用户名: 密码: 验证码:
基于CuO、CdS分子和固体化合物的第一性原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着纳米科技的不断发展,纳米半导体材料在电子、催化、传感器以及生物医学等领域都表现出巨大的应用前景。开发利用新型、高效纳米结构的半导体材料越来越受到人们的广泛关注。铜氧化物和硫化镉是目前研究较为热门的两大过渡金属半导体。其中,氧化亚铜(Cu2O)是一种p-型传导的半导体材料,具有无毒、无污染和制备简单等优点,同时还具有较窄的禁带宽度(Eg=2.0 eV),能够直接吸收太阳光谱中的可见光,拥有较强的可见光响应特性,因此在半导体及催化领域已经成为研究的热点,被认为是最具潜力的半导体催化材料之一。最近实验研究发现这类材料能够显现出奇特的磁学性能(较强的铁磁性或弱的顺磁性)。同样是以铜氧化物材料为对象,在和有机材料(如醋酸)混合所成的有机—无机层状杂化材料中,碱式醋酸铜也表现出了较为奇特的磁学性质。但是,这种磁性变化的具体原因目前仍然没有得到较好的解释。另外,传统的Ⅱ—Ⅵ族半导体硫化镉(CdS)与Cu2O类似,具有2.4 eV的禁带宽度。其导带电子具有较强的还原特性,从而在可见光分解水制氢以及CO2还原等方面都具有较好的应用潜力。然而,CdS却由于较低的光量子效率以及光腐蚀现象而不能得到广泛应用,因此,必须对CdS材料进行改性研究。
     本论文以铜氧化物和硫化镉化合物作为研究对象,对不同维度的新材料(固体、表面、纳米管、分子、团簇)进行了第一性原理研究。研究的主要内容包括几何构型、电子结构、自旋拓扑,磁学性质以及光催化等方面。本论文通过建立合理的物理化学模型,从电子层次出发研究材料结构和性能间的关系,从而揭示材料物理化学特性、以实现新型纳米材料的设计。具体的研究工作以及本论文的设计主要包括以下几个方面:
     1.研究了碱式醋酸铜(Cu2(OH)3(CH3COO)·H2O)的结构和磁学特性。Cu2(OH)3(CH3COO)·H2O这类有机—无机层状杂化材料结构的确定一直以来都是实验研究的难点。本章通过第一性原理分子动力学的方法,采用动力学退火算法探究了Cu2(OH)3(CH3COO)·H2O的稳态结构。在体系总自旋S=0时,可以得到原子坐标非常接近的大量稳态结构,这些稳态结构在过渡金属层内有着不同的局域自旋拓扑分布。其中约有20%稳态结构的过渡金属层内(in-plane)可显铁磁特性,这种铁磁特性和实验室研究相一致。局域电子分布(ELF)显示体系中的原子和分子基团(Cu2(OH)3(CH3COO)-, OH-和H2O)能够和局域电子分布区域相吻合,它们之间通过非共价相互作用进行结合。另外,还研究了在O原子上出现的部分自旋极化现象和其周围近邻Cu原子磁性之间的关系。
     2.探讨了CumOn团簇的结构、稳定性以及磁学特性。最新实验研究发现纳米Cu2O颗粒材料能够显现出奇特的铁磁性或顺磁性,这种特性将极大的有利于纳米Cu2O颗粒催化材料在水溶液中的回收再利用。本论文用第一性原理方法对这种奇特的磁学性质做了详细的理论研究。采用了密度泛函理论结合广义梯度近似加Hubbard U的方法对一系列CumOn((m, n)=(4,1); (4,2);(4,5);(16,15);(28,15);(44,15);(28,27))团簇进行了结构和电子结构的模拟计算。发现对于块体Cu2O材料,GGA和GGA+U方法给出了类似的计算结果;小团簇CumOn((m,n)=(4,1);(4,2);(4,5))的几何结构都倾向于形成二维平面状;大团簇CumOn((m,n)=(16,15);(28,15);(44,15);(28,27))结构中的O原子倾向于成为团簇的最外层原子;计算结果表明团簇的结构、稳定性和磁性与团簇中O原子浓度含量密切相关,O浓度含量不同的团簇可以表现出截然不同的特性。为此对团簇进行了分类:第一类是O原子浓度含量高的团簇,如Cu4O5,Cu16O15和Cu28O27。另一类是O原子浓度含量低的团簇,如Cu4O,Cu4O2,Cu28O15和CU44O15。另外,还研究了氢化对团簇的稳定性和磁性的影响。该研究结果将有利于促进纳米Cu2O材料在半导体及催化领域更好的广泛应用。
     3.考察了CdS小团簇(单体、二聚体)在石墨烯、(5,5)以及(3,3)碳纳米管表面的吸附行为。实验室已有大量关于CdS纳米颗粒均匀分布于CNTs表面的复合材料的研究,但是,CdS和碳纳米管之间本质的界面相互作用性质到目前为止仍然没有定论。本论文采用了密度泛函理论首先对单个S原子和Cd原子在这三个基底表面不同高对称位置上的吸附行为进行了研究计算,发现S原子在碳材料表面的吸附行为相比Cd原子更加依赖于碳材料的表面曲率,Cd原子在表面上的吸附能很小,不超过0.2 eV。S原子和Cd原子在表面上的这种不同的吸附行为同时影响了CdS团簇的吸附。计算结果显示CdS团簇倾向于吸附在表面桥Bridge位置附近,CdS团簇尺寸越小C材料表面曲率半径越大,则复合材料体系越稳定。另外,还研究了复合前后材料的电子结构变化,如CNTs的费米能级和能量带隙变化;CdS和表面间的电荷转移等。由此,计算很好的解释了CdS团簇的吸附行为。通过理论方法对CdS和碳纳米管之间的界面相互作用性质的详细研究将有利于CdS/CNTs复合材料在催化和相关领域的应用。
     4.研究了掺杂对CdS光电化学活性的改善。通过第一性原理的方法分别考查了元素周期表中Cd原子周围Ag、Cu、Zn、Ga、In五种金属元素单掺杂下,CdS结构和能带结构的变化。在总结分析单掺杂下CdS能带结构变化规律的基础上,设计并研究了(Cu+Ag)、(Ag+In)和(Cu+In)共掺杂对CdS结构和能带结构的影响,并从能带论出发对不同掺杂CdS体系的光电化学活性,特别是光分解水制氢能力,作出了理论预测分析。另外,还分别研究了掺杂量(单掺杂Zn和(Cu+In)共参杂)对CdS光电化学活性的影响。所得结果已经应用于实验室研究,并且能够较好的改善CdS的光电化学活性,提高CdS材料在催化等领域的应用潜力。
In recent years, with the development of nanotechnology, the exploration and utilization of novel, highly efficient nanostructured semiconductor materials have attracted more and more attention. Nanostructured semiconductor materials have great potential applications in the areas of electronics, catalysis, sensors, biomedical and so on. Two kinds of transition metal semiconductor materials copper oxide and cadmium sulfide are popular and wildly studied. Especially, cuprous oxide (Cu2O) is a p-type semiconductor material with narrow band gap (Eg=2.0 eV), which can directly absorb visible light. Because of non-toxic, pollution-free, and simple preparation, it has been well studied in the semiconductor and catalytic domain. Recently, experimental studies have found that these materials can surprisingly show ferromagnetic or paramagnetic properties. Besides, Hybrid organic-inorganic materials copper hydroxide acetate Cu2(OH)3(CH3COO)·H2O, which is mainly made of copper oxide and organic material (such as acetic acid), has shown an unusual magnetic properties. However, these special magnetic properties have not been well explained. In addition, cadmium sulfide (CdS), which belongs to the family of traditionalⅡ-Ⅵsemiconductor, has a band gap of 2.4 eV. Due to its high redox of conduction band, it has been regarded as an effective photocatalyst for water splitting and CO2 reduction under VL and can be used in many other areas. However, the poor quantum efficiency and antiphotocorrosive property inhibit the wide application of CdS. Therefore, a great number of investigations are dedicated on the improvement of its properties.
