用户名: 密码: 验证码:
铝箔基LiCoO_2涂膜废极片的材料化冶金技术及基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对全球钴和锂的资源、市场及其在锂离子电池中应用、锂离子电池的锂和钴资源循环等作了广泛的文献查阅和综述。锂离子电池是有色金属锂和钴的重要应用领域,同时也成为锂和钴的重要二次资源。本文研究了锂离子电池中铝箔基LiCoO2涂膜废极片的材料化冶金技术及关键科学基础。
     摒弃惯用的湿法溶解技术,创新性地采用干法热处理分离铝箔基LiCoO2涂膜废极片中的铝箔与LiCoO2。涂膜粘结剂PVDF的分解从381.8℃开始,至449.5℃结束;极片中的铝箔在500℃以上温度与氧气发生强烈反应,氧化反应放出强热而导致物料着火。经过450℃、2h热处理的涂膜极片,其中PVDF已经全部分解;同时,含LiCoO2的覆料容易从铝箔基材上脱离。热处理过程中,PVDF分解产生的HF与LiCoO2反应,破坏了部分LiCoO2原有的层状结构;脱离的LiCoO2的Li/Co摩尔比低于1.00;同时,LiCoO2颗粒表面变得较为粗糙,出现明显的裂纹。
     LiCoO2的溶解与其在水溶液中的稳定性密切相关。绘制了常温和高于常温的Li-Co-H2O系电位-pH图,并分析了LiCoO2的稳定性和可溶性。LiCoO2能在水溶液中稳定存在,其热力学优势区分别与Co(OH)3、Co2+及Co(OH)2的稳定热力学优势区相邻;温度升高,LiCoO2在水溶液中的稳定性增加。LiCoO2溶解为Co2++Li+可通过三个途径:一是经过中间产物Co(OH)3酸溶解;二是直接酸溶解;三是经还原剂作用通过中间产物Co(OH)2酸溶解。第一、二途径的条件范围窄小、控制严格,且溶解不完全;在还原剂作用下的酸溶解是最有效的溶解途径。LiCoO2在H2O2作用下的H2SO4溶解过程反应速率对H2O2浓度、H2SO4浓度均表现为一级表观反应级数;过程表观活化能为14.9kJ·mol-1;过程控制步骤为反应物向固—液界面的扩散过程。用1.1~1.2mol·L-1H2O2+2.0~2.5mol·L-1H2SO4混合溶剂在液固比为10:1、温度大于80℃、搅拌反应时间大于120min的条件下,LiCoO2的溶解率大于99%。
     强电解质硫酸盐溶液中铝的水解行为是锂钴硫酸盐溶液中净化除铝的基础。强电解质硫酸盐水溶液对加入的酸具有缓冲效应,并对铝的水解行为产生重要影响。利用溶液反应综合平衡原理和合理的体系设计,首次通过数学模拟分析了硫酸盐溶液中铝的水解行为,并试验证明了模拟分析结论。Al3+、AlOH2+、Al(OH)4-、Al2(OH)24+、Al6(OH)153+、Al13(OH)327+是溶液中铝水解过程中的主要存在形体。铝水解在较高pH时(大于9)形成Al(OH)3沉淀。加碱滴定水解试验结果表明,铝水解时在COH/CAl为0~3.5间明显出现两个平台,分别为溶液中铝的水解聚合和水解沉淀;水解沉淀在COH/CAl大于2.2明显进行,在COH/CAl为3.5时结束;温度升高有利于铝的水解沉淀。钴的轻度水解,能强化硫酸钴溶液中铝的水解去除。当钴盐在较低的pH下水解产生Co(OH)2沉淀后,受到铝水解聚合产生的具有正电荷、平面网状结构的聚合体的粘附卷扫,使含铝聚合体在较低pH下与Co(OH)2沉淀颗粒一起聚沉。
     基于CO2-H2O系、Li(Ⅰ)-CO2-H2O系和Co(Ⅱ)-CO2-H2O系化学平衡,首次提出和应用基于阴离子CO32-的固相转化法从锂钴硫酸盐净化液中沉淀分离钴。用固体Li2CO3悬浮液营造极低CO32-环境,通过缓慢加入含钴溶液控制适当的Co2+浓度,使溶液中Co2+取代Li2CO3固相中的锂形成CoCo3。试验结果表明,用等反应计量的Li2CO3即可将溶液中钴几乎沉淀完全;降低溶液中钴浓度、增加反应温度和反应时间、陈化时间等能增大反应产物CoCO3的粒度;在较高温度、较低的钴盐溶液pH值和较小的钴盐溶液加入速度(反加料)条件下,可得到结晶完整、致密的球形COCO3沉淀。20L反应器规模的综合试验表明,在50℃下按液固比4:1将含Co2+ 1.50mol·L-1的钴锂硫酸盐料液(Co/Li=1)加入Li2CO3悬浮液中进行反应,控制Li2CO3用量为化学反应计量的1.1倍、料液pH 4左右、加料反应时间90min和陈化时间60min,Co2+沉淀率为99.76%、产物CoCO3中心粒径为8.26μm。
     从硫酸锂溶液中反应结晶Li2CO3,以Li+,Na+//SO42-,CO32--H2O交互系平衡为理论依据。提出并采用反应平衡法研究了与Li2CO3反应结晶过程相关的部分Li+,Na+//SO42-,CO32--H2O交互系平衡。应用现代计算技术,创新地用偏差函数φ(Ⅰ)修正经典电解质溶液模型研究了Li2CO3-Na2SO4稳定盐对反应结晶平衡,得出Li2CO3和Na2SO4的溶解平衡符合下列数学关系
     对Li2CO3-Na2SO4稳定盐对反应结晶平衡数据的分析表明,以反应物配比(Na2CO3/Li2SO4摩尔比)为1.0时可以得到高的Li2CO3结晶量、低的液固比和相对高的反应物综合转化率。反应结晶试验结果表明,以固体碳酸钠加入,硫酸锂溶液中锂一次结晶率随初始锂盐浓度、反应物配比、反应温度和反应时间的增加而增加;影响程度排序为:溶液中初始锂浓度>反应结晶用碳酸钠量>反应时间>反应温度。较佳的结晶条件为:初始Li+浓度为20g·L-1、反应物等反应计量(Na2CO3/Li2SO4为1.0)、常温下反应结晶、60分钟加料时间后继续搅拌反应和陈化30分钟。在优化的Li2CO3反应结晶条件下,锂一次结晶收率大于82%。XRD、SEM和TG/TDA分析表明,Li2CO3结晶结构完整、有序;经脱水处理的Li2CO3颗粒呈片状,大小均匀;熔点723.1℃,且在熔点以上温度即发生分解。
     首次提出全干法自净化的纳米Co3O4制备方法。以低温固相反应、NH4Cl热升华为基础,将COCl2·6H2O与(NH4)2C2O4·H2O混合研磨,在室温下固相反应制备COC2O4·2H2O和NH4Cl的混合物,再将反应产物在NH4Cl的升华温度以上热处理,热分解CoC2O4·2H20和升华去除NH4Cl,制得纯净的纳米Co3O4。使用含结晶水的反应物,能促进低温固相反应的进行;(NH4)2C2O4·H2O适当过量能保证CoCl2·6H2O的完全转化;NH4Cl的升华可以降低产物粒子的团聚;加入适量的分散剂、适合的前躯体干燥温度和热分解温度能制得分散良好、晶型完整的纳米Co3O4。按CoCl2·6H2O与(NH4)2C2O4·H2O摩尔比为1:1.2配料,并添加适量(反应物总量的2%)的聚乙二醇,研磨反应30min;反应产物在120℃干燥10h;干燥物在350℃煅烧3h。获得的纳米Co3O4粒径为18nm左右、粒度分布均匀。
There have been lots of researches and summaries on the global cobalt and lithium resources, market and its application in Li-ion battery, cobalt and lithium resources recycling etc. Li-ion battery is important application of nonferrous metal lithum and colbt, at the same time, also become important twice resource of lithum and colbt. Therefore, the technology and its scientific foundation on materialization metallurgy of LiCoO2 film covered on aluminum foil have been studied in this paper.
