk, M.K.Darwish, P.Mehta. Active Power Filter: A Review. IEE Proc. Electr. Power. Appl., 2000, 147(5): 403~413
    68 Sangsum Kim, Prasad N. Enjeti. A New Hybrid Active Power Filter (APF) Topology. IEEE Trans. on Power Electronics.2002, 17(1): 48~54
    69 H.-L. Jou, J.-C. Wu, Y.-J. Chang, Y.-T. Feng, W.-P. Hsu. New Active Power Filter and Control Method. IEE Proceedings: Electric Power Applications, 2005, 152(2): 175~181
    70 Chen. Z, Blaabjerg. F, Pedersen. J.K. A Hybrid Compensation System with an Active Filter and Distributed Passive Filters in Power Systems with Dispersed Generation. IEEE Annual Power Electronics Specialists Conference, Acapulco, 2003, (2): 767~772
    71 Adil M, Al-Zamil, David A. Torrey. A Passive Series, Active Shunt Filter for High Power Application. IEEE Trans. on Power Electronics. 2000, 16(1): 101~109
    72 Hideaki Fujita, Takahiro Yamasaki, Hirofumi Akagi. A Hybrid Active Filter for Damping of Harmonic Resonance in Industrial Power Systems. IEEE Trans. on Power Electronics. 2000, 15(2): 215~222
    73 M. Leon, Zhengpeng Fang, Thomas G. Habertler. A Multilevel Converter- Based Universal Power Conditioner. IEEE Trans. on Ind. Appl. 2000, 36(2): 596~603
    74 Cheng Yonghua, Lataire Philippe. Advanced Control Methods for The 3-Phase Unified Power Quality Conditioner. IEEE 35th Annual Power Electronics Specialists Conference, Aachen, 2004: 4263~4267
    75 Esfandiari Ahmad, Parniani Mostafa, Mokhtari Hossein. Mitigation of Electric Arc Furnace Disturbances Using the Unified Power Quality Conditioner. 30th Annual Conference of IEEE Industrial Electronics Society, Busan, 2004:1469~1474
    76范瑞祥,罗安,李欣然.并联混合型有源电力滤波器的系统参数设计及应用研究.中国电机工程学报, 2006, 26(2): 106~111
    77唐欣,罗安,涂春鸣.新型注入式混合有源滤波器的研究.电工技术学报, 2004, 19(11): 50~55
    78徐永海.基于dq变换的电能质量扰动分析与调节技术的研究.哈尔滨工业大学博士学位论文. 2002
    79陈峻岭,姜新建,朱东起,等.基于遗传算法混合有源滤波器参数的多目标优化.清华大学学报, 2006, 46(1): 5~8.
    80何娜,徐殿国,武健.一种新型混合有源滤波器及其复合控制策略设计.电力系统自动化, 2007, 31(10): 45~49
    81张剑辉,姜齐荣等.有源滤波器控制器的设计[J].电网技术, 2002, 26 (10): 48~52
    82游小杰,李永东等.并联型有源电力滤波器在非理想电源电压下的控制.中国电机工程学报, 2004, 24(2): 55~60
    83 S.K. Jain, P. Agrawal, etal. Fuzzy Logic Controlled Shunt Active Power Filter for Power Quality Improvement. IEE Proc.-Eletrc. Power Apply, 2002, 149 (5): 317~328
    84徐万方,罗安,王丽娜等.采用智能控制器的混合型有源电力滤波系统.电力系统自动化, 2003, 27 (10): 49~52
    85 D.M. Brod, D.W. Novotny. Current Control of VSI-PWM Inverters. IEEE Procs. of IAS.1984: 418~425
    86 J. Dixon, S. Tepper, L. Moran. Practical Evaluation of Different Modulation Techniques for Current-Controlled Voltage Source Inverters. IEE procs. Electr. Power Appl. 1996, 143(4): 301~306
    87 Luis Moran, Juan W. Dixon, Rogel R. Wallace. A Three-Phase Active Power Filter Operating with Fixed Switching Frequency for Reactive Power and Current Harmonic Compensation. IEEE Trans. on Industrial Electronics. 1995, 42(4): 402~408
    88 Teresa Esther Nunez-Zuniga, Jose Antenor Pomilio. Shunt Active Power Filter Synthesizing Resistive Loads. IEEE Trans. on. Power Electronics. 2002, 17(2): 273~278
    89 Marian P. Kazmierkowski, Luigi Malesani. Current Control Techniques for Three-Phase Voltage-Source PWM Converters: A Survey. IEEE Trans. on Industrial Electronics. 1998, 45(5): 691~703
    90 Rolf Ottersten, Jan Svensson. Vector Current Controlled Voltage Source Converter-Deadbeat Control and Saturation Strategies. IEEE Trans. on. Power Electronics. 2002,17(2): 279~285
    91 Paolo Mattavelli. Synchronous-Frame Harmonic Control for High-Performance AC Power Supplies. IEEE Trans. on Industry Applications. 2001, 37(3): 864~872
    92武健,徐殿国,何娜.基于优化滑动傅立叶分析和广义积分的并联有源滤波器控制策略.电网技术, 2005, 29(17): 21~25