     In this thesis, copper oxide and cadmium sulfide compound have been consisdered as two main research objects. We have investigated the two materials' geometry, electronic structure, spin topology, magnetic properties, photocatalytic activity and so on by first-principles, with which many of new materials with different dimensions (solid, molecules and clusters) were studied. Based on reasonable physical and chemical models, we devoted to the investigation of the relationship between structure and native electronic properties of the materials, which will shed light on understanding the physical and chemical properties of materials and thus benefit the design of novel and highly efficient nanostructured materials. The detail research works are as follows.
     1. By using density-functional theory in the framework of first-principles molecular dynamics, we carry out a dynamical annealing to identify the stable structures of copper hydroxide acetate Cu2(OH)3(CH3COO)·H2O, a fundamental compound in the field of hybrid organic-inorganic materials, for which accurate crystallographic data are not available. For the total spin value S=0, we obtain a large set of stable structures having very close sets of coordinates and differing in the spatial distribution of the spin densities. Only some of these structures (~20%) feature spin topologies consistent with the in-plane ferromagnetic character experimentally established. An electron localization analysis through the electron localization function ELF shows that the different atomic and molecular units composing the systems (Cu2(OH)3(CH3COO)-, OH- and H2O) can be associated with different localization basins and connect to each other through non-covalent interactions. The relationship between the appearance of sizeable spin densities on specific O atoms and the magnitude of the spin densities on the neighboring Cu atoms is also discussed.
     2. Experimental evidence shows that small Cu2O nanoparticles exhibit ferromagnetic or paramagnetic properties, which demonstrates the promising possibility to recycle catalyst Cu2O easily in wastewater treatment. So, the theoretical calculation has been performed to study the magnetic property of copper/oxide clusters further. That is, the structural and electronic properties of a series of CumOn ((m, n)=(4,1); (4,2); (4,5); (16,15); (28,15); (44,15); (28,27)) clusters were investigated by using generalized gradient approximation (GGA) and Hubbard U method within density functional theory (DFT). It is found that the electronic structures of bulk Cu2O calculated by the GGA and GGA+U are similar. The structures of CumOn ((m, n)=(4,1); (4,2); (4,5)) are all planar. For the bulk-product CumOn ((m, n)=(16,15); (28,15); (44,15); (28,27)), O atoms prefer to be the outmost atoms. We classified two types of clusters based on their O to Cu atomic ratios. One is O-rich clusters, i.e. Cu4O5, Cu16O15 and Cu28O27. The other is O-poor clusters, i.e. Cu4O, Cu4O2, Cu28O15 and Cu44O15. The calculation results show that the O-rich clusters (Cu4O5, Cu16O15 and Cu28O27) have longer average Cu-Cu bonds and larger binding energy than those of the O-poor ones. More interestingly, the former are magnetic and give ferromagnetic ordering while the latter are non-magnetic. The hydrogenation of O-terminated clusters can improve its stability whereas depress its magnetism. The study may be extremely useful for the potential applications of Cu2O nanopaticles in catalysis and semiconductor field.
     3. The adsorption of monomer and dimer CdS clusters on graphene, (3,3) and (5,5) single-walled carbon nanotubes are investigated by density functional theory. We firstly calculated the adsorbed properties of single S and Cd atoms. It is found that the adsorption energy of single S shows stronger dependence on substrate curvature than Cd. The adsorption energies for Cd on different substrates are no more than 0.2 eV. Our results show that the different adsorption behavior of single S and Cd atoms impacts on adsorption of CdS clusters. For CdnSn cluster, their adsorption behavior relies on the interaction of S, Cd and C surface. The cluster with small size and C surface with small radius leads to high stability for composite systems. Maximum stability is encountered for bridge site of CdnSn on substrates. The adsorption behavior of CdnSn cluster can be further explained by orbital hybridization between cluster and substrates, which shows the lower Fermi level of CNTs, charges transfer from CNTs to cluster and a small band gap appears for CNT in the most stable composite systems. This study is extremely hepful for understanding and promoting applications of CdS/CNTs composite system in catalysis and other areas.
     4. We devoted to design of highly photoeclectrochemical activity CdS by metallic doping approach. First-principles density-functional theory was performed to investigate the atomic structures and electronic properties of dopant complexes involving Cu, Ag, Zn, Ga, In in wurtzite CdS. Based on the mondoping calculated results, we examined codoping of (Cu+Ag), (Ag+In) and (Cu+In) for CdS. The photoelectrochemical activity of doped CdS systems were analyzed. It is found that mondoping of Zn and Ga can lower the VB of CdS in a great deal, implying good catalytic activity of Zn- and Ga-monodoped CdS for the degeneration of organic object. Further more, (Cu+Ag) and (Cu+In) codoping may improve the photoeclectrochemical activity for H2 production from water splitting under VL. In addition, the effect of doping concentration (include modoping Zn, and codoping (Cu+In)) on CdS photoelectrochemical activity were also examined theoretical and experimentally. The improved high photoelectrochemical activity of CdS have been obtained. So, the calculation results can be used to guide the design and preparation of novel photocatalysts based on CdS or other semiconductors.
引文
[1]张金龙,陈锋,何斌,光催化,华东理工大学出版社,2004,1.
    [2]张跃,谷景华,尚家香,马岳,计算材料学基础,北京航空航天大学出版社,2007.
    [3]A. Fujishima, K. Honda, Nature,1972,37,238.
    [4]J. H. Carey, J. Lawrence, H. M. Tosine, Bull. Environ. Contam. Toxical.,1976,16,697.
    [5]G. Mills, M. R. Hoffmann, Environ. Sci. Technol.,1993,27,1981.
    [6]U. Stafford, K. A. Cray, P. V. Kamat, A. Varma, Chem. Phys. Lett.,1993,205,55.
    [7]S. Tunesi, M. Anderson, J. Phys. Chem.,1991,95,3399.
    [8]V. Augugliaro, L. Palmisano, A. Sclafani, C. Minero, E. Pelizzetti, Toxicol. Environ. Chem.,1988, 16,89.
    [9]张立德,牟季美,纳米材料和纳米结构,科学出版社,2002,51-67.
    [10]M. Gratzel, Ed. Energy Resources Through Photochemistry and Catalysis, New York:Academic Press,1983
    [11]V. N. Parmon, K. I. Zamareav, In Photocatalysis-Fundamentals and Applications. N. Serpone, E. Pelizzetti, Eds. New York:Wiley Interscience,1989.