     The LiCoO2 covered on aluminum foil can be separated from Al-foil by heat treatment. PVDF is decomposed from 381.8℃to 449.5℃. In the temperature above 500℃, the reaction of aluminum foil in the positive electrode flat are to be made strongly with oxygen, thus strong heat emitted in oxidization reaction led to materials on fire. PVDF in positive electrode flat has decomposed completely by the heat treatment of 2 hours in 450℃. After binder PVDF is decomposed the materials containing LiCoO2 and covering on Al foil can be peeled off from the base material of aluminum foil. In the course of heat treatment the original layer structure of LiCoO2 have been partially destroyed by the HF that is produced in PVDF decomposition and react with LiCoO2. The Li/Co mole ratio of the LiCoO2 powers after the heating is lower than 1.00. At the same time, LiCoO2 pellet surface becomes relatively rough with obvious slight crackles occurred.
     The dissolution of LiCoO2 is related closely with its stability in aqueous solution. The potential-pH figure of Li-Co-H2O system has been drawn and the solubility of LiCoO2 in aqueous solution have been analysed. LiCoO2 can exist steadily in aqueous solution. The thermodynamic advantage district of LiCoO2 is adjacent with thermodynamic advantage districts of Co(OH)3, Co2+ and Co(OH)2. LiCoO2 can be dissolved in aqueous solution by 3 ways with the LiCoO2 dissolved into Co2+ and Li+ by acids through intermediate outcome Co(OH)3 firstly, and that directly dissolved by acids secondly, and finally with that dissolved by reducing agent and through intermediate outcome Co(OH)2. The acid dissolution with the role of reducing agent is the most effective way. The process of LiCoO2 dissolved in mix solvent of H2O2+ H2SO4 has studied by this test. The reaction speed of dissolution of LiCoO2 for concentration of H2O2 and H2SO4 is an apparent reaction order. The apparent activation energy of the process is 14.9 KJ·mol-1. The controlling step of the process is a diffusion of reactants to interface of solid and liquid. The suitable process conditions are that the concentration of H2SO4 is 2.0~2.5 mol·L-1, the concentration of H2O2 is 1.1~1.2 mol·L-1, reaction temperature is larger than 80℃, stirring and reaction time is 120 min. Under these conditions LiCoO2 dissolution rate can be larger than 99%.
     The hydrolysis behavior of aluminum in strong electrolyte sulphate solution is the foundation of separation aluminum from lithium and cobalt sulphate solution. In aqueous solution strong electrolysis sulfate have buffering effect to the acid in solution due to the hydrolysis of SO42-, and has important influence on the hydrolysis of aluminum. According to synthesizing balanced principle in solution reaction and reasonable system design, aluminum hydrolysis is studied by mathematics simulated analysis firstly. Al3+, AlOH2+, Al(OH)4-, Al2(OH)24+, Al6(OH)153+ and Ali3(OH)327+ are the major existent bodies of aluminum ion hydrolysis in solution. When pH is higher (larger than 9) Al(OH)3 is formed in aluminum hydrolysis. Hydrolysis tests of alkali titration to aluminum in solution are made. Two platforms in the curve of titration occur when COH/CAl is from 0 to 3.5, and respectively show hydrolysis-polymerization and hydrolysis-precipitation of aluminum in solution. Hydrolysis-precipitation goes on obviously when COH/CAl is larger than 2.2, and finishes when COH/CAl is at 3.5. Higher temperature is helpful to the hydrolysis-precipitation of aluminum in solution. The light hydrolysis of cobalt can strengthen the hydrolysis-precipitation of aluminum in cobalt sulfate solution. In lower pH cobalt salt hydrolyzes and Co(OH)2 sediment pellets are produced. These pellets adhere to, are swept and entrapped by aluminum-polymers that are produced in the hydrolysis course and have positive charge and plane reticular structure. Therefore, the aluminum-polymers can precipitate together with Co(OH)2 sediment pellets in lower pH.
     The solid-phase transformation based on anion CO32- put frist forward for separating cobalt in lithium and cobalt sulfate solution is based on the chemical equilibriums of CO2-H2O system. Solid Li2CO3 is used to be as precipitation and low CO32- environment is made with solid Li2CO3 suspension solution. CoCO3 is made from cobalt and lithium mix sulfate solution with replacing Li+ in solid Li2CO3 by Co2+ in solution.The process of solid phase transformation on the basis of anion CO32- has been confirmed by the experiments, and a series of test results has been gotten. The quality of Li2CO3 that react with Co2+is nearly equal to chemical reaction measure for complete precipitation of cobalt in solution. A little excessive Li2CO3 (chemical reaction measure rate times is 1.05~1.10) is suitable for the process of solid phase transformation. By the way of reducing Co2+ concentration in solution and increasing reaction temperature, reaction time and maturation time etc. the size of reaction outcome CoCO3 can be increased. In the condition of higher temperature, lower pH value and less joining speed of cobalt salt solution, complete crystallization and dense CoCO3 sediment can be made. The comprehensive test of the reactor scale of 20 L is made and suitable conditions are obtained. The suitable test conditions are that temperature is 50℃, ratio of liquid to solid is 4:1, concentration of Co2+ in sulfate solution (Co/Li=1) is 1.50 mol·L-1 and pH value of the solution is 4.0, chemical reaction measure rate times of Li2CO3 is 1.1, feeding and reaction time is 90 min and maturation time is 60 min. In the suitable test conditions, precipitation ratio of Co2+ is 99.76%, central size of the CoCO3 particle is 8.26μm and particle size distribution is good.
