用户名: 密码: 验证码:
贫铀暴露对肾脏和免疫系统的影响及锌的解毒作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景和目的
     贫铀(depleted uranium,DU)是天然铀经过提炼浓缩铀(~(235)U)之后的剩余产物,其~(235)U含量低于0.712%。由于DU具有良好的穿透性和原料的廉价性,被广泛地用于核电站、平衡锤、辐射防护及军事活动中(如作为装甲材料及弹药成分)。在DU的生产和使用过程中,可能会不规范地释放到环境中,经呼吸道、消化道或皮肤进入体内,对周围居民的健康造成严重地威胁。
     DU可发射高线性能量转移的α、β粒子,既具有放射毒性,又具有重金属毒性,其生物学影响与接触剂量、持续时间、接触途径等多种因素有关。在大剂量急性暴露的条件下,肾脏是铀急性化学毒性的主要靶器官,可造成严重的肾近曲小管坏死,然而,DU引起肾脏毒性的准确机制还不清楚。在低剂量慢性暴露的情况下,可能会引起一系列有害的效应,如神经行为的异常、生殖毒性、遗传毒性和癌症等,然而,普遍关注的问题——长期摄入DU污染的食物对免疫系统的影响,目前还没有报道。因此,本研究分别建立DU急性暴露模型和经过食入途径的慢性暴露模型,分别评价急性DU暴露对肾脏的影响和慢性DU暴露对免疫系统的影响,深入探索急慢性DU暴露的作用机制,为DU生物学效应的研究打下基础。
     此外,针对DU中毒的救治,仍是国内外研究的重点和难点。现有的DU促排药在促排效果或安全性方面都或多或少存在问题。金属硫蛋白(metallothinein, MT)是一类广泛存在于哺乳动物器官和组织中的低分子量非酶蛋白,富含半胱氨酸,对重金属离子有很高的亲和力,并能清除多种自由基,可实现对金属的解毒,但其解毒机制仍不完全清楚。MT基因的表达,需要二价锌离子的参与,锌属于高效且安全的MT诱导剂。因此,可试图通过锌诱导机体产生MT来实现DU的解毒治疗,为临床上开发高效低毒的DU解毒药物提供新的思路,具有重要的实用价值和现实意义。
     研究方法
     首先分别利用人肾脏近曲小管上皮HK-2细胞和成年Sprague Dawley大鼠,暴露于不同剂量的DU,造成DU急性染毒模型,分别观察暴露于DU后24h对细胞存活率、凋亡及相关酶活力的影响,以及暴露于DU后4d对大鼠肾脏铀含量、肾功能、组织病理学及肾脏组织抗氧化水平的影响。
     其次,3周龄昆明系小鼠,按照喂食饲料(含DU)剂量的不同分为4组:0(对照组),3(DU3组),30(DU_(30)组),和300(DU_(300)组)mg/kg,喂食长达4个月,造成DU慢性染毒模型,评价小鼠天然免疫和获得性免疫功能的变化。
     最后,分别利用HK-2细胞、Sprague Dawley大鼠和MT基因敲除小鼠,进行锌对DU中毒的解毒作用及机制的研究,通过组织形态学、细胞超微病理学、流式细胞术、激光共聚焦显微镜技术、酶联免疫吸附试验(ELISA)、分子生物学及蛋白组学等技术方法多角度评价锌对DU的解毒作用,深入探索锌对DU的解毒机制。
     研究结果及结论
     1.高于125μM的DU(硝酸铀酰)暴露后24h,均可引起HK-2细胞质膜和溶酶体膜的破坏,而导致乳酸脱氢酶(LDH)和N-乙酰-β-葡萄糖苷酶(NAG)从细胞内释放到培养液中,最终导致细胞的凋亡。另外,将Sprague Dawley大鼠急性暴露于不同剂量的DU(2.5、5、10mg/kg),4d后观察发现,大于2.5mg/kg的DU暴露剂量均可引起明显的肾脏毒性,导致肾脏组织铀含量、血清尿素(BUN)和肌酐(Cr)均明显增高,组织病理学损伤严重,且随着DU暴露剂量的增高损伤逐渐加重。进一步研究发现,DU引起了肾脏组织氧化应激,导致抗氧化能力下降,脂质过氧化水平增高,可能是导致DU肾脏毒性的机制之一。
     2.3周龄小鼠喂食不同剂量的含DU饲料4个月后,各组血生化检查均无明显异常。在中剂量组(30mg/kg)和低剂量组(3mg/kg),免疫学影响并不明显或影响相对轻微。但在高剂量组(300mg/kg),小鼠的天然免疫功能下降,表现为腹腔巨噬细胞分泌的NO、IL-1、IL-18、TNF-α水平降低,脾脏自然杀伤细胞(natural killer cells,NK cells)的细胞毒性作用降低;小鼠的细胞免疫和体液免疫功能异常,表现为脾脏T细胞增殖能力下降而B细胞的增殖能力提高,血清总IgG、IgE的含量增高,迟发性超敏反应实验显示足跖增厚程度下降;流式细胞术实验发现脾脏mIgM+mIgD+双阳性细胞比例增高,CD3+细胞比例降低,CD4+/CD8+脾脏T细胞的比值降低;ELISA检测发现,脾细胞经过刺激后,释放IFN-γ和TNF-α的水平降低,而释放IL-4和IL-10的水平却增高。以上结果提示,造成高剂量组小鼠免疫功能障碍的原因主要与体内辅助T细胞(Th)1/Th2细胞因子平衡紊乱,引起机体各项免疫功能的调节失常有关。
     3.线粒体调节的凋亡途径和FasR调节的凋亡途径共同参与了DU引起的HK-2细胞的凋亡过程。而100μM锌预处理可明显抑制DU(500μM)引起的HK-2凋亡,通过降低细胞内活性氧的生成,增加过氧化氢酶(CAT)和还原型谷胱甘肽(GSH)的含量,抑制DU引起的sFasR和sFasL的过表达,抑制线粒体中的细胞色素c和凋亡诱导因子(AIF)释放到胞浆,抑制Caspases-9、Caspases-8和Caspases-3的激活以及促进了金属硫蛋白的表达。进一步观察发现,外源性金属硫蛋白也具有很好的抗DU引起的凋亡的作用。本研究结果证实了,锌通过一些独立的机制抑制了DU引起的凋亡,包括抗氧化效应、抑制Caspases-9、Caspases-8和Caspases-3的激活,并且金属硫蛋白可能参与了锌抗DU引起的凋亡过程。
     4.锌预处理(10mg/kg)对急性DU中毒(10mg/kg)具有明显的解毒作用,明显提高了大鼠暴露于DU后30d的存活率,使暴露于DU4d后的尿铀含量增加,肝、脾、肾铀含量降低,血清BUN、Cr及尿液NAG显著降低,并使血清IL-6和TNF-α、肾脏组织金属硫蛋白MT-1、MT-2的基因表达水平明显增高,CAT含量增高,丙二醛(MDA)含量降低,病理学损伤减轻。进一步使用锌预处理MT-/-小鼠和MT+/+小鼠,发现MT+/+小鼠的铀含量明显降低,且肾脏损伤明显减轻,抗氧化能力增强;但锌预处理对MT-/-小鼠却没有明显的DU解毒效果。外源性MT的不同基因型(MT1和MT2)对DU解毒效果的研究发现,MT1和MT2均可降低MT-/-小鼠肾脏的铀含量,且MT-1可使肾脏的病理损伤明显减轻,抗氧化能力增强,而MT2的保护效果却并不明显。因此,锌的解毒作用与诱导MT的合成有关,一方面,MT可促进DU的排出;另一方面,MT可增强体内的抗氧化能力,拮抗DU对组织的损伤,并且MT1的作用更加明显。
     5. MT-/-小鼠和MT+/+小鼠暴露于DU后,利用蛋白组学方法对小鼠肾脏组织蛋白的改变进行研究,发现有13个差异表达蛋白,它们的主要功能集中在糖和脂肪酸的代谢、电子传递呼吸链以及抗氧化防御系统等方面。进一步分析发现,超氧化物歧化酶(SOD)、氨基酰化酶-3(ACY-3)在暴露于DU后明显降低,且MT-/-小鼠降低更为明显,提示了这些蛋白可能参与了DU引起的肾脏中毒过程。采用免疫印迹技术对典型的差异蛋白SOD和ACY-3的表达量进行验证,所得结果与蛋白组学研究结果相吻合,再次验证了贫铀肾毒性的机制之一是引起氧化应激,并且ACY-3可能是DU发挥肾毒性的新的靶点,而MT可通过调节它们的含量在一定程度上减轻肾脏损伤。
Background and Objectives
     Depleted uranium (DU) is the by-product of uranium (235U) enrichment from naturaluranium, as having235U content lower than0.712%. Due to its efficient penetration andaffordability, DU has recently been widely used in nuclear power plants, counterweights,radiation protection and military activities (such as armour material and ammunitioncomponents). However, during its production and use, DU may be released into theenvironment due to failure to follow standard procedures, thus causing environmentalpollution. DU may eventually enter the human body through the respiratory tract, digestivetract or skin, leading to contamination of local residents.