    [12]E. Pelizzetti, M. Schiavello, Eds. Photochemical Conversion and Storage of Solar Energy. Dordrecht:Kluwer Academic Publishers,1991.
    [13]D.F. Ollis, H. Al-Ekabi, Eds. Photocatalytic Purification and Treatment of Water and Air, Amsterdam:Elsevier,1993.
    [14]M. Schiavello, Ed, Photocatalysis and Environment, Dordrecht:Kluwer Academic Publishers, 1988.
    [15]M. Anpo, T. Shima, Y. Kubokawa, Chem. Lett.,1985,1799.
    [16]C. D. Jaeger, A. Bard, J. Phys. Cem.1979,83,3146.
    [17]Y. Mao, C. Schoneich, K. D. Asmus, J. Phys. Chem.,1991,95,80.
    [18]C. Kormann, D. W. Bahnemann, M. R. Hoffmann, Environ. Sci. Technol.,1991,25,494.
    [19]J. Moser, S. Punchihewa, P.P. Infelta, M. Grazel, Langmuir,1991,7,3012.
    [20]R. W. Matthews, S. R. MeEvoy, J. Photochem. Photobiol. A:Chem.,1992,64,231.
    [21]W. Siripala, A. Ivanovskaya, T. F. Jaramillo, S. H. Baeck, E. W. McFarland, Sol. Energy Mater. Sol. Cells,2003,77,229.
    [22]S. S. Jeong, A. Mittiga, E. Salza, A. Masci, S. Passerini, Electrochim. Acta,2008,53,2226
    [23]M. Nolan, S. D. Elliott, Phys. Chem. Chem. Phys.,2006,8,5350; M. Nolan, S. D. Elliott, Thin Solid Film.,2008,516,1468.
    [24]R. A. Mickelsen, Chen, S. Wen, Appl. Phys. Lett.,1980,35,371.
    [25]M. Sathish, B. Viswanathan, RP. A. Viswanath, Int. J. Hydrogen Energy,2006,31,891.
    [26]B.I. Rufus, V. Ramakrishnan, B. Viswanathan, J.C. Kuriacose. Langmuir,1990,6,565.
    [27]L. B. da Silva, S. B. Fagan, R. Mota, Nano Lett.,2004,4,65.
    [28]H. G. Yang, C. H. Sun, S. Z. Qiao, J. Zou, G. Liu, S. C. Smith, H. M. Chen, G. Q. Lu, Nature, 2008,453,638.
    [29]Y. Q. Gai, J. b. Li, S. S. Li, J. B. Xia, S. H. Wei, Phys. Rev. Lett.,2009,102,036402.
    [30]Z. X. Yang, B. L. He, Z. S. Lu, K. Hermansson, J. Phys. Chem. C,2010,114,4486.
    [31]S. J. Clark, J. Robertson, S. Lany, A. Zunge, Phys. Rev. B,2010,81,115311.
    [32]R. M. Martin, Electronic structure:basic theory and practical methods, Cambridge:Cambridge University Press,2004.
    [33]S. M. Reimann, M. Manninen, Rev. Mod. Phys.,2002,74,1283.
    [34]G. P. Brivio, M. I. Trioni, Rev. Mod. Phys.,1999,71,231.
    [35]W. E. Pickett, Rev. Mod. Phys.,1989,61,433.
    [36]A. L. Linserbigler, G. Lu, J. T. Yates, Jr., Chem. Rev.,1995,95,735.
    [37]L. W. Lin, Y. H. Tang, L. Z. Pei, L. B. Zhu, Y. Zhang, C. Guo, J. Non-Cryst. Solids,2007,353, 159.
    [38]X. Dai et al., Science,2003,300,953.
    [39]P. Garcia-Gonzalez, R. W. Godby, Phys. Rev. Lett.,2002,88,56406.
    [40]R. B. Murphy, D. M. Philipp, R. A. Friesner, Chem. Phys. Lett.,2000,321,113.
    [41]A. Laio et al., Science,2000,287,1027.
    [42]M. Petersilka, U. J. Gossmann, E. K. U. Gross, Phys. Rev. Lett.,1996,76,1212.
    [43]R. G. Parr, W.T. Yang, Density Functional Theory of Atoms and Molecules, New York:Oxford, 1989.
    [44]R. M. Dreizler, E. K. U. Gross, Density Functional Theory, Berlin:SpringerOVertag,1990.
    [45]L. S. Thomas, Proc. Cambridge Philos. Soc.1927,23,542.
    [46]E. Fermi, Z. Phys.1928,48,73.
    [47]P. Hohenberg, W. Kohn, Phys. Rev. B,1964,136,864.
    [48]K. Capelle and G. Vignale, Phys. Rev. Lett.,2001,86,5546.
    [49]W. Kohn, L. J. Sham, Phys. Rev.,1965, A140,1133.
    [50]W. Kohn, A. D. Becke, R. G. Parr, J. Phys. Chem.,1996,100,12974.
    [51]W. Koch, M. C. Holthausen, A Chemist's Guide to Density Functional Theory, Wiley-VCH Verlag GmbH,2001.
    [52]H. Hellmann, Deuticke, Vienna, R. P. Feynman, Phys. Rev. B,1939,56,340.
    [53]W. Kohn, Rev. Mod. Phys.,1999,71,1253.
    [54]J. Hutter, Introduction to Ab Initio Molecular Dynamics,2002.
    [55]Y. J. Zhao, M. Jiang, P.L. Cao, Ab initio molecular dynamics, Progress in Physics,1998,18,47.
    [56]E. Fermi, J. Pasta, S. Ulam, Los Alamos preprint LA-1940 (1955).
    [57]E. Fermi, Collected Papers Ⅱ,978 (1965).
    [58]B.J. Alder, T.E. Wainwright, J. Chem. Phys.,1957,26,1208.
    [59]B.J. Alder, T.E. Wainwright, J. Chem. Phys.,1959,31,459.
    [60]A. Rahman, Phys. Rev.,1964,136A,405.
    [61]L. Verlet, Phys. Rev.,1967,159,98.
    [62]M.P. Allen, D.J. Tildesley, Computer Simulations of Liquids, Oxford:Clarendon Press,1987, reprinted 1990.
    [63]D. Frenkel, B. Smit, Understanding Molecular Simulation, Academic Press, San Diego,2002.
    [64]G. Ciccotti, W.G. Hoover (editors), Proceedings of the 97th international school of Physics Enrico Fermi on Molecular Dynamics Simulations of Statistical Mechanical Systems, North Holland: Amsterdam,1986.
    [65]M. Meyer, V. Pontikis, Proceedings of the NATO ASI on Computer Simulation in Material Science Kluwer, Dordrecht,1991.
    [66]M. P. Allen, D. J. Tildesley, Proceedings of the NATO ASI on Computer Simulation in Chemical Physics. Kluwer, Dordrecht,1993.
    [67]J. G. Krikwood, Phys. Rev.1933,44,31.
    [68]A. Rahman, F. H. Stillinger, J. Chem. Phys,1971,55,3336.
    [69]J. P. Rychaert, G. Ciccotti, H. J. C. Berendsen, J. Comp. Phys.1977,23,327.