     The Li+,Na+//SO42-,CO32--H2O interactive equilibrium is the theoretical foundation of the process of reaction crystallization Li2CO3 in lithium sulfate solution. The reaction equilibrium law is used to research partial crystallization process of Li+,Na+//SO42-,CO32--H2O interactive equilibrium related to the responsive crystallizing process of Li2CO3. When steady Li2CO3-Na2SO4 salt-pair is balanced for reaction crystallization, the average activity coefficients of Li2CO3 and Na2SO4 in solution are in agreement with the improved typical electrolyte solution model.
     The dissolution equilibriums of Na2SO4 and Li2CO3 in interactive system of Li+,Na+//SO42-,CO32--H2O accords with following mathematic relation.
     The tested data analysis of the crystallization equilibrium of steady Li2CO3-Na2SO4 salt-pair in Li+,Na+/SO42-,CO32--H2O interactive system shows that high crystallization ratio of Li2CO3, low liquid-solid ratio and relatively high comprehensive reaction transformation ratio could be got when reactant measure ratio (Na2CO3/Li2SO4) is 1.0.The crystallization Li2CO3 process in lithium sulfate solution has been done by experiments with the research results showing that with solid reactant (sodium carbonate), Li crystallization rate increases with the increase of initial Li salt concentration, reactant measure ratio (Na2CO3/Li2SO4), reaction temperature and reaction time. The better crystallization conditions are that initial Li+ concentration is 20g·L-1, the chemical reaction measure of reactants is equal (Na2CO3/Li2SO4 is 1.0), reaction temperature is normal, reaction and feeding time is 60 minutes and stirring and mature time is 30 minutes. Orthogonality test results show that the influence order from big to little of the influencing factor is:initial concentration of lithium in solution, sodium carbonate quantity used in crystallization course, reaction time, and reaction temperature. Under the optimization condition of Li2CO3 reaction crystallization, Li receipt rate is larger than 82%. The analysis of XRD, SEM and TG/TDA shows that structure of Li2CO3 crystallization is complete and in order, the form of Li2CO3 pellets dehydrated is flat, size of pellets is more even, the melting point of Li2CO3 is 723.1℃, decomposition of Li2CO3 occur in more than melting point temperature under the optimization condition of crystallization.
     The method by that the nanometer Co3O4 is prepared with completely dry and automatic purification is suggested for the first time. Based on solid-state reaction at low temperature and hot sublimation of NH4C1, CoCl2·6H2O and (NH4)2C2O4·H2O are used as raw materials, and the mixture of CoC2O4·2H2O and NH4Cl is prepared through solid-state reaction at low temperature. The mixture is handled at the temperature above sublimating temperature of NH4Cl, NH4C1 is sublimated, CoC2O4·2H2O is decomposed, and pure nanometer Co3O4 is prepared. Grinding and using reactant containing crystallization water can promote the solid-state reaction at lower temperature, properly excessive (NH4)2C2O4·H2O can guarantee the complete transformation of CoCl2·6H2O, the sublimation of NH4Cl can reduce reunite of outcome particles. Nanometer Co3O4 prepared is in good scattering and with complete crystal shape by joining suitable quantity scatter dose, adapting suitable dry temperature and heat-decomposing temperature of forerunner mixture. Synthesizing test results, the better conditions of solid-state reaction at low temperature in which nanometer Co3O4 is prepared are that ratio of CoCl2·6H2O and (NH4)2C2O4·H2O is 1:1.2, suitable quantity (the 2% of reactants amount) assemble glycol is added, grinding and reaction time is 30 minutes, outcome mixture is dried in 120℃for 10 hours, and dried mixture is burn in 350℃for 3 hours. Under these technology conditions, the synthesized nanometer Co3O4 has a particle size of 8nm with symmetrical distribution.
引文
[1]Young,R.S., Cobalt It's Chemistry, Metalurgy & Uses, Reinhold Publishing Corp.[M], New York,1960
    [2]《无机化学》编写组.无机化学.下册[M].上海:人民教育出版社,1978
    [3]安家驹,王伯英编.实用精细化工辞典[M].北京:中国轻工业出社
    [4]乐颂光.钴冶金[M].北京:冶金工业出版社,1987
    [5]徐培全,杨德新,赵秀娟,等.WC-Co系硬质合金TIG焊头界面扩散分析[J].上海交通大学学报,2005,39(7):1050
    [6]莫盛秋,程继贵,王华林.真空烧结低钴粗晶硬质合金及其性能研究[J].合肥工业大学学报,2000,23(2):294
    [7]刘文侠,郭庆泰,丁伟山,等.钴铬合金和陶瓷间粘结强度研究[J].口腔材料器械,2005,14(1):59
    [8]师瑞霞,尹衍升,周春华,等.钴包覆纳米A1203/TiCp复相陶瓷的力学性能及其增韧机制[J].机械工程材料,2004,28(11):28
    [9]申承民,苏轶坤,杨海涛,等.磁性钴纳米晶的二维组装[J].物理学报,2003,52(2):483
    [10]刘旭波,岳明,肖耀福,等.钴在HDDR各向异性NdFeB中的作用[J].中国稀土学报,2001,19(1):36
    [11]杨富民,孙晓峰,管恒荣,等.K40S钴基高温合金高温高周疲劳行为[J].中国有色金属学报,2003,13(1)):141
    [12]姜文辉,管恒荣,胡壮麒.定向凝固钴基高温合金DZ40M的热处理研究[J].航空材料学报,2001,21(1):1
    [13]吴玉琪,吕功煊,李树林.CoO改性TiO2光催化剂从水析氢光电化学行为研究[J].化学学报,2005,63(8):671