     DU emits α and β particles with high linear energy transfer, and DU has the dualeffects of radioactive toxicity and heavy metal toxicity. The biological effects of DU areaffected by the exposure dose, exposure duration, the exposure pathway and many otherfactors. During acute high-dose exposures, the kidney is the main target organ of thechemical toxicity of DU, which may cause severe tubular necrosis. However, themechanism of DU-induced nephrotoxicity is not clear. Low-dose chronic exposure maycause a series of harmful effects, such as neurobehavioral abnormalities, genetic toxicity,reproductive toxicity, and cancer. However, few published studies exist on the impact ofDU on immune function in live animals. There is still no report on the effects of ingestingDU-contaminated food on the immune system, which continues to be a worldwide concern.Therefore, the present study created an acute toxicity model and a chronic toxicity modelthrough long-term ingestion of DU-containing feed. We evaluated the effect of DU on thekidney after acute exposure and the immune system after chronic exposure. We alsoexplored in depth the mechanism of DU-induced toxicity. This study was a basic for thestudy of the biological effects of DU.
     In addition, the prevention and treatment of DU intoxication is still a worldwide keyand difficult point. However, at present, most of chelating agents for DU still have someinsufficiencies more or less in removal effect or security. MT is a low-molecular weight, thiol-containing protein that is found throughout the body and that participates inscavenging free radical and heavy metal detoxification. However, the mechanism involvedin the protective role of MT remains an enigma. The gene expression of MT is dependenton the zinc ions. Zinc is an efficient and safe inductor of MT. Therefore, we used zinc todetoxify the DU intoxication by inducing MT. This study provided a new idea for thedevelopment of the high-performance and low-toxicity drugs against DU in clinicapplications, and might have an important practical value.
     Methods
     First, human kidney cells (HK-2) and Sprague Dawley rats were used to expose to thedifferent doses of DU for creating an acute toxicity model, respectively. After24h exposureto DU, the cell viability, apoptosis and related enzyme activity were assessed in HK-2cells,and after4d exposure to DU, kidney uranium content, renal function, histopathology andantioxidant levels in tissue were measured in rats.
     Second, three-week-old Kunming mice were divided into the following4groups basedon the various feeding doses (containing DU):0(control group),3(DU3group),30(DU30group), and300mg/kg feed (DU300group). After4months of exposure, the innate immunefunction and acquired immune function were evaluated.
     Third, HK-2cells, Sprague Dawley rats and MT knockout mice were used to study theprotective role of zinc against DU, respectively. The methods including histomorphology,ultrastructural pathology, flow cytometry, laser scanning confocal microscope, enzymelinked immunosorbent assay (ELISA), molecular biology and proteomics were used toevaluated the detoxification of zinc against DU. The mechanism of protective role of zincagainst DU was explored in depth.
     Results and Conclusion
     1. After24h exposure to uranyl nitrate (more than125μM), cytoplasmic membranesand lysosomal membranes of HK-2cells damaged, and lactate dehydrogenase (LDH) andN-acethyl-β-D-glucosaminidase (NAG) were released from cell to culture medium, leadingto cell apoptosis at last. In addition, Sprague Dawley rats were exposed to different doses ofDU (2.5、5、10mg/kg). After4d exposure, DU (more than2.5mg/kg) led to obviousnephrotoxicity, including increasing kidney uranium content, blood urea nitrogen (BUN)and creatinine (Cr) levels, and serious pathological damage. The nephrotoxicity becamemore severe with higher DU dose. Further studies showed that the antioxidant function decreased and lipid peroxidation level increased in the kidney tissue after exposure to DU,which may be one of the mechanisms of DU-induced nephrotoxicity.
     2. Three-week-old mice were fed with various doses of DU for4months. After4months of exposure, the biochemical parameters in blood serum of each group were all innormal level. In the DU30and DU3groups, immunological changes were either minor orindiscernible. However, in the DU300group, the innate immune function decreased,manifesting as decreased secretion of nitric oxide, interleukin (IL)-1, IL-18, and tumournecrosis factor (TNF)-α in the peritoneal macrophages, as well as reduced cytotoxicity ofthe splenic natural killer cells. Moreover, the cellular and humoral immune functions wereabnormal, as manifested by decreased proliferation of the splenic T cells, proportion of thecluster of differentiation (CD)3+cells, ratio of CD4+/CD8+cells and delayed-typehypersensitivity, and increased proliferation of the splenic B cells, total serumimmunoglobin (Ig) G and IgE, and proportion of splenic mIgM+mIgD+cells. Throughstimulation, the secretion levels of interferon (IFN)-and TNF-α in the splenic cellsreduced, and the levels of IL-4and IL-10increased. In conclusions, chronic intake ofhigher doses of DU (300mg/kg) had a significant impact on the immune function, mostlikely due to an imbalance in T helper (Th)1and Th2cytokines.
     3. Mitochondrial and FasR-mediated apoptosis pathways contribute to DU-inducedapoptosis in HK-2cells. Pre-treatment with zinc (100μM) significantly inhibited DU(500μM)-induced HK-2cells apoptosis. It reduced the formation of reactive oxygen speciesin the cells, increased the catalase (CAT) and glutathione (GSH) concentrations, suppressedthe DU-induced soluble Fas receptor (sFasR) and soluble Fas ligand (sFasL)overexpression, suppressed the release of cytochrome c and apoptosis inhibitor factor (AIF)form mitochondria to cytoplasm, inhibited the activation of caspase-9, caspase-8, andcaspase-3, and induced MT expression. Furthermore, exogenous MT effectively inhibitedDU-induced cell apoptosis. In conclusions, through independent mechanisms, such asantioxidant effects, inhibition of the activation of caspase-9, caspase-8, and caspase-3, andinduction of MT expression, zinc inhibits DU-induced apoptosis.
     4. Pre-treatment with zinc (10mg/kg) had significantly higher survival rates than ratswithout zinc pre-treatment at30d post depleted uranium administration. At4d postadministration, the former had higher urine uranium content but lower liver and kidneyuranium content. Meanwhile, serum BUN and Cr levels and urine NAG concentrations significantly decreased; Gene expression levels of MT-1and MT-2in kidney tissuessignificantly increased; and CAT levels increased and malonaldehyde (MDA) levelsdecreased, both significantly. Compared to rats exposed only to DU, rats with zincpre-treatment had insignificant renal tubular epithelial cell necrosis and less transparenttubes. With regard to mice, after DU injection, both MT+/+and MT-/-mice showedsignificantly increased uranium content of the renal tissues and serum Cr and BUN.Meanwhile, renal tissues displayed severe renal pathological damage. However, thesechanges were more evident in MT-/-mice. Zinc pre-treatment significantly decreaseduranium content in renal tissues with increasing MT content, and alleviated renal damage inMT+/+mice, which was not observed in MT-/-mice. Furthermore, exogenous MT1andMT2all could significantly decrease the kidney uranium content at4d post DUadministration in MT-/-mice. MT1also alleviated renal damage, and increased theantioxidant activity, while MT2could not. In conclusion, MT, not zinc, plays a crucial rolein antagonising the nephrotoxicity of DU. The underlying mechanism includes DUexcretion, which is facilitated by the stable binding of MT to DU in the kidney, and theantioxidant activity of MT, which cleans excess reactive oxygen species and preventssuperoxide generation from the renal tissue, especially MT1.