    [70]H. C. Anderson, J. Chem. Phys,1980,72,2384.
    [71]M. Parrinello, A. Rahman, J. Appl. Phys.1981,52,7182.
    [72]S. Nose, Mol. Phys,1984,52,255.
    [73]R. Car, M. Parrinello, Unified approach for molecular dynamics and density function theory, Phys. Rev. Lett.,1985,55,2471.
    [74]F. A. Bornemann, C. Schutte, Numberische Mathematik,1998,78,359.
    [75]H. Lu, Y. Wang, Y. Wu, P. Yang, L. Li, Li S, J. Chem. Phys.,2008,129,124512.
    [76]C. Mundy, A. Curioni, N. Goldman, W. Kuo, E. Reed, F. Laurence, M. Iannuzzi, Journal Chemical Physics 2008,128,184701.
    [77]D. Fischer, A. Curioni, W. Andreoni, Langmuir,2003,19,3567.
    [78]A. Cossaro, R. Mazzarello, R. Rousseau, L. Casalis, A. Verdini, A. Kohlmeyer, L. Floreano, S. Scandolo, A. Morgante, M.L. Klein, G. Scoles, Science 321,2008,943.
    [79]M. De Vivo, M. Dal Peraro, M.L. Klein, J. Am. Chem. Soc.2008,130,10955.
    [80]X. Li, W. Yang, B. Liu, Nano Letters,2007,7,3709.
    [81]R. Mazzarello, A. Cossaro, A. Verdini, R. Rousseau, L. Casalis, M. F. Danisman, L. Floreano, S. Scandolo, A. Morgante, G. Scoles, Phys. Rev. Lett.2007,98,016102.
    [82]A. Jezierska, J. Panek, U. Borstnik, J. Mavri, D. Janezic, J. Phys. Chem. B,2007,111,5243.
    [83]M. Boero, F. L. Gervasio, M. Parrinello, MOL. SIMUL.2007,33,57.
    [84]A. Rodriguez-Fortea, M. Iannuzzi, M. Parrinello, J. Phys. Chem. C,2007,111,2251.
    [85]I. Chun, M. D. Coutinho-Neto, C. Felsenheimer, O. A. von Lilienfeld, I. Tavernelli, U. Rothlisberger, Phys. Rev. B 2007,75,205131.
    [86]M. Carbone, A. Palma, R. Caminiti, Phys. Rev. B 2007,75,245332.
    [87]J. Akola, H. Haekkinen, Phys. Rev. B 2006,74,165404.
    [88]D. Marx, M. Parrinello, Science.1996.271,179.
    [89]P. L. Taylor, O. Heinonen, A Quantum Approach to Condensed Matter Physics, Cambridge, 2002.
    [90]W. Kohn, P. Vashishta, Theory of the Inhomogeneous Electron Gas, New York:Plenum press, 1983.
    [91]J. F. Dobson, G. Vignale, M. P. Das, Electronic Density Functional Theory. New York:Plenum Press,1998.
    [92]E. P. Wigner, Phys. Rev.,1934,46,1002.
    [93]D. M. Ceperley, B. J. Alder, Phys. Rev. Lett,1980,45,566.
    [94]Y. Kwon, D. M. Ceperley, R. M. Martin, Phys. Rev. B,1998,58,6800.
    [95]J. C. Slater, Timothy M. Wilson, J. H. Wood. Phys. Rev.,1969,179,28.
    [96]S. H. Vosko, L. Wilk, M. Nusair, Can, J. Phys.,1980,58,1200.
    [97]W. Ekardt, Phys. Rev. B,1984,29,1558.
    [98]G. Seifert, D. Porezag, Th. Frauenheim, Int. J. Quantum. Chem.,58,185.
    [99]S. Goedeker, M. Teter, and J. Huetter, Phys. Rev. B,1996,54,1703.
    [100]L.Hedinand, B.L.Lundqvist, J.Phys.C.,1971,4,2064.
    [101]Chris G. Van de Walle, J. Neugebauer, Nature,2003,423,626.
    [102]L. Dal Negro, J. H. Yi, L. C. Kimerling, S. Hamel, A. Williamson, G. Galli, J. Appl. Phys., 2006,88,183103.
    [103]R. O. Jones, O.Gunnarsso, Rev. Mod. Phys.,1989,61,68.
    [104]A. D. Becke, Phys. Rev. A,1988,38,3098.
    [105]J. P. Perdew, K. Burke, M. Ernzerhof, Phys, Rev. Lett.,1996,77,3865.
    [106]J. P. Perdew, Y. Wang, Phys. Rev. B,1992,45,13244.
    [107]J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, C. Foilhais, Phys. Rev. B,1992,46,6671.
    [108]C. Lee, D. Vanderbilt, K. Laasoen, R. Car, M. Parrinello, Phys, Rev. Lett.,1996,77,3865.
    [109]X. Xu and W. A. Goddard Ⅲ, Proc. Natl. Acad. Sci.,2004,101,2673.
    [110]M. Ernzerhof and G. E. Scuseria, J. Chem. Phys.1999,110,5029.
    [111]A. D. Becke, J. Chem. Phys.,1993,98,5648.
    [112]C. Adamo and V. Barone, J. Chem. Phys.,1998,108,664.
    [113]J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett.,1997,78,1396.
    [114]J. Ihm, A. Zunger, M. L. Cohen, J. Phys. C,12,1979.
    [115]S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, A. P. Sutton, Phys. Rev. B,1998, 57,1505
    [116]D. G. Pettifor, Bonding and Structure of Molecules and Solids, Oxford:Clarendon Press,1995.
    [117]V. I. Anisimov, J. Zaanen, O. K. Andersen, Phys. Rev. B,1991,44,943.
    [118]K. Terakura, T. Oguchi, A. R. Williams, J. Kuebler, Phys. Rev. B,1984,30,4734.
    [119]G. A. Sawatzky, J. W. Allen, Phys. Rev. Lett.,1984,53,2239.
    [120]J. Zaanen, O. Jepsen, O. Gunnarsson, A. T. Paxton, O. K. Andersen, A. Svane, Physica C,1988, 153,1636.
    [121]J. P. Perdew, R. G. Parr, M. Levy, J. L. Balduz, Phys. Rev. Lett.,1982,49,1691.
    [122]V. I. Anisimov, I. V. Solovyev,M. A. Korotin, M. T. Czyzyk, G. A. Sawatzky, Phys. Rev. B, 1993,48,16929.
    [123]O. Gunnarsson, K. Schnhammer, Phys. Rev. Lett.,1986,56,1968.
    [124]L. F. Mattheiss, Phys. Rev. B,1972,5,290.
    [125]冯端,金国均,凝聚态物理学(上卷),北京:高等教育出版社,2002.
    [126]A. Fujimori, F. Minami, Phys. Rev. B,1984,30,957.
    [127]J. van Elp, R. H. Potze, H. Eskes, R. Berger, G. A. Sawatzky, Phys. Rev. B,1991,44,1530.
    [128]M. A. Korotin, S. Yu. Ezhov, I. V. Solovyev, V. I. Anisimov, D. I. Khomskii, G. A. Sawatzky, Phys. Rev. B,1996,54,5309.