    [14]宗成中,董兰国.丁二烯聚合用钴系(Co)胶体催化剂各组分间的相互作用研究[J].胶体与聚合物,2005,23(1):26~27
    [15]李惠萍.最轻的金属[J].金属世界,1999,2:19
    [16]冉建中.世界有色金属工业现状[R].国家有色工业局规划发展司,1999:383
    [17]胡启阳,李新海.西藏碳酸盐型盐湖锂资源开发技术与应用[R].中南大学,2006:1
    [18]丰成友,张德全.世界钻矿资源及其研究进展述评[J].地质评论,2002,48(6):627
    [19]丰成友,张德全,党兴彦.中国钻资源及其开发利用概况[J].矿床地质,2004,23(1):99
    [20]田苗.我国钴资源的特点[J].金川科技,2005,2:77
    [21]李明慧,郑锦平.锂资源的分布及开发利用[J].科技导报,2003,12:38
    [22]李承元,李勤,朱景和.国内外锂锂资源概况及其选冶加工工艺概述[J].世界有色金属,2001,8:4
    [23]封国富,张晓.世界锂工业发展格局的变化对中国锂工业的影响和对策[J].稀有金属,2003,27(1):57
    [24]李海民,程怀德,张全有.卤水资源开发利用技术述评[J].盐湖研究,2003,11(3):51
    [25]李昱昀,狄晓亮,高洁.国内外盐湖卤水锂资源及开发现状[J].海湖盐与化工,2001,34(5):31
    [26]David Weight. Promoting the sustainable and responsible use of coblt in all forms[PPT].2009'China International Ni & Co Industrial Ferium. China. GuangZhou.2009.11.18
    [27]王永利,赵丽霞.从含钴废料中提取钻的研究进展[J].再生资源研究,2005(2):29
    [28]刘大星.国内外钴的生产、消费和技术进展[J].有色冶炼,2000,29(5):4
    [29]杨晓菲.2009年中国钴市场分析[PPT].2009年中国国际镍钴工业论坛,中国,广州,2009.11.18
    [30]杨红玫,郝俊,易长宾.钴市场走势分析报告[J].世界有色金属,2005,3:31
    [31]王海北,刘三平,蒋开喜,等.我国钻消费和消费现状[J].矿冶,2004,13(3):54
    [32]刘建军.我国锂工业的生产现状和发展对策[J].产业透视,2004,5:32
    [33]封国富,张晓.世界锂工业发展格局的变化对中国锂工业的影响和对策[J].稀有金属,2003,27(1):57(2003)
    [34]http://www.Chinaccm.com 2008-4-25 9:19,2008年中国碳酸锂行业研究咨询报告(摘要)
    [35]李承元,李勤,朱景和.国内外锂锂资源概况及其选冶加工工艺概述[J].世界有色金属,2001,8:4
    [36]赵元艺.中国盐湖锂资源及其开发进程[J].矿床地质,2003,22(1):99
    [37]游清治.锂在高新技术领域中的应用与进展[J].新疆有色金属,2003(增刊):70
    [38]Thackeray M.M., Structral considerations of layered and spinel lithiated oxides for lithium ion battery [J]. J.Electrochem.Soc.,1995,142(8):2558~2563
    [39]Yamada A., Hosoya M., Chung S.C., et al.Olivine-type cathodes Achievements and Problems[J]. J.Power Sources,2003,119:232~238
    [40]张文.锂离子电池用负极材料[J].电池,1997,27(3):132-135
    [41]Takeuchi E.S., Gan H., Palazzo M., et al.Anode passivation and electrolyte solvent disproportionation:mechanism of ester exchange reaction in lithium-ion batteries[J]. J.Electrochem.soc.,1997,144(6):1944~1948
    [42]Smart M.C., Ratnakumar B.V., Surampuli S., et al. Irreversible capacities of graphite in low temperature electrolytes for lithioum-ion batteries[J]. J. Electrochem.Soc.,1999,146(11):3963~3969
    [43]Z H Chen, J.R.Dahn, Methoods to obtain excellent capacity retention in LiCoO2 cycled to 4.5V, Electrochimica Acta,2004,49:1079~1090
    [44]Jun Ji Akimoto, Yoshito Gotoh, Yohshinao Oosa wa. Synthesis and structure refinement of LiCoO2 single crystals[J]. J.Solid State Chemistry.1998,141: 298-302
    [45]Anders Lundblad, Bill Bergman. Synthesis of LiCoO2 starting from carbonate precursors:The reaction mechanisms[J]. Solid State Ionics,1997,96:173-181
    [46]Mizushma K., Jones PC, Wiseman P.J., et al. LixCoO2 (0    [47]Anders Lundblad, Bill Bergman. Synthesis of LiCoO2 starting from carbonate precursors:Ⅱ-Influence of calcinations conditions and leaching[J]. Solid State Ionics,1997,96:183-193
    [48]应皆荣,姜长印,万春荣.溶胶凝胶法制备LiNixCo1-xO2正极材料的研究进展[J].化学世界,2001(3):157-160
    [49]Tukaoto H., West A.R. Electronic conductivity of LiCoO2 and its enhancement by magnesium doping [J]. J.Electrochem.Soc..1999,144(9):3164-3168
    [50]杨新河,刘人敏,吴国良.锂离子电池正极材料LiCoO2的合成机理及其化学行为研究[C].第23届全国化学与物理电源学术会议论文集,河南新乡,1999:342-344
    [51]Kang S.G, Kang S.Y., Ryu K.S.,et al. Electrochemical and structural properties of HT-LiCoO2 and LT-LiCoO2 prepared by the citrate sol-gel method[J]. Solid State Ionics,1999,120:155-161
    [52]Peng Z.S., Wan C.R., Jiang C.Y. Synthesis by sol-gel process and characterization of LiCoO2 cathode materials[J]. Journal of Power Sources, 1998,72:215-220
    [53]Jeong E.D., Won M.S., Shim Y.B. Cathodic properties of a lithium-ion secondary battery using LiCoO2 prepared by a complex formation reaction[J]. Journal of Power Sources,1998,70:70-77
    [54]M.Yoshio, H. Tanaka, K.Tominaga. Synthesis of LiCoO2 from cobalt-organic acid complexes and its electrode behavior in a lithium secondary[J]. Joural of Power Sources,1992,40:347-353
    [55]B.Garcia, J.Farcy, J.P. Pereira-Ramos. Low temperature cobalt oxide as rechargeable cathodic material for lithium batteries[J]. Joural of Power Sources, 1995,54:373-377
    [56]谷亦杰,吴惠康,麻向阳,等.层状LiNi1-xCoxO2结构研究[J].无机化学学报,2006,3:494-497
    [57]郭红兵,康雪雅,王天雕,等.镍钴酸锂的空气气氛下高温固相合成[J].电子元件与材料,2005,6:18-20
    [58]李若愚,陈白珍,肖立新,等.镍钴酸锂的制备与电性能研究[J].有色金属,2005,4:40-44
    [59]贺益,陈召勇,刘兴泉,等.类凝胶法制备锂离子二次电池正极材料镍钴酸锂[J].合成化学,2001,2:142-144
    [60]唐爱东,黄可龙.层状锰酸锂衍生物的阳离子价态与锂电池的电化学性能研究[J].化学学报,2005,13(63):1210-1214
    [61]T.H. Cho, S.M.Park, M.Yoshio, T.Hirai, et al. Effect of synthesis condition on the structural and electrochemical properties of Li[Ni1/3Mn1/3Co1/3]O2 prepared by carbonate co-precipitation method [J]. Journal of Power Sources, 2005,142:306-312.