     5. An expression proteomic analysis involving two-dimensional electrophoresis andmatrix-assisted laser desorption ionization time-of-flight mass spectrometry was used toidentify proteins changes between MT+/+and MT-/-mice after exposure to DU. Thirteenproteins were identified, whose functions were focus on glycometabolism, fatty acidmetabolism, electron transport respiratory chain and antioxidant defense system. Furtherstudies showed that, the levels of superoxide dismutase (SOD) and amino-acylase3(ACY-3) decreased after exposure to DU. They decreased more significant in MT-/-mice,which suggested these proteins might participate in DU-induced toxicity. Western blot wasused to assess the expression of SOD and ACY-3, and the results were in accord with theproteomic analysis. The results also verified that one of the mechanisms of DU-inducednephrotoxicity was oxidative stress. In addition, ACY-3might be a new target ofDU-induced nephrotoxicity, and MT could alleviate the DU-induced kidney damagethrough modifying SOD and ACY-3expressions.
引文
[1] Priest ND. Toxicity of depleted uranium[J]. Lancet,2001,357(9252):244-246.
    [2] Khalida I, Brian E, Nick B, Lisa H, Catherine U, Anthony D, Simon W. Is there a GulfWar syndrome[J]. Lancet,1999,353(9148):179-182.
    [3]陈宣圣.“巴尔干综合征”面面观[J].世界知识,2001,5(18):18-19.
    [4] Squibb KS, McDiarmid MA. Depleted uranium exposure and health effects in GulfWar veterans[J]. Philosophical Transactions of the Royal Society B-BiologicalSciences2006,361(1468):639-648.
    [5] McDiarmid MA, Engelhardt SM, Dorsey CD, Oliver M, Gucer P, Wilson PD, Kane R,Cernich A, Kaup B, Anderson L, Hoover D, Brown L, Albertini R, Gudi R, SquibbKS. Surveillance results of depleted uranium-exposed Gulf War I veterans: sixteenyears of follow-up[J]. Journal of Toxicology and Environmental Health-Part a-CurrentIssues2009,72(1):14-29.
    [6] Hindin R, Brugge D, Panikkar B. Teratogenicity of depleted uranium aerosols: areview from an epidemiological perspective[J]. Environ Health,2005,4:17.
    [7] Vicente-Vicente L, Quiros Y, Pérez-Barriocanal F, López-Novoa JM,López-Hernández FJ, Morales AI. Nephrotoxicity of uranium: pathophysiological,diagnostic and therapeutic perspectives[J]. Toxicol Sci,2010,118(2):324-347.
    [8] Zhang XF, Ding CL, Liu H, Liu LH, Zhao CQ. Protective effects of ion-imprintedchitooligosaccharides as uranium-specific chelating agents against the cytotoxicity ofdepleted uranium in human kidney cells. Toxicology,2011,286(1-3):75-84.
    [9] Carrière M, Avoscan L, Collins R, Carrot F, Khodja H, Ansoborlo E, Gouget B,.Influence of uranium speciation on normal rat kidney (NRK-52E) proximal cellcytotoxicity. Chem Res Toxicol,2004,17(3):446-452.
    [10] ATSDR (Agency for Toxic Substances, a.D.R.). Toxicological profile for uranium[M].US Public Health Services, Washington, DC,1999.
    [11] Muller DS, Houpert P, Cambar J, Hengé-Napoli MH. Role of the sodium-dependentphosphate cotransporters and absorptive endocytosis in the uptake of lowconcentrations of uranium and its toxicity at higher concentrations in LLC-PK1cells[J]. Toxicol Sci,2008,101(2):254-262.
    [12] Pourahmad J, Ghashang M, Ettehadi HA, Ghalandari R. A search for cellular andmolecular mechanisms involved in depleted uranium (DU) toxicity[J]. EnvironToxicol,2006,21(4):349-354.
    [13] Prat O, Berenguer F, Malard V, Tavan E, Sage N, Steinmetz G, Quemeneur E.Transcriptomic and proteomic responses of human renal HEK293cells to uraniumtoxicity[J]. Proteomics,2005,5(1):297-306.
    [14] Di Lella LA, Nannoni F, Protano G., Riccobono F. Uranium contents and(235)U/(238)U atom ratios in soil and earthworms in western Kosovo after the1999war[J]. Sci. Total. Environ,2005,337(1-3):109-118.
    [15] Goertzen MM, Hauck DW, Phibbs J, Weber LP, Janz DM. Swim performance andenergy homeostasis in spottail shiner (Notropis hudsonius) collected downstream of auranium mill[J]. Ecotoxicol Environ Saf,2012,75(1),142-150.
    [16] Louren o J, Pereira R, Gon alves F, Mendo S. SSH gene expression profile of Eiseniaandrei exposed in situ to a naturally contaminated soil from an abandoned uraniummine[J]. Ecotoxicol Environ Saf,2013,88:16-25.
    [17] Shelleh HH. Depleted Uranium: Is it potentially involved in the recent upsurge ofmalignancies in populations exposed to war dust?[J]. Saudi Med J,2012,33(5):483-488.
    [18] Hao YH, Li R, Leng YB, Ren J, Liu J, Ai GP, Xu H, Su YP, Cheng TM. A studyassessing the genotoxicity in rats after chronic oral exposure to a low dose of depleteduranium[J]. J Radiat Res,2009,50(6):521-528.
    [19] Hao YH, Li R, Leng YB, Ren J, Liu J, Ai GP, Xu H, Su YP, Cheng TM. Thereproductive dffects in rats after chronic oral exposure to low-dose depleteduranium[J]. J Radiat Res,2012,53(3):377-384.
    [20] Gagnaire B, Cavalie I, Camilleri V, Adam-Guillermin C. Effects of depleted uraniumon oxidative stress, detoxification, and defence parameters of zebrafish danio rerio[J].Arch Environ Contam Toxicol,2013,64(1):140-150.
    [21] Dublineau I, Grandcolas L, Grison S, Baudelin C, Paquet F, Voisin P, Aigueperse J,Gourmelon P. Modifications of inflammatory pathways in rat intestine followingchronic ingestion of depleted uranium[J]. Toxicol Sci,2007,98(2):458-468.
    [22] Neuman WF, Fleming RW, Dounce AL, Carlson AB, O’leary J, Mulryan B. Thedistribution and excretion of injected uranium[J]. J Biol Chem,1948,173(2):737-748.
    [23] World Health Organization (WHO). Guidelines for drinking water Quality[M].Geneva: WHO,1984.
    [24] Lloyd RD, Taylor GN, Boseman JJ, Mays CW, Atherton DR. Further comparison ofCa-DTPA and Zn-DTPA for removal of241Am from beagles[J]. Health Phys,1997,33(1):92-94.
    [25] Doolan PD, Schwartz SL, Hayes JR, Mullen JC, Cummings NB. An evaluation of thenephrotoxicity of ethylenediaminetetraacetate and diethylenetriaminepentaacetate inthe rat[J]. Toxicol Appl Pharmacol,1967,10(3):481-500.
    [26] Diamond GL, Morrow PE, Panner BJ, Gelein RM, Baggs RB. Reversible uranylfluoride nephrotoxicity in the long evans rat[J]. Fundam Appl Toxicol,1989,13(1):65-78.
    [27] Fukuda S, Ikeda M, Nakamura M, Yan X, Xie Y. Effects of pH on DU intake andremoval by CBMIDA and EHBP[J]. Health Phys,2007,92(1):10-14.
    [28] Cavusoglu K,Yapar K,Yalcin E. Antioxidant potential of Ginkgo biloba leaf extracturanium-induced genotoxicity and oxidative stress in albino mice[J]. Fresen EnvironBull,2009,18(9):1551-1558.
    [29] Yapar K, Cavu o lu K, Oru E, Yal in E. Protective role of ginkgo biloba againsthepatotoxicity and nephrotoxicity in uranium-treated mice[J]. J Med Food,2010,13(1):179-188.
    [30] Ali MM, Frei E, Straub J, Breuer A, Wiessler M. Induction of metallothionein by zincProtects from daunorubicin toxicity in rats[J]. Toxicology,2002,179(l-2):85-93.
    [31] Satoh M, Naganuma A, Imura N. Modulation of adriamycin toxicity by tissue-specificinduction of metallothionein synthesis in mice[J]. Life Sci,2000,67(6):627-634.
    [32] Kang YJ. The antioxidant function of metallothionein in the heart[J]. Proc Soe ExPBiol Med,1999,222(3):263-273.
    [33] Jamieson J, Stringer D, Zahradka P, Taylor C. Dietary zinc attenuates renal leaddeposition but metallothionein is not directly involved[J]. Biometals,2008,21(1):29-40.
    [34] Flora SJ, Kumar D, Das Gupta S. Interaction of zinc, methionine or their combinationwith lead at gastrointestinal or post-absorptive level in rats[J]. Pharmacol Toxicol,1991,68(1):3-7.