    [129]I. Solovyev, N. Hamada, K. Terakura, Phys. Rev. B,1996,53,7158.
    [130]Z. Q. Yang, Z. Huang, L. Ye, X. D. Xie, Phys. Rev. B,1999,60,15674.
    [131]S. Abdelouahed, N. Baadji, M Alouani, Phys. Rev. B,2007,75,094428.
    [132]A. B. Shick, A. I. Liechtenstein, W. E. Pickett, Phys. Rev. B,1999,60,10763.
    [133]I. V. Anisimov, J. Zaanen, O. K. Andersen, Phys. Rev. B,1991,44,943.
    [134]A. I. Liechtenstein, V. I. Anisimov, J. Zaanen, Phys. Rev. B,1995,52,5467.
    [135]S. L. Dudarev et al., Phys. Rev. B,1998,57,1505.
    [136]C. Herring, Phys. Rev.,1940,57,119.
    [137]C. Herring, A. G. Hill, Phys. Rev.,1940,58,152.
    [138]C. Herring, S. Skillman, Atomic Structure Calculation, Englewood Cliffs,1963.
    [139]D. E. Ellis, G. S. Painter, Computational Methods in Band Theory, New York:Plenum,1971.
    [140]F. Z. Bloch, Phys.,1928,52,555.
    [141]J. C. Slater, G. F. Koster, Phys. Rev.,1954,94,1498.
    [142]W. A. Harrison, Electronic structures and the properties of solid, San Franciso:1980.
    [143]G.G. Hall, Phil. Mag.,1952,43,338.
    [144]S.T. Pantelides, W.A. Harrison, Phys. Rev. B,1975,11,3006.
    [145]D. J. Singh, Pseudopotentials and the LAPW method, Boston:Kluwer Academic Publishers, 1993.
    [146]E. Wimmer, H. Krakauer, M. Weinert and A. J. Freeman, Phys. Rev. B,1981,24,864.
    [147]H. L. Skriver, The LMTO Method, ed. by Cardona M, Fulde P. Heidelberg:Springer-Verlag, 1984.
    [148]J. Ihm, A. Zunger, L. Cohen, J. Phys. C,1979,12,4409.
    [149]M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, J. D. Joannopoulos, Rev. Mod. Phys.1992, 64,1045.
    [150]W. E. Pickett, Pseudopotential methods in condensed matter applications, Noth-Holland:1989.
    [151]C.Kittel,固体物理导论,北京:化学工业出版社,2005.
    [152]谢希德,陆栋,固体能带理论,复旦大学出版社,1998.
    [153]D. R. Hamann, M. Schluter, C.Chiang, Phys. Rev. Lett.,1979,43,149.
    [154]G. B. Bachelet, D. R. Hamann, M. Schluter, Phys. Rev. B,1982,26,4199.
    [155]D. Vanderbilt, Phys. Rev. B,1990,41,7892.
    [1]P. Rabu, M. Drillon, K. Agawa, W. Fujita, T. Sekine, in Magnetism:Molecules to Materials Ⅱ, edited by J.S. Miller and M. Drillon, (Wiley-VCHa Wenbheim,2001), p.357.
    [2]P. Rabu, S. Rouba, V. Laget, C. Hornick, M. Drillon, Chem. Commun.,1996,1107.
    [3]C. Massobrio, P. Rabu, M. Drillon, C. Rovira, J. Phys. Chem. B,1999,103,9387.
    [4]E. Ruiz, M. Llunell, J. Cano, P. Rabu, M. Drillon, C. Massobrio, J. Phys. Chem. B,2006,110, 115.
    [5]N. Masciocchi, E. Corradi, A. Sironi, G. Moretti, G. Minelli, P. Porta, J. Solid State Chem.,1997, 131,252.
    [6]R. Car, M. Parrinello, Phys. Rev. Lett.,1985,55,2471.
    [7]CPMD, IBM Corp.1990-2006, MPI fur Festkorperforschung Stuttgart 1997-2001. http://www.cpmd.org
    [8]W. Kohn, L. J. Sham, Phys. Rev.,1965,140, A1133.
    [9]A. D. Becke, Phys. Rev. A,1988,38,3098.
    [10]C. Lee, W. Yang, R.G. Parr, Phys. Rev. B,1988,37,785.
    [11]N. Trouiller, J.L. Martins, Phys. Rev. B 43,1991,43,1993.
    [12]S. G. Louie, S. Froyen, M. L. Cohen, Phys. Rev. B,1982,26,1738.
    [13]T. A. Halgren, J. Comput. Chem.,1996,17,616.
    [14]A. D. Becke, K. E. Edgecombe, J. Chem. Phys.,1990,92,5397.
    [15]A. Savin, R. Nesper, S.Wengert, T.F. F-- assler, Angew. Chem. Int. Ed. Engl.,1997,36,1808.
    [16]A. Savin, D. Marx, Angew. Chem. Int. Ed. Engl.,1997,36,2077.
    [17]A. D. Becke, J. Chem. Phys.,1993,98,5648.
    [18]P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem.,1994,98,11623.
    [19]E. Ruiz, A. Rodriguez-Fortea, J. Tercero, T. Cauchy, C. Massobrio, J. Chem. Phys.,2005,123, 074102.
    [20]M. I. Girtu, C. M. Wynn, W. Fujita, K. Awaga, A. J. Epstein, Phys. Rev. B,2000,61,4117.
    [21]A. Chialvo, P. Cummings, J. Phys. Chem.,1996,100,1309.
    [22]J. Marti, J. Phys. Chem.,1999,110,6876.
    [23]M. Boero, K. Terakura, T. Ikeshoji, C. C. Liew and M. Parrinello, Phys. Rev. Lett.,2000,85, 3245.
    [24]D. L. Bergman, Chem. Phys.,2000,253,267.
    [25]M. Boero, T. Ikeshoji, K. Terakura, ChemPhysChem,2005,6,1775.
    [1]M. E. Gruner, G. Rollmann, P. Entel, M. Farle, Phys. ReV. Lett.,2008,100,087203.
    [2]P. Degimann, R. Ahlrichs, K. Tsereteli, J. Chem, Phys.,2002,116,1585.
    [3]P. Poizot, S. Laruelle, S. Grugeon, L. Dupront, J. M. Taracon, Nature,2000,407,496.
    [4]W. Siripala, A. Ivanovskaya, T. F. Jaramillo, S. H. Baeck, E. W. McFarland, Sol. Energy Mater. Sol. Cells,2003,77,229.
    [5]S. S. Jeong, A. Mittiga, E. Salza, A. Masci, S. Passerini, Electrochim. Acta,2008,53,2226
    [6]M. Nolan, S. D. Elliott, Phys. Chem. Chem. Phys.,2006,8,5350; M. Nolan, S. D. Elliott, Thin Solid Film.,2008,516,1468.
    [7]Y. Yu, F. P. Du, J. C. Yu, Y. Y. Zhuang, P. K. Wong, J. Solid State Chem.,2004,177,4640. Y. Yu, W. Y. Huang, F. P. Du, L. L. Ma, Mater. Sci. Forum,2005,3531,475.
    [8]L. L. Ma, M. Peng, J. L. Li, Y. Yu, Z. H. Chen, Proc, IEEE Int. Conf. Nano.