    [62]Won-Sub Yoon, Kyung Yoon Chung, James McBreen,et al. A comparative study on structural changes of LiCo1/3Ni1/3Mn1/3O2 and LiNi0.8Co0.15Al0.05O2 during first charge using in situ XRD [J]. Electrochemistry Communications 2006,8:1257-1262.
    [63]De-Cheng Li, Takahisa Muta, Lian-Qi Zhang, et al. Effect of synthesis method on the electrochemical performance of LiNi1/3Mn1/3Co1/3O2 [J]. Journal of Power Sources,2004,132:150-155
    [64]陈宏伟,习小明,湛中魁.锂离子电池正极材料层状LiNi1/3Co1/3Mn1/3O2的研究进展[J].矿冶工程,2006,1(26):68-70.
    [65]Kim J M, Chung H T. Role of transition metals in layered Li [Ni,Co,Mn] O2 under electrochemical properties [J]. J Electrochem Soc,2004,151(11): 1789-1796.
    [66]Tong Dong-Gea, Lai Qiong-Yu, Wei Ni-Ni. Synthesis of LiCo1/3Ni1/3Mn1/3O2 as a cathode material for lithium ion battery by water-in-oil emulsion method[J]. Materials Chemistry and Physics.2005,94:423-428.
    [67]Lee M H, Kang Y J, Myung S T, et al. Synthetic optimization of Li[Ni1/3Co1/3Mn1/3]O2 via co-precipitation[J]. Electrochimica Acta. 2004,50:939-948.
    [68]刘永欣,马晓华,邱玮丽,等.锂离子电池正极材料LiNi1/3Co1/3Mn1/3O2的研究进展[J].电池,2005,35(5):398-400.
    [69]Masaya Kageyama, Decheng Li, Koichi Kobayakawa, et al. Structural and electrochemical properties of LiNi1/3Mn1/3Co1/3O2-xFx prepared by solid state reaction [J]. Journal of Power Sources,2006,157(1):494-500
    [70]Cho T H, Park S M, Yoshio M, et al. Effect of synthesis condition on the structural and electrochemical properties of Li[Ni1/3Mn1/3Co1/3]O2 prepared by carbonate co-precipitation method[J]. Journal of Power Sources. 2005,142:306-312
    [71]Decheng Li, Yasuhiro Kato, Koichi Kobayakawa. Preparation and electrochemical characteristics of LiNi1/3Mn1/3Co1/3O2 coated with metal oxides coating[J]. Journal of Power Sources.2006,2(160):1342-1348
    [72]Yucheng Sun, Yonggao Xia, Hideyuki Noguchi, etal. The improved physical and electrochemical performance of LiNio.35Coo.3-xCrxMn0.35O2 cathode materials by the Cr doping for lithium ion batteries. Journal of Power Sources. 2006,2(159):1377-1382
    [73]Masaya Kageyama, Decheng Li, Koichi Kobayakawa, et al. Structural and electrochemical properties of LiNi1/3Mn1/3Co1/3O2-xFx prepared by solid state reaction. Journal of Power Sources.207th Meeting of the Electrochemical Society-Meeting Abstracts[J].2005, p154
    [74]Tukaoto H. West A.R.Electronic conductivity of LiCoO2 and its enhancement by magnesium doping [J]. J.Electrochem.Soc..1997,144(9):3164-3168
    [75]李建刚.锂离子电池用LixMn2-xO4正极材料的应用基础研究[D].天津:天津大学,2001
    [76]张胜涛,胡舸,伍明军.尖晶石型锰酸锂的性质及改性研究现状[J].重庆职业技术学院学报,2004,1:5-9
    [77]沈俊,陶菲,田从学,等.Pechini法合成尖晶石LiCoxMn2-xO4及其结构表征[J].四川有色金属,2004,2:25-29
    [78]Amarilla J M, Martin J L. Electrochemical characteristics of coball-doped LiCoyMn2-yO4 (0≤y≤0.66) spinels synthesized at low temperature from CoxMn3-xO4 precuvsors[J]. Sovid State Zonics.2000,127:73-77
    [79]李智敏,仇卫华.Al3+,F-掺杂LiMn2O4的高温电化学性能[J].电池,2003,33(2):71-73
    [80]刘兴泉,刘培松,陈召勇,等.锂离子电池正极材料LiMn2O4的合成及其电化学性能研究[J].功能材料,2001,2:178-180
    [81]卢星河,唐致远,张娜,等.掺杂元素Co、Cr、La对尖晶石型锰酸锂电化学性能的影响[J].河北建筑科技学院学报,2005,3:4-7
    [82]王凤,戴永年,崔萌佳,等.掺杂对尖晶石锰酸锂正极材料的影响[J].无机盐工业,2005,37(1):4-6
    [83]许明飞,李新海,张云河,等.化学镀镍包覆提高尖晶石型LiMn2O4的高温性能[J].电源技术,2004,161(3):88-90
    [84]李新海,何方勇,郭华军,王志兴.F-掺杂LiMn2O4的合成及电化学性能[J].中国有色金属学报,2008,18(1):54
    [85]刘静静,仇卫华,赵海雷,等.锂离子电池用层状LiMnO2基正极材料的研究进展[J].硅酸盐学报,2005,9:1128-1134
    [86]A.R.Armstrong, Bruce P.G Synthesis of layered LiMnO2 as electrode for rechargeable lithium batteries[J]. Nature,1996,381:499-500
    [87]Tabuchi M, Ado K, Kobayshi H. Sythesis of LiMnO2 with a-NaMnO2 type by a mixed alkaline hydrothermal reaction[J]. J.Electrochem.Soc.,1998,145:49-52
    [88]Reed J, Ceder G. Charge. Potential and phase stability of layered Li(Ni0.5Mn0.5)O2[J]. Electrochem. Solid State Lett.2002,5:A145.