    [35] Flora SJ. Lead exposure: health effects, prevention and treatment[J]. J Environ Biol,2002,23(1):25-41.
    [36] Liu J, Squibb KS, Akkerman M, Nordberg GF, Lipsky M, Fowler BA. Cytotoxicity,zinc protection, and stress protein induction in rat proximal tubule cells exposed tocadmium chloride in primary cell culture[J]. Renal Failure,1996,18(6):867-882.
    [37] Squibb KS, Gaitens JM, Engelhard S, Centeno JA, Xu H, Gray P, McDiarmid MA.Surveillance for long-term health effects associated with depleted uranium exposureand retained embedded fragments in US veterans[J]. J Occup Environ Med,2012,54(6):724-732.
    [38] Roszell LE, Hahn FF, Lee RB, Parkhurst MA. Assessing the renal toxicity ofCapstone depleted uranium oxides and other uranium compounds[J]. Health Phys,2009,96(3):343-351.
    [39] Fukuda S, Ikeda M, Chiba M, Kaneko K. Clinical diagnostic indicators of renal andbone damage in rats intramuscularly injected with depleted uranium[J]. Radiat ProtDosim,2006,118(3):307-314.
    [40] Lu S, Zhao FY. Nephrotoxic limit and annual limit on intake for natural U[J]. HealthPhys,1990,58(5):619-623.
    [41] Tanigawara Y, Saito Y, Aiba T, Ohoka K, Kamiya A, Hori R. Moment analysis of drugdisposition in kidney. III: Transport of paminohippurate and tetraethylammonium inthe perfused kidney isolated from uranyl nitrate-induced acute renal failure rats[J]. JPharm Sci,1990,79(3):249-256.
    [42] Pavlakis N, Pollock CA, McLean G, Bartrop R. Deliberate overdose of uranium:toxicity and treatment[J]. Nephron,1996,72(2):313-317.
    [43] Shim WS, Park JH, Ahn SJ, Han L, Jin QR, Li H, Choi MK, Kim DD, Chung SJ,Shim CK. Testosterone-independent down-regulation of Oct2in the kidney medullafrom a uranyl nitrate-induced rat model of acute renal failure: effects on distributionof a model organic cation, tetraethylammonium[J]. J Pharm Sci,2009,98(2):739-747.
    [44] Tolson JK, Roberts SM, Jortner B, Pomeroy M, Barber DS. Heat shock proteins andacquired resistance to uranium nephrotoxicity[J]. Toxicology,2005,206(1):59-73.
    [45] Mosmann T. Rapid colorimetric assay for cellular growth and survival: application toproliferation and cytotoxicity assays[J]. J Immunol Methods,1983,65(1-2):55-63.
    [46] Braroford MM. A rarid and sensitive method for the qunatitation of micorgamquantitiesof protein utilizing the principle of protein-dye binding[J]. Anal Biochem,1976,72:248-254.
    [47] Pellmar TC, Keyser DO, Emery C, Hogan JB. Electrophysiological changes inhippocampal slices isolated from rats embedded with depleted uranium fragments[J].Neurotoxicol,1999,20(5):785-792.
    [48] Bao YZ, Wang D,Hu YX, Xu AH, Sun MZ, Cheng HH. Effect of the chelatorBPCBG on the decorporation of uranium in vivo and uranium-induced damage ofhuman renal tubular epithelial cells in vitro[J]. Acta Pharmaceutica Sini,2011,46(11):1308-1313.
    [49] Linares V, Bellés M, Albina ML, Sirvent JJ, Sánchez DJ, Domingo JL. Assessment ofthe pro-oxidant activity of uranium in kidney and testis of rats[J]. Toxicol Lett,2006,167(2):152-161.
    [50] Giessmann U, Greb U. High resolution ICP-MS a new concept for elemental massspectrometry[J]. Fresenius' journal of analytical chemistry,1994,350(4-5):186–193.
    [51] Yoshioka T, Kawada K, Shimada T, Mori M. Lipid peroxidation in maternal and cordblood and protective mechanism against activated-oxygen toxicity in the blood[J]. AmJ Obstet Gynecol,1979,135(3):372-376.
    [52] Ortega A, Domingo JL, Gómez M, Corbella J. Treatment of experimental acuteuranium poisoning by chelating agents[J]. Pharmacol Toxicol,1989,64(3):247.
    [53] Russell J, Wheldon TE, Stanton P. A Radioresistant variant derived from a humanneuroblastoma cell line is less prone to radiation-induced apoptosis[J]. Cancer Res,1995,55(21):4915-4921.
    [54] Briner W. The evolution of depleted uranium as an environmental risk factor, lessonsfrom other metals[J]. Int J Environ Res Public Health,2006,3(2):129-135.
    [55]李蓉,艾国平,徐辉,任泂,楼淑芬,程天民,粟永萍,郑怀恩,蒋建新,黄跃生.吸入DU粉尘和/或嵌入DU片大鼠体内铀的分布[J].第四军医大学学报,2004,25(6):503-506.
    [56] Zhu G, Tan M, Li Y, Xiang X, Hu H, Zhao S. Accumulation and distribution ofuranium in rats after implanation with depleted uranium fragments[J]. J Radiat Res(Tokyo),2009,50(3):183-192.
    [57] Briner W. The Toxicity of depleted uranium[J]. International Journal ofEnvironmental Research and Public Health,2010,7(1):303-313.
    [58] Walindes G. Distribution of intravenously and intraperitoneally injected uranium[J].British Joural of lndustrial Medicine,1967,24(4):305-312.
    [59]曹珍山,朱茂祥,杨陟华,潘秀颉,李元敏.大鼠吸入DU气溶胶后主要器官的病理损伤特点[J].中国辐射卫生,2005,14(2):81.
    [60] Gilman AP, Villeneuve DC, Secours VE, Yagminas AP, Tracy BL, Quinn JM, Valli VE,Willes RJ, Moss MA. Uranyl nitrate:28-day and91-day toxicity studies in theSprague-Dawley rat[J]. Toxicological sciences,1998,41(1):117-128.
    [61] Cheng KL, Hogan AC, Parry DL, Markich SJ, Harford AJ, van Dam RA. Uraniumtoxicity and speciation during chronic exposure to the tropical freshwater fish,Mogurnda mogurnda[J]. Chemosphere,2010,79(5):547-554.
    [62] Domingo JL. Reproductive and developmental toxicity of natural and depleteduranium: a review[J]. Reprod Toxicol,2001,15(6):603–609.
    [63] Kalinich JF, Ramakrishnan N, Villa V, McClain DE. Depleted uranium-uranylchloride induces apoptosis in mouse J774macrophages[J]. Toxicology,2002,179(1-2):105-114.
    [64] Gazin V, Kerdine S, Grillon G., Pallardy M., Raoul H. Uranium induces TNF alphasecretion and MAPK activation in a rat alveolar macrophage cell line[J]. Toxicol ApplPharmacol,2004,194(1):49-59.
    [65] Wan B, Fleming JT, Schultz TW, Sayler GS. In vitro immune toxicity of depleteduranium: effects on murine macrophages, CD4+T cells, and gene expressionprofiles[J]. Environ Health Perspect,2006,114(1):85-91.
    [66] Monleau M, DeMéo M, Paquet F, Chazel V, Duménil G., Donnadieu-Claraz M.Genotoxic and inflammatory effects of depleted uranium particles inhaled by rats[J].Toxicol Sci,2006,89(1):287-295.
    [67] Rook GA, Zumla A. Gulf War syndrome: is it due to a systemic shift in cytokinebalance towards a Th2profile?[J]. Lancet,1997,349(9068):1831-1833.
    [68] Gao D, Mondal TK, Lawrence DA. Lead effects on development and function of bonemarrow-derived dendritic cells promote Th2immune responses[J]. Toxicol ApplPharmacol,2007,222(1):69-79.
    [69] Dublineau I, Grison S, Grandcolas L, Baudelin C, Tessier C, Suhard D, Frelon S,Cossonnet C, Claraz M, Ritt J, Paquet P, Voisin P, Gourmelon P. Absorption,accumulation and biological effects of depleted uranium in Peyer's patches of rats[J].Toxicology,2006,227(3):227-239.
    [70] Bleise A, Danesi PR, Burkart W. Properties, use and health effects of depleteduranium (DU): a general overview[J]. J. Environ Radioact,2003,64(2-3):93-112.