    93 W. Mcmurray. Modulation of the Chopping Frequency in DC Choppers and Inverters Having Current Hysteresis Controllers. IEEE Transactions on Industry Applications. 1984, 20 (3): 763~768
    94 C.T. Pan, T.Y. Chang. An Improved Hysteresis Current Controller for Reducing Switching Frequency. IEEE Transactions on Industry Electronics. 1994, 41(9): 97~104
    95 I. Nagy. Novel Adaptive Tolerance Band Based PWM for Field Oriented Control of Induction Machines. IEEE Transactions on Industry Electronics.1994, 41(9): 406~417
    96 E. Perssen, N. Mohan, B.Ben Banerjee. Adaptive Tolerance-band Control of Standby Power Supply Provides Load-current Harmonic Neutralization. Proceedings of IEEE PESC. Toledo. 1992: 320~326
    97张代润,刘红萍.单相有源电力滤波器的滞环控制策略分析.电机与控制学报, 1998, 2(3): 153~157
    98 L.Malesani, P. Mattacelli, S.Buso. High-performance Hysteresis Modulation Technique for Active Filters. IEEE Transactions on Power Electronics. 1997,12(5): 876~884
    99 B.H. Kwon, T.W. Kim, J.H. Youm. A Novel SVM-based Hysteresis Current Controller. IEEE Transactions on Power Electronics. 1998, 13(2): 297~307
    100曾江,焦连伟,倪以信,等.有源滤波器定频率滞环电流控制新方法.电网技术, 2000, 24(6): 1~8
    101 Shoji Fukuda, Takehito Yoda. A Novel Current Tracking Method for Active Filters Based on A Sinusoidal Internal Model. IEEE Trans. on Industry Applications. 2001, 37(3): 888~895
    102 Mohammad Sedighy, Shashi B. Dewan, Francis P.Dawson. A Robust Digital Current Control Method for Active Power Filters. IEEE Trans. on IA. 2000, 36(4): 1158~1164
    103 Shih-Liang Jung, Hsiang-Sung Huang, Ying-Yu Tzou. A Three-Phase PWM AC-DC Converter with Low Switching Frequency and High Power Factor Using DSP-Based Repetitive Control Technique. PESC’98. 1998: 517~523
    104 Keliang Zhou, Danwei Wang, Guangyan Xu. Repetitive Controlled Three-Phase Reversible PWM Rectifier. Proceedings of the American Control Conference. 2000, Chicago, Illinois: 125~129
    105 K.M. Smedley, S. Cuk. Dynamics of One-Cycle Controlled Cuk Converters. IEEE Transactions on Power Electronics, 1995, 10(6): 634~639
    106 L. Zhou, K.M. Smedley. Unified Constant-Frequency Integration Control of Active Power Filters. IEEE Applied Power Electronics Conference and Exposition, New Orleans, 2000, 1: 406~412
    107邓占锋,朱东起,姜新建.基于滑模控制的混合型电力滤波装置.电工技术学报. 2002, 17(2): 92~95
    108习伟,殷波,赵子岩,等.三相四线制电力有源滤波器的滑模变结构控制.电网技术. 2004, 28(5): 18~21
    109黄敏,查晓明,陈允平.并联型电能质量调节器的模糊变结构控制.计算机技术与自动化. 2001, 20(3): 8~12
    110童梅,童杰,蒋静坪.有源滤波器的神经网络控制.电工技术学报. 2000, 15(1): 57~60
    111付小强,刘凯,刘崇新.基于神经网络的单相有源滤波器.自动化技术与应用. 2004, 23(4): 66~68
    112 Nishida K, Nakaoka M. Deadbeat Current Control with Adaptive Predictor for Three-phase Voltage-source Active Power Filter. 2004 IEEE 35th Annual Power Electronics Specialists Conference. Aachen, 2004: 1010~1016
    113李玉梅,马伟明.无差拍控制在串联电力有源滤波器中的应用.电力系统自动化. 2002, 26(5): 45~47
    114薛花,姜建国.基于无源性的并联型有源电力滤波器控制策略.电力系统自动化. 2006, 30(22): 12~15
    115钟庆,吴捷,杨金明.并联型有源电力滤波器的无源性控制.控制与决策. 2004, 19(1): 77~80
    116李剑,康勇,陈坚.带模糊调节的重复控制器在逆变器中的应用.电气传动. 2001, 31(6): 30~34
    117黄敏,查晓明,陈允平.并联型电能质量调节器的模糊变结构控制.计算机技术与自动化. 2001, 20(3): 8~12
    118唐欣,罗安,徐春鸣.基于递推积分PI的混合型有源电力滤波器电流控制.中国电机工程学报. 2003, 23(10): 38~41
    119徐万方,罗安,王丽娜等.采用智能控制器的混合型有源电力滤波系统.电力系统自动化. 2003, 27(10): 49~52
    120涂春鸣,罗安.基于广义积分迭代算法的有源滤波器三重变结构控制.电工电能新技术. 2004, 23(1): 34~38
    121武健,何娜,徐殿国.无变压器型并联混合有源滤波器设计及应用研究.中国电机工程学报,已录用.
    122李刚,沈沉,周谦之.并联型有源滤波器复合控制方法的仿真研究.电力自动化设备, 2007, 27(10): 64~68
    123付青,罗安,王莉娜.基于自适应智能控制的混合有源电力滤波器复合控制.中国电机工程学报, 2005, 25(14): 46~51
    124唐欣,罗安,涂春鸣.一种电力有源滤波器电流控制的新方法.电力系统自动化, 2008, 28(13): 31~34
    125唐杰,罗安,汤赐,杨晓.注入式混合型有源滤波器的复合型滞环控制方法研究.电力自动化设备, 2007, 27(10): 51~55
    126罗邵屏,罗安,周柯.注入式混合有源滤波器的复合变结构控制.高压电器, 2007, 43(6): 419~422
    127武健.并联有源滤波器控制策略研究.哈尔滨工业大学博士学位论文, 2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700