    [9]Y. S. Luo, S. Q. Li, Q. F. Ren, J. P. Liu, L. L. Xing, Y. Wang, Y. Yu, Z. J. Jia, J. L. Li, Cryst. Growth Design,2007,7(1),87.
    [10]L. L. Ma, Y. L. Lin, Y. Wang, J. L. Li, E. K. Wang, M. Q. Qiu, Y. Yu, J. Phys. Chem. C,2008, 112,18916.
    [11]L. L. Ma, J. L. Li, H. Z. Sun, E. K. Wang, Y. Yu, Mater. Res. Bull.,2010,45,961.
    [12]Y. Yu, L. L. Ma, W. Y. Huang, J. L. Li, P. K. Wong, J. C. Yu, J. Solid State Chem.,2005,178, 1488.
    [13]Z. H. Ai, L. R. Lu, J. P. Li, L. Z. Zhang, J. R. Qiu, M. H. Wu, J. Phys. Chem. C,2007,111,7430.
    [14]A. Soon, X. Y. Cui, B. Delley, S. H. Wei, C. Stampfl, Phys. ReV. B,2009,79,035205.
    [15]M. Sieberer, J. Redinger, P. Mohn, Phys. ReV. B,2007,75,035203.
    [16]A. Y. Yermakov, M. A. Uimin, A. A. Mysik, V. B. Vykhodets, T. E. Kurennykh, V. I. Sokolov, V. S. Gaviko, N. N. Schegoleva, N. B. Gruzdev, J. Magn. Magn. Mater.,2007,310,2102.
    [17]V. I. Sokolov, A. Y. Yermakov, M. A. Uimin, A. A. Mysik, V. B. Vykhodets, T. E. Kurennykh, V. S. Gaviko, N. N. Schegoleva, N. B. Gruzdev, J. Exp. Theor. Phys.,2007,105,65.
    [18]R. Laskowski, P. Blaha, K. Schwarz, Phys. ReV. B,2003,67,075102.
    [19]E. Ruiz, S. Alvarez, P. Alemany, R. A. Evarestov, Phys. ReV. B,1997,56,7189.
    [20]J. Ghisjen, L. H. Tjeng, J. Elp, van, H. Eskes, J. Westerink, G. A. Sawatzky, M. T. Czyzyk, Phys. ReV. B,1988,38,11322.
    [21]H. Raebiger, S. Lany, A. Zunger, Phys. ReV. B,2007,76,45209.
    [22]A. Soon, T. Saohnel, H. Idriss, Surf. Sci.,2005,579,131.
    [23]S. Boudin, C. Felser, F. Studer, Solid State Sci.,2003,5,741.
    [24]F. Bruneval, N. Vast, L. Reining, Phys. ReV. Lett.,2006,97,267601.
    [25]Y. Pouillion, C. Massobrio, Chem. Phys. Lett.,2002,356,469.
    [26]T. Baruah, R. R. Zope, M. R. Pederson, Phys. ReV. A,2004,69,023201.
    [27]Bing Dai, Li Tian, Yanga, Jinlong. J. Chem. Phys.,2004,120,2746.
    [28]C. Massobrio, Y. Pouillon, J. Chem. Phys.,2003,119,8305.
    [29]L. S. Wang, H. B. Wu, S. R. Desai, Phy. ReV. B,1996,53,8028.
    [30]W. Kohn, A. D. Becke, R. G. Parr, J. Phys. Chem.,1996,100,12974.
    [31]G. Kresse, J. Hafner, Phys. ReV. B,1993,48,13115.
    [32]G. Kresse, J. Furthmuller, Phys. ReV. B,1996,54,11169.
    [33]P. E. Blochl, Phys. ReV. B,1994,50,17953.
    [34]G. Kresse, J. Joubert, Phys. ReV. B,1999,59,1758.
    [35]J. P. Perdew, In Electronic Structure of Solids; P. Ziesche, H. Eds. Eschrig, Akademie Verlag: Berlin,1991.
    [36]S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, A. P. Sutton, Phys. ReV. B,1998, 57,1505.
    [37]H. J. Monkhorst, J. D. Pack, Phys. ReV. B,1976,13,5188.
    [38]P. E. Blochl, O. Jepsen, O. K. Andersen, Phys. ReV. B,1994,49,16223.
    [39]M. P. Teter, M. C. Payne, D. C. Allan, Phys. ReV. B,1989,40,12255.
    [40]A. Werner, H. D. Hocheimer, Phys. ReV. B,1982,25,5929.
    [41]Z. X. Shen, et al. Phys. ReV. B,1990,42,8081.
    [42]X. Nie, S. H. Wei, S. B. Zhang, Phys. ReV. B,2002,65,075111.
    [43]M. Jadraque, M. Martin, Chem. Phys. Lett.2008,456,51.
    [44]S. Pal, B. Goswami, P. Sarkar, J. Chem. Phys.,2005,123,044311.
    [45]P. Sarkar, M. Springborg, Phys. ReV. B,2003,68,235409.
    [46]S. Roy, M. Springborg, J. Phys. Chem. B,2003,107,2771.
    [47]C. E. Junkermeier, J. P. Lewis, G. W. Bryant, Phys. ReV. B,2008,77,205125.
    [1]J. M. Planeix, N. Coustel, B. Coq, V. Bretons, P. S. Kumbhar, R. Dutartre, P. Geneste, P. Bernier, P. M. Ajayan, J. Am. Chem. Soc,1994,116,7935.
    [2]C. N. R. Rao, B. C. Satishkumar, A. Govindaraj, M. Nath, Chem. Phys. Chem.,2001,2,78.
    [3]P. M. Ajayan, Chem. Rev.,1999,99,1787.
    [4]L. B. da Silva, S. B. Fagan, R. Mota, Nano Lett.,2004,4,65.
    [5]S. Iijima, Nature,1991,354,56.
    [6]W. Huynh, J. J. Dittmer, A. P. Alivisatos, Science,2002,295,2425.
    [7]Y. Yu, L. L. Ma, W. Y. Huang, F. P. Du, J. C. Yu, J. G. Yu, J. B. Wang, P. K. Wong, Carbon, 2005,43,670.
    [8]I. Robel, B. A. Bunker, P. V. Kamat, Adv. Mater.,2005,17,2458.
    [9]Y. Yu, J. C. Yu, J. G. Yu, Y. C. Kwok, Y. K. Che, J. C. Zhao, L. Ding, W. K. Ge, P. K. Wong, Appl. Catal. A:Gen.,2005,289,186.
    [10]W. Wang, P. Serp, P. Kalck, J. L. Faria, J. Mol. Catal. A:Chem.,2005,235,194.
    [11]L. S. Zhang, J. L. Li, Z. G. Chen, Y. W. Tang, Y. Yu, Appl. Catal. A:Gen.,2006,299,292.
    [12]A. B. Hungria, B. H. Juarez, C. Klinke, H. Weller, P. A. Midgley, Nano Res,2008,1,89.
    [13]X. L. Li, Y. Jia, A. Y. Cao, ACS Nano,2010,4,506.