    [71] Wade-Gueye NM, Delissen O, Gourmelon P, Aigueperse J, Dublineau I, Souidi M.Chronic exposure to natural uranium via drinking water affects bone in growingrats[J]. Biochim Biophys Acta,2012,1820(7):1121-1127.
    [72] Barillet S, Adam-Guillermin C, Palluel O, Porcher JM, Devaux A. Uraniumbioaccumulation and biological disorders induced in zebrafish (Danio rerio) after adepleted uranium waterborne exposure[J]. Environ Pollut,2011,159(2):495-502.
    [73] Sansone U, Danesi PR, Barbizzi S, Bell M, Campbell M, Gaudino S, Jia G., Ocone R,Pati A, Rosamilia S, Stellato L. Radioecological survey at selected sites hit bydepleted uranium ammunitions during the1999Kosovo conflict[J]. Sci Total Environ,2001,281(1-3):23-35.
    [74] Konjevic G, Jurisic V, Jovic V, Vuletic A, Mirjacic Martinovic K, Radenkovic S,Spuzic I. Investigation of NK cell function and their modulation in differentmalignancies[J]. Immunol Res,2012,52(1-2):139-156.
    [75] Lv LH, Yu JD, Li GL, Long TZ, Zhang W, Chen YJ, Min J, Wan YL. Functionaldistinction of rat liver natural killer cells from spleen natural killer cells under normaland acidic conditions in vitro[J]. Hepatobiliary Pancreat Dis Int,2012,11(3):285-293.
    [76] Luna AL, Acosta-Saavedra LC, Martínez M, Torres-Avilés N, Gómez R,Calderón-Aranda ES. TLR4is a target of environmentally relevant concentration oflead[J]. Toxicol Lett,2012,214(3):301-306.
    [77] Bussolaro D, Filipak Neto F, Gargioni R, Fernandes LC, Randi MA, Pelletier E,Oliveira Ribeiro CA. The immune response of peritoneal macrophages due toexposure to inorganic lead in the house mouse Mus musculus[J]. Toxicol In Vitro,2008,22(1):254-260.
    [78] Ma WJ, Bao MJ, Zhu JP, Yao HY, Xie YC, Guan Y, Li FF, Dong XW, Zheng YM, XieQM. Oral administration of allergen extracts from mugwort pollen desensitizesspecific allergen-induced allergy in mice[J]. Vaccine,2012,30(8):1437-1444.
    [79] Lagrange PH, Mackaness GB, Mille, TE. Influence of dose and route of antigeninjection on the immunological induction of T cells[J]. J Exp Med,1974,139(3):528-542.
    [80] Teijón C, Olmo R, Dolores Blanco M, Romero A, María Teijón J. Effects of leadadministration at low doses by different routes on rat spleens. Study of response ofsplenic lymphocytes and tissue lysozyme[J]. Toxicology,2003,191(2-3):245-258.
    [81] McDiarmid, MA, Engelhardt, SM, Dorsey CD, Oliver M, Gucer P, Gaitens JM, KaneR, Cernich A, Kaup B, Hoover D, Gaspari AA, Shvartsbeyn M, Brown L, Squibb KS.Longitudinal health surveillance in a cohort of Gulf War veterans18years after firstexposure to depleted uranium[J]. J Toxicol Environ Health A,2011,74(10):678-691.
    [82] Pillet S, Rooney AA, Bouquegneau JM, Cyr, DG, Fournier M. Sex-specific effects ofneonatal exposures to low levels of cadmium through maternal milk on developmentand immune functions of juvenile and adult rats[J]. Toxicology,2005,209(3):289-301.
    [83] Holásková I, Elliott M, Hanson ML, Schafer R, Barnett JB. Prenatal cadmiumexposure produces persistent changes to thymus and spleen cell phenotypic repertoireas well as the acquired immune response[J]. Toxicol Appl Pharmacol,2012,265(2):181-189.
    [84] Yücesoy B, Turhan A, Ure M, Imir T, Karakaya A. Simultaneous effects of lead andcadmium on NK cell activity and some phenotypic parameters[J]. ImmunopharmacolImmunotoxicol,1997,19(3):339-348.
    [85] Neilan BA, O'Neill K, Handwerger BS. Effect of low-level lead exposure onantibody-dependent and natural killer cell-mediated cytotoxicity[J]. Toxicol ApplPharmacol,1983,69(2):272-275.
    [86] Bogdándi EN, Balogh A, Felgyinszki N, Szatmári T, Persa E, Hildebrandt G, SáfrányG, Lumniczky K. Effects of low-dose radiation on the immune system of mice aftertotal-body irradiation[J]. Radiat Res,2010,174(4):480-489.
    [87] Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity:update on Toll-like receptors[J]. Nat Immunol,2010,11(5):373-384.
    [88] Dietert RR, Piepenbrink MS. Lead and immune function[J]. Crit Rev Toxicol,2006,36(4):359-385.
    [89] Sheikh Sajjadieh MR, Kuznetsova LV, Bojenko VB. Low internal radiation altersinnate immune status in children with clinical symptom of irritable bowelsyndrome[J]. Toxicol Ind Health,2010,26(8):525-531.
    [90] Sharetski AN, Surinov BP, Abramova MR. Effect of low doses of ionizing radiationon thymus-dependent humoral immune response and the polyclonal activation of Blymphocytes[J]. Radiats Biol Radioecol,2000,40(2):168-172.
    [91] Gleichmann E, Kimber I, Purchase IF. Immunotoxicology: suppressive andstimulatory effects of drugs and environmental chemicals on the immune system. Adiscussion[J]. Arch Toxicol,1989,63(4):257-273.
    [92] Chen S, Golemboski K, Piepenbrink M, Dietert R. Developmental immunotoxicity oflead in the rat: influence of maternal diet[J]. J Toxicol Environ Health A,2004,67(6):495-511.
    [93] Chen S, Golemboski KA, Sanders FS, Dietert RR. Persistent effect of in uteromeso-2,3-dimercaptosuccinic acid (DMSA) on immune function and lead-inducedimmunotoxicity[J]. Toxicology,1999,132(1):67-79.
    [94] Lee JE, Chen S, Golemboski KA, Parsons PJ, Dietert RR. Developmental windows ofdifferential lead-induced immunotoxicity in chickens[J]. Toxicology,2001,156(2-3):161-170.
    [95] García-Lestón J, Roma-Torres J, Vilares M, Pinto R, Cunha LM, Prista J, Teixeira JP,Mayan O, Pásaro E, Méndez J, Laffon B. Biomonitoring of a population ofPortuguese workers exposed to lead[J]. Mutat Res,2011,721(1):81-88.
    [96] Mosmann TR, Coffman RL. TH1and TH2cells: different patterns of lymphokinesecretion lead to different functional properties[J]. Annu Rev Immunol,1989,7:145-173.
    [97] Abbas AK, Murphy KM, Sher A. Functional diversity of helper T lymphocytes[J].Nature,1996,383(6603):787-793.
    [98] Heo Y, Lee WT, Lawrence DA. In vivo the environmental pollutants lead andmercury induce oligoclonal T cell responses skewed toward type-2reactivities[J].Cell Immunol,1997,179(2):185-195.
    [99] Aschner M, Conklin D, Yao C, Allen J, Tan K. Induction of astrocyte metallothioneins(MTs) by zinc confers resistance against the acute cytotoxic effects of methylmercuryon cell swelling, Na+uptake, and K+release[J]. Brain Res,1998,813(2):254-261.
    [100] Hidalgo J, Aschner M, Zatta P, Vasák M. Roles of the metallothionein family ofproteins in the central nervous system[J]. Brain Res Bull,2001,55(2):133-145.
    [101] West AK, Chuah MI, Vickers JC, Chung RS. Protective role of metallothioneins in theinjured mammalian brain[J]. Rev Neurosci,2004,15(3):157-166.
    [102] Egli D, Yepiskoposyan H, Selvaraj A, Balamurugan K, Rajaram R, Simons A,Multhaup G, Mettler S, Vardanyan A, Georgiev O, Schaffner W. A family knockout ofall four Drosophila metallothioneins reveals a central role in copper homeostasis anddetoxification[J]. Mol Cell Biol,2006,26(6):2286-2296.
    [103] Pourahmad J, Shaki F, Tanbakosazan F, Ghalandari R, Ettehadi HA, Dahaghin E.Protective effects of fungal beta-(1->3)-D-glucan against oxidative stress cytotoxicityinduced by depleted uranium in isolated rat hepatocytes[J]. Human&ExperimentalToxicology,2011,30(3):173-181.