    [89]Armstrony A R, Bruce P G. Sythesis of layered LiMnO2 as an electrode for rechargeable lithium batteries[J]. Nature,1996,381:499-500
    [90]Ammundsen B., Desilvestro J., Routso T.G., et al. Formation and structural properties of layered LiMnO2 cathode materials[J]. J.Electrochem Soc.,2000, 147(11):4078-4082
    [91]Ohzuku T., Komori H. New route to prepare lithium nickel dioxide for 4volts secondary lithium cells[J]. Chem Express,1992,7:689-694
    [92]吴宇平,戴晓兵,马军旗,等.锂离子电池-应用与实践[M].北京:化学工业出版社,2004
    [93]Ohzuku T., Vede A., Nagayama M. Electrochemistry and structural chemistry of LiNiO2 (R3m) for 4 Volt secondary lithium cells[J]. Solid State Ionics,1997, 96:183-193
    [94]叶乃清,刘长久,沈上越.正极材料LiNi1-xAlxO2的合成及表征[J].电池,2004,4:238-241
    [95]何希兵,其鲁,王银杰,等.锂离子二次电池正极材料镍酸锂的量子化学研究[J].无机化学学报,2003,8:808-813
    [96]袁荣忠,瞿美臻,于作龙.锂离子电池镍系正极材料的热稳定性研究进展[J].无机材料学报,2003,5:973-978
    [97]李辉,杨尚林,翟玉春,等.锂离子电池正极材料LiNi0.8M0.2O2的制备[J].过程工程学报,2002,6:515-518
    [98]叶尚云,张平伟,乔芝郁.层状Ni-Mn基锂离子电池正极材料进展[J].稀有金属,2005(3):
    [99]陈前火,童庆松,连锦明,等.尖晶石型Li1.03Mn1.4Ni0.57O4的制备与电化学性能[J].功能材料,2004(z1):1846-1849
    [100]钟辉,许惠,汪文成,等.层状Li0.78Ni0.3Mn0.7O2正极材料的合成与性质研究[J].化学学报,2003,4:510-513
    [101]Michael E. Spahr, Petr Novak, Otto Haas, et al. Cycling performance of novel lithium insertion electrode materials based on the Li-Ni-Mn-O system [J]. Journal of Power Sources, October 1997,2:629-633
    [102]O.A.Shlyakhtin, Young Soo Yoon, Sun Hee Choi,et al. Freeze drying synthesis of LiNi0.5Mn0.5O2 cathode materials[J]. Electrochimica Acta,2004, 2-3:505-509
    [103]Kim J H, Yoon C S, Sun Y K. Structural characterization of Li[Li0.1Ni0.35Mn0.55]O2 cathode material for lithium secondary batteries [J]. J.Electrochem.Soc.,2003,150:A538.
    [104]Decheng Li, Yuki Sasaki, Masaya Kageyama, et al. Structure,morphology and electrochemical properties of LiNi0.5Mn0.5-xCoxO2 prepared by solid state reaction[J]. Journal of Power Sources,2005,15:85-89
    [105]Yoon W S, Paik Y, Yang X Q, et al. Investigation of the local structure of the LiNi0.5Mn0.5O2 cathode material during electrochemical cycling by X-ray absorption and NMR spectroscopy [J]. Electrochem. Solid State Lett.,2002, 5:A263.
    [106]Reed J, Ceder G. Charge, potential and phase stability of layered Li(Ni0.5Mn0.5)O2[J]. Electrochem. Solid State Lett.2002,5:A145.
    [107]Ammundsen B, Paulsen J. Novel lithium-ion cathode materials based on layered manganese oxides[J]. Adv. Mater,2001,13:943
    [108]Michael E. Spahr, Petr Novak, Otto Haas, et al. Cycling performance of novel lithium insertion electrode materials based on the Li-Ni-Mn-O system[J]. Journal of Power Sources,1997,2:629-633
    [109]O.A.Shlyakhtin, Young Soo Yoon, Sun Hee Choi, et al.Freeze drying synthesis of LiNi0.5Mn0.5O2 cathode materials[J]. Electrochimica Acta,2004, 2-3:505-509
    [110]Michael E. Spahr, Petr Novak, Otto Haas, et al. Cycling performance of novel lithium insertion electrode materials based on the Li-Ni-Mn-O system[J]. Journal of Power Sources,1997,2:629-633
    [111]Seong-Hwan Na, Hyun-Soo Kim and Seong-In Moon. A new synthetic route of LiNi0.5Mn0.5O2 as the cathode material of secondary lithium batteries[J]. Electrochimica Acta.2004,2-3:449-452
    [112]N. Tran, L. Croguennec, C. Jordy, et al. Influence of the synthesis route on the electrochemical properties of LiNi0.425Mn0.425Co0.15O2[J]. Solid State Ionics. 2005,17-18:1539-1547
    [113]P.Periasamy and N. Kalaiselvi. Electrochemical performance behavior of combustion-synthesized LiNi0.5Mn0.5O2 lithium-intercalation cathodes[J]. Journal of Power Sources,2006,2:1360-1364
    [114]J O. Anderson and A S,Thomas. The source of first-cycle capacity loss in LiFePO4[J]. J.Power Sources,2001,97-98:498-502
    [115]Anderson A S, Kalska B, Haggstrom L, et al. Lithium extraction/insertion in LiFePO4:an X-ray diffraction and Mossbauser spectroscopy study[J]. Solid State Ionics,2002,5(5):A95-98
    [116]Yamada A, Chung S C, Hinokuma K. Optimized LiFePO4 for lithium battery cathodes[J]. J.Electrochem Soc,2001,148(3):224-229
    [117]唐昌平,应皆荣,姜长印,等.磷酸铁锂正极材料改性研究进展[J].化工新型材料,2005(9):22-25
    [118]张宝,罗文斌,李新海等.LiFePO4/C锂离子电池正极材料的电化学性能[J].中国有色金属学报,2005,2:300-305
    [119]诸大建.从可持续发展到循环型经济[J].世界环境,2003,3:6-12
    [120]余德辉,王金南.循环经济21世纪的战略选择[J].再生资源研究,2001,5:1-5
    [121]郭蔽.循环经济是解决污染的根本之路[J].再生资源研究,2001,1:2-3
    [122]《铅锌冶金学》编委会.铅锌冶金学[M].北京:科学出版社,2003(535)
    [123]杨遇春.再生铝-适应可持续发展的绿色产业[J].中国工程科学,2003,5:1
    [124]程产文.手机电池的未来发展展方向[J].电源技术,2008,32(1):6