    [14]B. Xue, P. Chen, Q. Hong,, Y. Jian, L. K. Tan, J. Mater. Chem.,2001,11,2378. [15] S. Arai, M. Endo, N. Kaneko, Carbon,2004,42,641.
    [16]S. Banerjee, S. S. Wong, Nano Lett.,2002,2,195.
    [17]S.W. Lee, W. M. Sigmund, Chem. Commu.,2003,780.
    [18]B. H. Juarez, M. Meyns, A. Chanaewa, Y. X. Cai, C. Klinke, H. Weller, J. Am. Chem. Soc., 2008,130,15282.
    [19]I. Robel, B. A. Bunker, P. V. Kamat, Adv. Mater.,2005,17,2458.
    [20]A. B. Hungria, B. H. Juarez, C. Klinke, H. Weller, P. A. Midgley, Nano Res,2008,1,89.
    [21]D. H. Chi, N. T. Cuong, N. A. Tuan, Y. T. Kim, H. T. Bao, T. Mitani, T. Ozaki, H. Nagao, Chem. Phys. Lett.,2006,432,213.
    [22]Y. Okamoto, Chem. Phys. Lett.,2006,420,382.
    [23]S. H. Wei, S. B. Zhang, Phys. Rev. B,2000,62,6944.
    [24]C. E. Junkermeier, J. P. Lewis, Phys. Rev. B,2008,77,205125.
    [25]K. Wright, J. D. Gale, Phys. Rev. B,2004,70,035211.
    [26]P. Deglmann, R. Ahlrichs, K. Tsereteli, J. Chem. Phys.,2002,116,1585.
    [27]M. C. Troparevsky, J. R. Chelikowsky, J. Chem. Phys.,2001,114,943.
    [28]P. V. Kamat, Chem. Rev.1993,93,267.
    [29]J. R. Darwent. G. Porter, Chem. Commun,1981,145.
    [30]M. Matsumura, Y. Sato, H. Tsubomura, J. Phy. Chem.,1983,87,3807.
    [31]M. K. Arora, A. S. K. Sinha, S. N. Upadhyay, Ind. Eng. Chem. Res.1998,37,3950.
    [32]F. W. Shangguan, A. Yoshida, J. Phy. Chem. B,2002,106,12227.
    [33]H. Fujiwara, H. Hosokawa. K. Murakosi, Y. Wada, S. Yanagida, J. Phy. Chem. B,1997,101, 8270.
    [34]H. Yin, Y Wada, T. Kitamura, S. Yanagina, Environ. Sci. Technol.,2001,35,227.
    [35]W. T. Yao, S. H. Yu, S. J. Liu, J. P. Chen, X. M. Liu, F. Q. Li, J. Phys. Chem. B,2006,110, 11704.
    [36]S. M. Wang, P. Liu, X. X. Wang, X. Z. Fu, Langmuir,2005 21,11969.
    [37]B. Ohtani, J. Kawaguchi, M. Kozawa, Y. Nakaoka, Y Nosaka, S. Nishimoto, J. Photochem. Photobiol. A:Chem.,1995,90,75.
    [38]A. V. Isarov, J. Chrysochoos, Langmuir,1997,13,3142.
    [39]K. R. Gopidas, M. Bohorquez, P. V. Kamat, J. Phys. Chem.,1990,94,6435.
    [40]H. Fyji, M. Ohtaki, K. Eguchi, H. Arai, J. Mol. Catal. A:Chem.,1998,129,61.
    [41]A. Kumar, A. K. Jain, J. Mol. Catal. A:Chem.,2001,165,265.
    [42]Z. Aifassl, D. Bahnemann, A. Hengleln, J. Phys. Chem.,1982,86,4656.
    [43]J. Cao, J. Z. Sun, J. Hong, H. Y. Li, H. Z. Chen, M. Wang, Adv. Mater.,2004,16,84.
    [44]C. S. Li, Y. P. Tang, K. F. Yao, F. Zhou, Q. Ma, H. Lin, M. Tao, Carbon,2006,44,2021.
    [45]C. S. Li, Y. P. Tang, B. N. Kang, B. S. Wang, F. Zhou, Q. Ma, J. Xiao, D. Z. Wang, J. Liang, Sci. China. Ser. E:Tech. Sci.,2007,50,279.
    [46]B. A. Korgel, H. G. Monbouquette, J. Phys. Chem. B,1997,101,5010.
    [47]L. L. Ma, H. Z. Sun, Y. G. Zhang, Y. L. Lin, J. L. Li, Y Yu, M Tan, J. B. Wang, Nanotechnology,2008,19,115709.
    [48]G. Kresse, Hafner, J Phys. Rev. B,1993,48,13115.
    [49]G. Kresse, J. Furthmuller, Phys. Rev. B,1996,54,11169.
    [50]W. Kohn, L. J. Sham, Phys. Rev.,1965,140, A1133.
    [15]W. Kohn, A. D. Becke and R. G. Parr,1996, J. Phys. Chem.,100,12974.
    [52]P. E. Blochl, Phys. Rev. B,1994,50,17953.
    [53]G. Kresse, J. Joubert, Phys. Rev. B,1999,59,1758.
    [54]J. P. Perdew, A. Zunger, Phys. Rev. B,1981,23,5048.
    [55]D. M. Ceperley, B. J. Alder, Phys. Rev. Lett.,1980,45,566.
    [56]P. E. Blochl, O. Jepsen, O. K. Andersen, Phys. Rev. B,1994,49,16223.
    [57]M. P. Teter, M. C. Payne, D. C. Allan,1989, Phys. Rev. B,40,12255.
    [58]X. Lu, C. H. Sun, F Li, H. M. Cheng,2008, Chem. Phys. Lett.,454,305.
    [1]R. A. Mickelsen, Chen, S. Wen, Appl. Phys. Lett.,1980,35,371.
    [2]M. Sathish, B. Viswanathan, RP. A. Viswanath, Int. J. Hydrogen Energy,2006,31,891.
    [3]B.I. Rufus, V. Ramakrishnan, B. Viswanathan, J.C. Kuriacose. Langmuir,1990,6,565.
    [4]L. B. da Silva, S. B. Fagan, R. Mota, Nano Lett.,2004,4,65.
    [5]E. Borgarello, K. Kalyanasundaram, M. Gra tzel, E. Pelizzetti, Helv Chim Acta,1982,65,243.
    [6]P. V. Kamat, Chem. Rev.1993,93,267.
    [7]J. R. Darwent, G. Porter, Chem. Commun,1981,145.
    [8]M. Matsumura, Y. Sato, H. Tsubomura, J. Phy. Chem.,1983,87,3807.
    [9]M. K. Arora, A. S. K. Sinha, S. N. Upadhyay, Ind. Eng. Chem. Res.1998,37,3950.
    [10]S. M. Wang, P. Liu, X. X. Wang, X. Z. Fu, Langmuir,2005,21,11969.
    [11]F. W. Shangguan, A. Yoshida, J. Phy. Chem. B,2002,106,12227.
    [12]H. Fujiwara, H. Hosokawa. K. Murakosi, Y. Wada, S. Yanagida, J. Phy. Chem. B,1997,101, 8270.
    [13]H. Yin, Y. Wada, T. Kitamura, S. Yanagina, Environ. Sci. Technol.,2001,35,227.