    [104] Thiébault C, Carrière M, Milgram S, Simon A, Avoscan L, Gouget B. Uraniuminduces apoptosis and is genotoxic to normal rat kidney (NRK-52E) proximal cells[J].Toxicol Sci,2007,98(2):479-487.
    [105] Al Kaddissi S, Legeay A, Elia AC, Gonzalez P, Camilleri V, Gilbin R, Simon O.Effects of uranium on crayfish Procambarus clarkii mitochondria and antioxidantsresponses after chronic exposure: what have we learned?[J]. Ecotoxicol Environ Saf,2012,78,218-224.
    [106] Shaki F, Hosseini MJ, Ghazi-Khansari M, Pourahmad J. Toxicity of depleted uraniumon isolated rat kidney mitochondria[J]. Biochim Biophys Acta,2012,1820(12):1940-1950.
    [107] Brzoska MM, Moniuszko-Jakoniuk J. Interactions between cadmium and zinc in theorganism[J]. Food and chemical toxicology,2001,39(10):967-980.
    [108] Lee SJ, Koh JY. Roles of zinc and metallothionein-3in oxidative stress-inducedlysosomal dysfunction, cell death, and autophagy in neurons and astrocytes[J]. MolBrain,2010,3(1):30.
    [109] Szuster-Ciesielska A, Plewka K, Daniluk J, Kandefer-Szerszeń M. Zinc inhibitsethanol-induced HepG2cell apoptosis[J]. Toxicol Appl Pharmacol,2008,229(1):1-9.
    [110] Sankaramanivel S, Rajaram A, Rajaram R. Zinc protects human peripheral bloodlymphocytes from Cr (III)(phenanthroline)3-induced apoptosis[J]. Toxicol ApplPharmacol,2010,243(3):405-419.
    [111] Zhao Y, Tan Y, Dai J, Li B, Guo L, Cui J, Wang G, Shi X, Zhang X, Mellen N, Li W,Cai L. Exacerbation of diabetes-induced testicular apoptosis by zinc deficiency ismost likely associated with oxidative stress, p38MAPK activation, and p53activationin mice[J]. Toxicol Lett,2011,200(1-2):100-106.
    [112] Kilari S, Pullakhandam R, Nair KM. Zinc inhibits oxidative stress-induced ironsignaling and apoptosis in Caco-2cells[J]. Free Radical Biol Med,2010,48(7):961-968.
    [113] Zhang X, Liang D, Guo B, Yang L, Wang L, Ma J. Zinc inhibits high glucose-inducedapoptosis in peritoneal mesothelial cells[J]. Biol Trace Elem Res,2012,150(1-3):424-432.
    [114] Stefanidou M, Maravelias C, Dona A, Spiliopoulou C. Zinc: a multipurpose traceelement[J]. Arch Toxicol,2006,80,1-9.
    [115] Guo B, Yang M, Liang D, Yang L, Cao J, Zhang L. Cell apoptosis induced by zincdeficiency in osteoblastic MC3T3-E1cells via a mitochondrial-mediated pathway[J].Mol Cell Biochem,2012,361(1-2):209-216.
    [116] Szuster-Ciesielska A, Stachura A, S otwińska M, Kamińska T, Sniezko, R, Paduch, R,Abramczyk D, Filar J, Kandefer-Szerszeń M. The inhibitory effect of zinc oncadmium-induced cell apoptosis and reactive oxygen species (ROS) production in cellcultures[J]. Toxicology,2000,145(2-3):159-171.
    [117] Rudolf E, Cervinka M. The role of intracellular zinc in chromium (VI)-inducedoxidative stress, DNA damage and apoptosis[J]. Chem Biol Interact,2006,162(3):212-227.
    [118] Lambert JC, Zhou Z, Kang YJ. Suppression of Fas-mediated signaling pathway isinvolved in zinc inhibition of ethanol-induced liver apoptosis[J]. Exp Biol Med(Maywood),2003,228(4):406-412.
    [119] Tomasello F, Messina A, Lartigue L, Schembri L, Medina C, Reina S, Thoraval D,Crouzet M, Ichas F, De Pinto V, De Giorgi F. Outer membrane VDAC1controlspermeability transition of the inner mitochondrial membrane in cellulo duringstress-induced apoptosis[J]. Cell Res,2009,19(12):1363-1376.
    [120] Slee EA, Harte MT, Kluck RM, Wolf BB, Casiano CA, Newmeyer DD, Wang HG.,Reed JC, Nicholson DW, Alnemri ES, Green DR, Martin SJ. Ordering the cytochromec-initiated caspase cascade: hierarchical activation of caspases-2,-3,-6,-7,-8, and-10in a caspase-9-dependent manner[J]. J Cell Biol,1999,144(2):281-292.
    [121] Cregan SP, Dawson VL, Slack RS. Role of AIF in caspase-dependent andcaspase-independent cell death[J]. Oncogene,2004,23(16):2785-2796.
    [122] Norberg E, Orrenius S, Zhivotovsky B. Mitochondrial regulation of cell death:processing of apoptosis-inducing factor (AIF)[J]. Biochem Bioph Res Co,2010,396(1):95-100.
    [123] Rostan EF, DeBuys HV, Madey DL, Pinnell SR. Evidence supporting zinc as animportant antioxidant for skin[J]. Int J Dermatol,2002,41(9):606-611.
    [124] Rudolf E, Cervinka M, Cerman J. Zinc has ambiguous effects on chromium(VI)-induced oxidative stress and apoptosis[J]. J Trace Elem Med Biol,2005,18(3):251-260.
    [125] Kramer KK, Zoelle JT, Klaassen CD. Induction of metallothionein mRNA and proteinin primary murine neuron cultures[J]. Toxicol Appl Pharmacol,1996,141(1):1-7.
    [126] Cai L, Iskander S, Cherian MG, Hammond RR. Zinc-or cadmium-pre-inducedmetallothionein protects human central nervous system cells and astrocytes fromradiation-induced apoptosis[J]. Toxicol Lett,2004,146(3):217-226.
    [127] Kang YJ. Metallothionein redox cycle and function[J]. Exp Biol Med (Maywood),2006,231(9):1459-1467.
    [128] Zhang Q, Wang X, Chen Z, Liu G. Semi-quantitative RT-PCR analysis of LIMmineralization protein1and its associated molecules in cultured human dental pulpcells[J]. Arch Oral Biol,2007,52(8):720-726.
    [129] Verhaeghe E, Buisson D, Zekri E, Leblanc C, Potin P, Ambroise Y. A colorimetricassay for steady-state analyses of iodo-andbromoperoxidase activities[J]. AnalBiochem,2008,379(1):60–65.
    [130] Fukuda S, Ikeda M, Nakamura M, Yan X, Xie Y. Efficacy of oral and intraperitonealadministration of CBMIDA for removing uranium in rats after parenteral injections ofdepleted uranium[J]. Radiat Prot Dosim,2009,133(1):12-19.
    [131] Durbin PW, Kullgren B, Xu J, Raymond KN. New agents for in vivo chelation ofuranium(VI): efficacy and toxicity in mice of multidentate catecholate andhydroxypyridinonate ligands[J]. Health Phys,1997,72(6):865-879.
    [132] Alscher DM, Braun N, Biegger D, Stuelten C, Gawronski K, Mürdter TE, KuhlmannU, Fritz P. Induction of metallothionein in proximal tubular cells by zinc and itspotential as an endogenous antioxidant[J]. Kidney Blood Press Res,2005,28(3):127-133.
    [133] Giralt M, Carrasco J, Penkowa M, Morcillo MA, Santamaría J, Campbell IL, HidalgoJ. Astrocyte-targeted expression of interleukin-3and interferon-alpha causesregion-specific changes in metallothionein expression in the brain[J]. Exp Neurol,2001,168(2):334-346.
    [134] Zhou J, Zhou L, Yang J. Studies on effects of cytokine released from alveolarmacrophage induced by mineral dust on lung fibroblast[J]. Zhonghua Yu Fang Yi XueZa Zh,1998,32(6):336-339.
    [135] Brewer GJ, Johnson VD, Dick RD, Hedera P, Fink JK, Kluin KJ. Treatment ofWilson's disease with zinc. XVII: treatment during pregnancy[J]. Hepatology,2000,31(2):364-370.
    [136] Sturniolo GC, Mestriner C, Irato P, Albergoni V, Longo G, D'Incà R. Zinc therapyincreases duodenal concentrations of metallothionein and iron in Wilson's diseasepatients[J]. Am J Gastroenterol,1999,94(2):334-338.