    [125]张正洁,杨金侠.废锂离子电池的资源化回收方法[J].有色矿冶,2005,21(6):46
    [126]冯之浚.循环经济导论[M].北京:人民出版社,2004
    [127]Zhang P W, Yokoyama T, Itabashi O, et al. Hydrometallurgical process for recovery of metal values from spent Li ion secondary batteries [J]. Hydrometallurgy,1998,47(2~3):259-271
    [128]钟海云,李荐,柴立元.从锂离子二次电池正极废料——铝钴膜中回收铝的工艺研究[J].稀有金属与硬质合金,2001,3:1-4
    [129]Lin J. R., Fan C., Chang I. L., et al. Clean process of recovering metal from waste lithium ion batteries[P], US:65514311,2003-02-04
    [130]Churl K. L., Kang-In. R.. Reductive leaching of cathodic active metals from lithium ion batteries[J]. Hydrometallurgy,2003,68(1-3):5-10
    [131]Contestabile M., Panero S., Scorsati B. A laboratory-scale lithium ion battery recycling process [J]. J. Power Sources,2001,92(1-2):65-69
    [132]潘泽强,杨声海.从钴铝膜废料生产钴产品[J].稀有金属,2002,(1):39~42
    [133]LEE C K, RHEE K I. Preparation of LiCoO2 from spent lithium-ion batteries. Journal of Power Sources,2002,109:17~21
    [134]Zhang Ping-wei, Yoko Yomo T, ItabashiI O, et al. Hydrometallurgical process for recovery of metal values from spent lithium-ion secondary batteries [J]. Hydrometallurgy,1998,447(2-3):259~271
    [135]吴芳.从废旧锂离子二次电池中回收钴和锂[J].中国有色金属学报,2004,14(4):697~701
    [136]Myoung J, Jung Y W, Lee J, et al. Cobalt oxide preparation from waste LiCoO2 by electrochemical-hydrothermal method [J]. Journal of Power Sources,2002, 112:639~642
    [137]申勇峰.从废锂离子电池中回收钴[J].有色金属,2002,54(4):69~70
    [138]Lain M J. Recycling of lithium-ion cells and batteries [J]. Journal of Power Source,2001,97-98:736~738
    [139]王晓峰,孔祥华,赵增营.锂离子电池中贵重金属的回收[J].电池,2001,31(1):14-15
    [140]Contestabile M, Panero S, Scrosati B. A laboratory-scale lithium-ion battery recycling process [J]. J.Power Sources,2001,92:65~69
    [141]Kim O S, Sohn J S, Lee C K, Lee J H, Han K S, Lee Y I. Simultaneous sepa-ration and renovation of lithium cobalt oxide from the cathode of spent lithi-um-ion rechargeable batteries [J]. J.Power Sources,2004,132:145~149
    [142]金泳勋,松田光明等.用浮选法从废锂离子电池中回收锂钴氧化物[J].国外金属矿选矿,2003,7:32~37
    [143]欧秀芹,孙订华,赵庆余,范飞.锂离子电池资源化技术进展[J].无机盐工业,2005,37(9):11~14
    [144]秦毅红,齐申.有机溶剂分离法处理废旧锂离子电池[J].有色金属(冶炼部分),2006,1:13-16
    [145]王泽扬.聚偏二氟乙烯的性能和应用[J].中国氯碱1995,11:38~39
    [146]秦明礼,曲选辉,林健凉等.碳热还原法制备氮化铝陶瓷粉末的研究[J].材料导报,2005,15(7):56~59;
    [147]孙晓刚,曾效舒.空气氧化法提纯碳纳米管的研究[J].新型碳材料,2004,19(1):65~68
    [148]罗卫.化学湿法氧化消除合金试样中的碳质和硫化物[J].新疆有色金属,2004,1:24~25
    [149]《无机化学》编写组.无机化学(下)[M].人民教育出版社,1978
    [150]刘景,温兆银,吴梅梅等.LiCoO2正极材料的络合法合成及其电化学性能研究[J].无机材料学报,2002,17(6):1157~1162
    [151]B Markovsky, A Rodkin, G Salitra, et al. The impact of Co2+ ions in solutions on the performance of LiCoO2, Li, and lithiated graphite electrodes [J]. J. Electrochem Soc,2004,151(7):A1068~1076
    [152]郭丽萍,杜小弟,方伟,雷家珩.Na2S2O3还原溶解LiCoO2及钴、锂分离回收[J].应用化学,2006,23(10):1182
    [153]蒋汉瀛.湿法冶金过程物理化学[M].北京:冶金工业出版社,1984
    [154]文士美,赵中伟,霍广生.Li-Co-H2O系热力学分析及E—pH图[J].电池 技术,2005,29(7):423-426
    [155]李自强,何良惠.水溶液化学位图及其应用[M].成都:成都科技大学出版社,1991
    [156]钟竹前,梅光贵.化学位图在湿法冶金和废水净化中的应用[M],长沙:中南工业大学出版社,1986:392~470
    [157]J.A.迪安.兰氏化学手册[M].北京:科学出版社,1991
    [158]姚允斌,解涛,高英敏.物理化学手册[M].上海:上海科学技术出版社,1985
    [159]许志宏,王乐珊.无机热化学数据库[M].北京:科学出版社,1987
    [160]印永嘉.物理化学简明手册[M].北京:高等教育出版社,1988
    [161]梁英教,车荫昌,刘晓霞等.无机物热力学数据手册[M].沈阳:东北大学出版社,1993
    [162]林传仙,白正华,张哲儒.矿物及有关化合物热力学数据手册[M].北京:科学出版社,1985
    [163]莫鼎成.冶金动力学[M].长沙:中南工业大学出版社,1988
    [164]李洪桂.冶金原理[M].北京:科学出版社,2005
    [165]朱柄辰.化学反应工程[M].北京:化学工业出版社,2001
    [166]H.Y.Sohn, M.E.Wadsworth等.提取冶金速率过程[M].北京:冶金工业出版社,1984
    [167]徐光宪主编.稀土[M].北京:冶金工业出版社,1995;P407
    [168]郝伟,孙中溪.沉淀溶解法制备纳米硫化锌[J].无机化学学报,2007,23(3):461
    [169]赵小山,陈其安.用稀土草酸盐作前驱物合成磷酸镧铈铽[J].稀土,2002,23(3):14
    [170]沈钟,王果庭.胶体与表面化学[M].北京:化学工业出版社,1997
    [171]李世丰,张永光.表面化学[M].长沙:中南工业大学出版社,1991
    [172]A.Ki tanhara, A.Wa tanabe(编著).邓彤,赵学范(译).界面电现象[M].北京:北京大学出版社,1992
    [173]周祖康,顾惕人,马季铭.胶体化学基础[M].北京:北京大学出版社,1996
    [174]徐龙泉,曾祖亮,梁虎,涂明江,米茂龙.硫酸法生产电池级碳酸锂[P].CN.Pat.No.1267636A,2000
    [175]王桂英,石颖.用碳酸铵沉淀制备碳酸锂的方法[P].CN.Pat No.1059702A,1992
    [176]方国良.2Li+,2Na+//SO42-,CO32--H2O体系相图分析及沉锂最佳条件探讨[J].新疆有色金属,1994,3:10
    [177]石颖.沉锂母液自循环工艺的理论和方法[J].新疆有色金属,1987,4:2
    [178]桑世华,殷辉安,曾英,刘凤英.Li+,Na+//SO42-,CO32--H2O交互四元体系288 K介稳相平衡研究[J].化学学报,64(22):2247,2006
    [179]Harvie C. E., Moller N.,Weare J. H. The prediction of mineral solubilities in natural waters:The Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O system to high ionic strengths at 25℃ Geochim. Cosmochim. Acta,1984,48: 723.