    [14]M. K. Arora, N. S. S. N. Upadhyay, A. S. K. Sinha, Ind. Eng. Chem. Res.,1999,38,2659.
    [15]D. W. Bahnemann, M. Hilgendorff, R. Memming, J. Phys. Chem. B,1997,101,4265.
    [16]M. Mrowetz, W. Balcerski, A. J. Colussi, M. R. Hoffmann, J. Phys. Chem. B,2004,108,17269.
    [17]B. B. Kate, J. Baeg, M. Lee, H. Chang, S. J. Moon, C. W. Lee, Adv. Funct. Mater.,2006,16, 1349.
    [18]Z. B. Lei, W. S. You, M. Y. Liu, W. H. Zhou, T. Takata, M. Hara, K. Domen, C. Li, Chem. Commun.,2003,2142.
    [19]N. Sahu, S. N. Upadhyay, A.S.K. Sinha, Inter. J. Hydrogen Energ.2009,34,130.
    [20]X. Zong, H. Yan, G. Wu, G. Ma, F. Wen, L.Wang, C. Li, J. Am. Chem. Soc.,2008,130,7176.
    [21]S. Banerjee, S. K. Mohapatra, P. P. Das, M. Misra, Chem. Mater.,2008,20,6784.
    [22]R. W. Birkmire, E. Eser, Annu. Rev. Mater. Sci.,1997,27,625.
    [23]D. Cahen, G. Dagan, Y. Mirovsky, G. Hodes, W. Giriat, M. Lubke, J. Electrochem. Soc.,1985, 132,1062.
    [24]B. A. Korgel, H. G. Monbouquette, J. Phys. Chem. B,1997,101,5010.
    [25]W. T. Yao, S. H. Yu, S. J. Liu, J. P. Chen, X. M. Liu, F. Q. Li, J. Phys. Chem. B,2006,110, 11704.
    [26]Z. Aifassl, D. Bahnemann, A. Hengleln, J. Phys. Chem.,1982,86,4656.
    [27]J. Cao, J. Z. Sun, J. Hong, H. Y. Li, H. Z. Chen, M. Wang, Adv. Mater.,2004,16,84.
    [28]C. S. Li, Y. P. Tang, K. F. Yao, F. Zhou, Q. Ma, H. Lin, M. Tao, Carbon,2006,44,2021.
    [29]C. S. Li, Y. P. Tang, B. N. Kang, B. S. Wang, F. Zhou, Q. Ma, J. Xiao, D. Z. Wang, J. Liang, Sci. China. Ser. E:Tech. Sci.,2007,50,279.
    [30]Y. Yu, L. L. Ma, W. Y. Huang, F. P. Du, J. C. Yu, J. G. Yu, J. B. Wang, P. K. Wong, Carbon,2005, 43,670.
    [31]A.V. Isarov, J. Chrysochoos, Langmuir,1997,13,3142.
    [32]K. R. Gopidas, M. Bohorquez, P. V. Kamat, J. Phys. Chem.,1990,94,6435.
    [33]H. Fyji, M. Ohtaki, K. Eguchi, H. Arai, J. Mol. Catal. A:Chem.,1998,129,61.
    [34]A. Kumar, A. K. Jain, J. Mol. Catal. A:Chem.,2001,165,265.
    [35]S. M. Wang, P. Liu, X. X. Wang, X. Z. Fu, Langmuir,2005 21,11969.
    [36]B. Ohtani, J. Kawaguchi, M. Kozawa, Y. Nakaoka, Y. Nosaka, S. Nishimoto, J. Photochem. Photobiol. A:Chem.,1995,90,75.
    [37]N. M. Osipyonok, A.F. Singaevsky, Yu.V. Noskov, Yu.P. Piryatinski, P.S. Smertenko, O.P.
    Dimitriev, A.A. Pud, Materials Science and Engineering B 2008,147,254.
    [38]I. Tsuji, H. Kato, H. Kobayashi, A. Kudo, J. Am. Chem. Soc.,2004,125,13406.
    [39]I. Tsuji, H. Kato, A. Kudo, Angew. Chem. Int. Ed.,2005,44,3565.
    [40]I. Tsuji, H. Kato, H. Kobayashi, A. Kudo, J. Phys. Chem. B.,2005,109,7323.
    [41]K. Maeda, T. Takata, M. Hara, N. Saito, Y. Inoue, J. Am.Chem. Soc.,2005,127,8286.
    [42]W. J. Li, D. Z. Li, W. J. Zhang, Y. Hu, Y. H. He, X. Z. Fu, J. Phys. Chem. C.,2010,114,2154.
    [43]W. J. Li, D. Z. Li, Z. X. Chen, H. J. Huang, M. Sun, Y. H. He, X. Z. Fu, J. Phys. Chem. C.,2008, 112,14943.
    [44]Y. Q. Gai, J. B. Li, S. S. Li, J. B. Xia, S. H. Wei, Phys. Rev. Lett.2009,102,036402.
    [45]R. Q. Zhang, X.. M. Liu, Z. Wen, Q. Jiang, J. Phys. Chem. C,2011, ⅩⅩⅩ, ⅩⅩⅩⅩ.
    [46]P. Garcia-Gonzalez, R. W. Godby, Phys. Rev. Lett.,2002,88,56406.
    [47]R. B. Murphy, D. M. Philipp, R. A. Friesner, Chem. Phys. Lett.,2000,321,113.
    [48]X. M. Duan, C. Stampfl, Phys. Rev. B,2009,79,035207.
    [49]H. Chen, W. G. Zhu, E. Kaxiras, Z. Y. Zhang, Phys. Rev. B,2009,79,235202.
    [50]X. M. Duan, C. Stampfl, M. M. M. Bilek, D. R. McKenzie, Phys. Rev. B,2009,79,235208.
    [51]K. Yang, Y. Dai, B. B. Huang, J. Phys. Chem. C,2007,111,18985.
    [52]K. Yang, Y. Dai, B. B. Huang, M. H. Whangbo, J. Phys. Chem. C,2009,113,2624.
    [53]G. Kresse, J. Hafner, Phys. Rev. B,1993,48,13115.
    [54]G. Kresse, Furthmuller, Phys. Rev. B,1996,54,11169.
    [55]W. Kohn, L. J. Sham, Phys. Rev.1965,140, A1133.
    [56]W. Kohn, A. D. Becke, R. G. Parr, J. Phys. Chem.,1996,100,12974.
    [57]P. E. Blochl, Phys. Rev. B,1994,50,17953.
    [58]G. Kresse, J. Joubert, Phys. Rev. B,1999,59,1758.
    [59]Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048
    [60]Ceperley D M and Alder B J 1980 Phys. Rev. Lett.45 566.
    [61]H. J. Monkhorst, J. D. Pack, Phys. Rev. B,1976,13,5188.
    [62]Landolt-Bornstein:Numerical Data and Functional Relationships in Science and Technology, edited by O. Madelung, M. Schulz, and H. Weiss, Springer-Verlag, Berlin,1982,17.
    [63]S. H. Wei, S. B. Zhang, Phys. Rev. B,2000,62,6944.
    [64]D. Vogel, P. Kruger, J. Pollmann, Phys. Rev. B,1996,54,5495.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700