    [137] Giralt M, Penkowa M, Hernández J, Molinero A, Carrasco J, Lago N, Camats J,Campbell IL, Hidalgo J. Metallothionein-1+2deficiency increases brain pathology intransgenic mice with astrocyte-targeted expression of interleukin6[J]. Neurobiol Dis,2002,9(3):319-338.
    [138] Miura T, Muraoka S, Ogiso T. Antioxidant activity of metallothionein compared withreduced glutathione[J]. Life Sci,1997,60(21): PL301-309.
    [139] Liu J, Liu Y, Habeebu SS, Klaassen CD. Metallothionein-null mice are highlysusceptible to the hematotoxic and immunotoxic effects of chronic CdCl2exposure[J].Toxicol Appl Pharmacol,1999,159(2):98-108.
    [140] Marth E, Barth S, Jelovcan S. Influence of cadmium on the immune system.Description of stimulating reactions[J]. Cent Eur J Public Health,2000,8(1):40-44.
    [141] Kayama F, Yoshida T, Elwell MR, Luster MI. Role of tumor necrosis factor-alpha incadmium-induced hepatotoxicity[J]. Toxicol Appl Pharmacol,1995,131(2):224-234.
    [142] Masters BA, Kelly EJ, Quaife CJ, Brinster RL, Palmiter RD. Targeted disruption ofmetallothionein I and II genes increases sensitivity to cadmium[J]. Proc Natl Acad SciUSA,1994,91(2):584-588.
    [143] Kelly EJ, Quaife CJ, Froelick GJ, Palmiter RD. Metallothionein I and II protectagainst zinc deficiency and zinc toxicity in mice[J]. J Nutr,1996,126(7):1782-1790.
    [144] Jiang G, Hughes S, Stürzenbaum S, Evje L, Syversen T, Aschner M. Caenorhabditiselegans metallothioneins protect against toxicity induced by depleted uranium[J].Toxicol Sci,2009,111(2):345-354.
    [145] Sharma R, Sharma M, Datta PK, Savin VJ. Induction of metallothionein-I protectsglomeruli from superoxide-mediated increase in albumin permeability[J]. Exp BiolMed (Maywood),2002,227(1):26-31.
    [146] Li X, Chen H, Epstein PN. Metallothionein protects islets from hypoxia and extendsislet graft survival by scavenging most kinds of reactive oxygen species[J]. J BiolChem,2004,279(1):765-771.
    [147] Cerklewski FL, Forbes RM. Influence of dietary zinc on lead toxicity in the rat[J]. JNutr,1976,106(5):689-696.
    [148] Fabisiak JP, Borisenko GG, Liu SX, Tyurin VA, Pitt BR, Kagan VE. Redox sensorfunction of metallothioneins[J]. Methods Enzymol,2002,353:268-281.
    [149] Eaton DL, Cherian MG. Determination of metallothionein in tissues bycadmium-hemoglobin affinity assay[J]. Methods Enzymol,1991,205:83-88.
    [150] Shuai Y, Guo JB, Peng SQ, Zhang LS, Guo J, Han G, Dong YS. Metallothioneinprotects against doxorubicin-induced cardiomyopathy through inhibition ofsuperoxide generation and related nitrosative impairment[J]. Toxicol Lett,2007,170(1):66-74.
    [151] Smith PK, Korhn RL, Hemranson GT, Mallia AK, Gartner FH, ProvenzanoMD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC. Measuerment of Protein usingbieinehoninie acid[J]. Anal Biochem,1985,150(1):76-85.
    [152] Robak J, Gryglewski RJ. Flavonoids are scavengers of superoxide anions[J]. BiochemPharmacol,1988,37(5):837-841.
    [153] Han YT, Han ZW, Yu GY, Wang YJ, Cui RY, Wang CB. Inhibitory effect ofpolypeptide from Chlamys farreri on ultraviolet A-induced oxidative damage onhuman skin fibroblasts in vitro[J]. Pharmacol Res,2004,49(3):265-274.
    [154] Bracken WM, Klaassen CD. Induction of metallothionein by steroids in rat primaryhepatocyte cultures[J]. Toxicol Appl Pharmacol,1987,87(3):381-388.
    [155] Sies H. Strategies of antioxidant defense[J]. Eur J Biochem,1993,215(2):213-219.
    [156] Suzuki KT, Kanno S, Misawa S, Sumi Y. Changes in copper distribution in the plasmaand kidneys of LEC rats following acute hepatitis[J]. Res Commun Chem PatholPharmacol,1993,82(2):225-232.
    [157] Conrad CC, Walter CA, Richardson A, Hanes MA, Grabowski DT. Cadmium toxicityand distribution in metallothionein-I and-II deficient transgenic mice[J]. J ToxicolEnviron Health,1997,52(6):527-543.
    [158] Par JD, Liu Y, Klaassen CD. Protective effect of metallothionein against the toxicityof cadmium and other metals[J]. Toxicology,2001,163(2-3):93-100.
    [159] Powell SR. The antioxidant properties of zinc[J]. J Nutr,2000,130(5Suppl):1447S-1454S.
    [160] Lee W, Cui D, Czesnikiewicz-Guzik M, Vencio R, Shmulevich I, Aderem A, WeyandCM, Goronzy JJ. Age-dependent signature of metallothionein expression in primaryCD4T cell responses is due to sustained zinc signaling[J]. Rejuvenation Res,2008,11(6):1001-1011.
    [161] Lee W, Cui D, Czesnikiewicz-Guzik M, Vencio R, Shmulevich I, Aderem A, WeyandCM, Goronzy JJ. Age-dependent signature of metallothionein expression in primaryCD4T cell responses is due to sustained zinc signaling[J]. Rejuvenation Res,2008,11(6):1001-1011.
    [162] Smith P, Wiltshire M, Furon E, Beattie J, Errington R. Impact of overexpression ofmetallothionein-1on cell cycle progression and zinc toxicity[J]. Am J Physiol CellPhysiol,2008,295(5): C1399-1408.
    [163] Formigari A, Irato P, Santon A. Zinc, antioxidant systems and metallothionein inmetal mediated-apoptosis: biochemical and cytochemical aspects[J]. Comp BiochemPhysiol C Toxicol Pharmacol,2007,146(4):443-459.
    [164] Santon A, Albergoni V, Sturniolo G.C, and Irato P.Evaluation of MT expression anddetection of apoptotic cells in LEC rat kidneys[J]. Biochim Biophys Acta,2004,1688(3):223-231.
    [165] Shimoda R, Achanzar WE, Qu W, Nagamine T, Takagi H, Mori M, and Waalkes MP.Metallothionein is a potential negative regulator of apoptosis[J]. Toxicol Sci,2003,73(2):294-300.
    [166] Lazo JS, Kondo Y, Dellapiazza D, Michalska A E, Choo KH, Pitt BR. Enhancedsensitivity to oxidative stress in cultured embryonic cells from transgenic micedeficient in metallothionein I and II genes[J]. J Biol Chem,1995,270(10):5506-5510.
    [167] Ghoshal K, Majumder S, Li Z, Bray TM, Jacob ST. Transcriptional induction ofmetallothionein-I and-II genes in the livers of Cu, Zn-superoxide dismutase knockoutmice[J]. Biochem Biophys Res Commun,1999,264(3):735-742.
    [168] Viarengo A, Burlando B, Ceratto N, Panfoli I. Antioxidant role of metallothioneins: acomparative overview[J]. Cell Mol Biol (Noisy-le-grand),2000,46(2):407-417.
    [169] Zhou Z, Sun X, James Kang Y. Metallothionein protection against alcoholic liverinjury through inhibition of oxidative stress[J]. Exp Biol Med (Maywood),2002,227(3):214-222.
    [170] Sener DE, G nen A, Akinci M, Torun M. Lipid peroxidation and total antioxidantstatus in patients with breast cancer[J]. Cell Biochem Funct,2007,25(4):377-382.
    [171] Abbassi R, Chamkhia N, Sakly M. Chloroform-induced oxidative stress in rat liver:Implication of metallothionein[J]. Toxicol Ind Health,2010,26(8):487-496.
    [172] Zhou XD, Sens MA, Garrett SH, Somji S, Park S, Gurel V, Sens DA. Enhancedexpression of metallothionein isoform3protein in tumor heterotransplants derivedfrom As+3-and Cd+2-transformed human urothelial cells[J]. Toxicol Sci,2006,93(2):322-330.