    [180]房春晖,牛自得,刘子琴.Na+,K+//Cl-,SO4-2,CO3-2--H2O五元体系25℃介稳相图的研究[J].化学学报,1991,49(11):1062-1070
    [181]牛自得,程芳琴.水盐体系相图及其应用[M].天津:天津大学出版社,2002
    [182]李以奎.电解质溶液理论[M].北京:清华大学出版社,2005
    [183]黄子卿.电解质溶液理论导论(修订版)[M].北京:科技出版社,1983
    [184]Latimer W.M. The oxidation states of the elements and their potentials in aqueous solution[M],1952
    [185]C. M. Criss, J. W. Cobble. The Thermodynamic Properties of High Temperature Aqueous Solutions. Ⅳ. Entropies of the Ions up to 200° and the Correspondence Principle[J]. Amer. Chem Soc.,86(20),5385-5390(1964)
    [186]常东胜.止汗剂碱式氯化铝研制新方法[J].中国氯碱,2004,9(9):41-44
    [187]刘文新,栾兆坤,汤鸿霄.水体铝(Ⅲ)的化学形态及其生态效应的研究进展[J].应用生态学报,1999,10(2):251-254
    [188]Phillips B L, Casey W H, Karlsson M. Bonding and reactivity at oxide mineral surfaces from model aqueous complexes[J]. Nature,2000,404:379-382.
    [189]HYU K CHOI, YOUNGU K KWON, OC HEE HAN. Nanocomposite Gels between [V10O28]6- and [AlO4Al12(OH)24(H2O)12]7+ Polyoxometalate Clusters[J]. Chem Mater,1999,11(7):1641-1643
    [190]Bi S P, Wang C Y, Cao Q, et al. Studies on the mechanism of hydrolysis and polymerization of aluminum salts in aqueous solution:correlations between the "Core-links" model and "Cage-like" Keggin-Al13 model[J]. Coordination Chemistry Reviews,2004,248(5-6):441-455
    [191]Stol R J, van Helden A K, Bruyn P L. Hydrolysis-precipitation studies of aluminum(Ⅲ) solutions,2:a kinetic study and model[J]. J. Colloid Interface Sci.,1976,57:115-131
    [192]Bersillon J L, Hsu P H, Flessinger F. Characterization of hydroxy-aluminum solutions[J]. Soil Sci. Soc. Am. J.,1980,44:630-636
    [193]王趁义,毕树平,张彩华,等.铝盐水解聚合及其形态转化过程的电位滴定曲线研究[J].分析测试学报,2004,23(5):1-6
    [194]栾兆坤,冯利,汤鸿霄.水解聚合铝溶液中形态分布的定量模拟研究[J].环境科学学报,1995,15(1):39-47
    [195]王趁义,罗明标,毕树平.环境中羟基聚合铝型体的形成和形态转化规律[J].分析科学学,2003,19(4):383-388
    [196]朱志平.铝盐(铁盐)混凝过程行为分析与最佳pH预测[J].水处理技术,1993,19(2):107
    [197]陈启元.有色金属基础理论研究——新方法与新进展[M].北京:科学出版社,2005
    [198]符斌,李华昌等.现代重金属冶金分析[M],化学工业出版社,2007,184~206
    [199]Packham R F. Some studies of the coagulation of dispersed clays with hydrolyzed salts [J]. J. Colloid interf, Sci.,1965,20:81-92.
    [200]ZHANG Li-De, MOU Ji-Mei. Science for Nanocrystals[M]. Liaoning: Liaoning Science &Technology Press,1994
    [201]李亚栋,贺蕴普,李龙泉等.液相控制沉淀法制备纳米级C0304微粉[J].高等学校化学学报,1999,20(4):519-522
    [202]朱学文,廖列文,崔英德等.均匀沉淀法制备纳米四氧化三钴微粉[J].无机盐工业,2002,1:3-4
    [203]庄稼,迟燕华,王曦,等.室温固相反应制备纳米C0304粉体[J].无机材料学报,2001,16(6):1203-1206
    [204]Lang JP, Xin XQ. Solid-state synthesis of Mo(W)-S cluster compounds at low heating temperatures [J]. J Solid State Chemistry,1994,108(1):118-127
    [205]Lei LX and Xin XQ. Solid state synthesis of a new compound Cu(HQ)Cl2 and its formation reaction[J]. Thermochimica Acta,1996,273:61-67.
    [206]庄稼,张卫华,忻新泉.固相配位化学反应研究——LⅦ.阴离子盐KY(Y=C1,Br,I,CN,SCN)对[Co(NH3)4CO3]Cl热分解的影响[J].无机化学学报,1993,9(3):261-265
    [207]景苏,忻新泉.固相配位化学反应研究LⅨ.反应截面移动法研究氢氧化铜与a-alaH的固相反应.化学学报,1995,53:26-30
    [208]雷立旭,忻新泉.室温固相化学反应与固体结构[J].化学通报,1997,2:1
    [209]Toda F. Solid-to-solid organic reactions[J]. Acc. Chem. Res.1995,28 (12):480~483
    [210]唐新村.低温固相反应制备锂离子电池正极材料及其嵌铿性能的研究(博士学位论文),长沙,湖南大学,2002
    [211]陆佩文编.硅酸盐物理化学[M].南京:东南大学出版社,1990
    [212]杨林宏,张建成,沈悦.分散剂对纳米相二氧化锡制备的影响[[J].上海大学学报(自然科学版),2002,8(2):209~212
    [213]酒金婷,李立平,葛钥,等.用高分子保护的纳米MgO的合成[[J].无机化学学报,2001,17(3):261~264
    [214]朱永法,谭瑞琴.用聚乙二醇作添加剂制备介孔二氧化钛粉体光催化剂的方法[PI].CN 1337425A,2002,2.
    [215]Latimer,W. M. The oxidation states of the elections and their potentials in aqueous solution [M].1952
    [216]Criss, C. M., Cobble, The Thermodynamic Properties of High Temperature Aqueous Solutions. Ⅳ. Entropies of the Ions up to 200° and the Correspondence Principle.J. Amer. Chem. Soc.23 (86),5385-5390(1964)
    [217]叶大伦,胡建华.实用无机物热力学手册[M].北京:冶金工业出版社,2002.9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700