    [173] Reynolds T. For proteomics research, a new race has begun[J]. J Natl Cancer Inst,2002,94(8):552-554.
    [174] Barnouin K. Two-dimensional gel electrophoresis for analysis of protein complexes[J].Methods Mol Biol,2004,261:479-498.
    [175] Zhao Y, Zhang W, Kho Y,Zhao Y. Proteomic analysis of integral plasma membraneproteins[J]. Anal Chem,2004,76(7):1817-1823.
    [176] Shuai Y, Guo J, Dong Y, Zhong W, Xiao P, Zhou T, Zhang L, Peng S. Global geneexpression profiles of MT knockout and wild-type mice in the condition ofdoxorubicin-induced cardiomyopathy[J]. Toxicol Lett,2011,200(1-2):77-87.
    [177] Miura N, Koizumi S. Gene expression profiles in the liver and kidney ofmetallothionein-null mice[J]. Biochem. Biophys Res Commun,2005,332(4):949-955.
    [178] Pushkin A, Carpenito G, Abuladze N, Newman D, Tsuprun V, RyazantsevS,Motemoturu S, Sassani P, Solovieva N, Dukkipati R, Kurtz I. Structuralcharacterization, tissue distribution, and functional expression of murineaminoacylase III[J]. Am J Physiol Cell Physiol,2004,286(4): C848-C856.
    [179] Boyland E, Chasseaud LF. The role of glutathione and glutathione S-transferases inmercapturic acid biosynthesis[J]. Adv Enzymol Relat Areas Mol Biol,1969,32:173–219.
    [180] Chasseaud LF. The role of glutathione and glutathione S-transferases in themetabolism of chemical carcinogens and other electrophilic agents[J]. Adv CancerRes,1979,29:175–274.
    [181] Dohn DR, Leininger JR, Lash LH, Quebbemann AJ, Anders MW. Nephrotoxicity ofS-(2-chloro-1,1,2-trifluoroethyl) glutathione and S-(2-chloro-1,1,2-triflouroethyl)-L-cysteine, the glutathione and cysteine conjugates of chlorotrifluoroethene[J]. JPharmacol Exp Ther,1985,235(3):851–957.
    [182] Masereeuw R, Moons MM, Toomey BH, Russel FGM, Miller DS. Active luciferyellow secretion in renal proximal tubule: evidence for organic anion transport systemcrossover[J]. J Pharmacol Exp Ther,1999,289(2):1104–1111.
    [1]陈宣圣.“巴尔干综合征”面面观[J].世界知识,2001,5(18):18-19.
    [2] Bailey MR, Bem lV, Clayton BD. The health hazards of depleted uranium munitions.Part1. London: The RoyalSociety,2001,22(2):131-139.
    [3]池翠萍,王仲文.DU武器对人体健康的影响.中华放射医学与防护杂志[J],2002,4(2):137-139.
    [4] Hooper FJ, Squibb KS, Siegel EL, McPhaul K, Keogh JP. Elevated urine U-raniumexcretion by soldiers with retained uranium shrapnel[J]. Health Phys,1999,77(5):512-519.
    [5] Jackson JH. The health hazards of depleted uranium[J].J-Radiol-Prot,2001,21(3):327-329.
    [6] Fahey D. Don’t Look, Don’t Find[M]. Lewiston:The Military Toxics Project,2000.
    [7]李蓉,冷言冰,艾国平,徐辉,粟永萍,程天民.长期摄入低剂量DU对大鼠血象与肝肾功能的影响[J].第三军医大学学报,2007,9(17):1643-1646.
    [8] Zimmerman KL, Barber DS, Ehrich MF, Tobias L, Hancock S, Hinckley J, BinderEM, Jortner BS. Temporal clinical chemistry and microscopic renal effects followingacute uranyl acetate exposure[J]. Toxicol Pathol,2007,35(7):1000-1009.
    [9] Stokinger HE. Toxicity tollowing inhalation for land years. Pharmacology andToxicology of Uranium Compounds(Voegtlin C and Hodge HC eds)[J]. New York:McGraw-HilI,1953.
    [10]Leach LJ, Maynard EA, Hodge HC, Scott JK, Yuile CL, Sylvester GE, Wilson HB. Afive-year inhalation study with natural uranjum dioxide(UO) dust-1. Retention andbiologic effect in the monkey, dog and rat[J]. Health Phys,1970,18(6):599-612.
    [11]Leach LJ, Yuile CL, Hodge HC, Sylvester GE, Wilson HB. A five-year inhalationstudy with natural uranium dioxide (UO2) dust-1. Postexposure retention and biologleeffects in the monkey, dog and rat[J]. Health Phys,973,25(3):239-258.
    [12]Monleau M, De Meo M, Paquet F, Chazel V, Duménil G, Donnadieu-Claraz M.Genotoxic and inflammatory effects of depleted uranium particles inhaled by rats[J].Toxicol Sci,2006,89(1):287-295.
    [13]Hahn FF, Guilmette RA, Hoover MD. Toxicity of depleted uranium ragments in wistarrats[J].Health Physics,2000,65(6,Supp1):129.
    [14]尤汉虎,刘兴荣,杨陟华.气管灌注DU染毒对大鼠免疫功能的影响[J].中华放射医学与防护杂志,2004,12(6):527-531.
    [15]艾国平,李蓉,肖桃元,冷言冰,徐辉,粟永萍.大鼠长期摄人DU后的病理形态学特点观察[J].解放军医学杂志,2007,10(10):1036-1039.
    [16]刁秋霞,喻倩倩,刘浩军,王延坤,王大宁,张珩,李积胜. TZC对SD复合DU污染大鼠SS神经元的保护作用[J].武警医学院学报,2008,6(6):495-499.
    [17]Arfsten DP, Wilfong ER, Bekkedal MY, Johnson EW, McInturf SM, Eggers JS,Schaeffer DJ, Still KR. Evaluation of the effect of implanted depleted uranium (DU) onadult rat behavior and toxicological endpoints[J]. J Toxicol Environ Health A,2007,70(23):1995-2010.
    [18]McDiarmid MA, Keogh JP, Hooper FJ, McPhaul K, Squibb K, Kane R, DiPino R,Kabat M, Kaup B, Anderson L, Hoover D, Brown L, Hamilton M, Jacobson-Kram D,Burrows B, Walsh M. Health effects of depleted uranium on exposed gulf warveterans[J]. Environ Res,2000,82(2):168-180.
    [19]李蓉,冷言冰,艾国平,徐辉,粟永萍,程天民.长期食入低剂量DU对大鼠的生殖毒性研究[J].中华放射医学与防护杂志,2007,10(5):417-420.
    [20]冷言冰,李蓉,艾国平,徐辉,粟永萍,程天民. DU长期植入对大鼠生殖系统损伤效应的研究[J].现代预防医学,2008,35(9):1618-1620.
    [21]Arfsten DP, Schaeffer DJ, Johnson EW, Robert Cunningham J, Still KR, Wilfong ER.Evaluation of the effect of implanted depleted uranium on male reproductive success,sperm concentration, and sperm velocity[J]. Environ Res,2006,100(2):205-215.
    [22]Miller AC, Blakely WF, LivengoodD, Whittaker T, Xu J, Ejnik JW, Hamilton MM,Parlette E, John TS, Gerstenberg HM, Hsu H. Transformation of human osteoblast cellsto the tumorigenic phenotype by depleted uranium-uranyl chloride[J]. Environ HealthPersp,1998,106(8):465-471.
    [23]Hahn FF, Guilmette RA, Hoover MD. Implanted depleted uranium fragments causesoft tissue sarcomas in the muscles of rats[J]. Environ Health Persp,2002,110(1):52-59.
    [24]Papathanasiou K, Gianoulis C, Tolikas A,Dovas D, Koutsos J, Fragkedakis N,Papathanasiou N. Effect of depleted uranium weapons used in the Balkan war on theincidence of cervical intraepithelial neoplasia (CIN) and invasive cancer of the cervixin Greece[J]. Clin Exp Obste Gynecol,2005,32(1):58-60.
    [25]Miller AC, Stewarta M, Rivasa R, Marinob S, Randers-Pehrsonb G, Shi L.Observation of radiation-specific damage in cells exposed to depleted uranium: hprtgene mutation frequency[J].Radiat Measure,2007,42(2):1029-1032.
    [26]Wise SS, Thompson WD, Aboueissa AM, Mason MD, Wise JP. Particulate depleteduranium is cytotoxic and clastogenic to human lung cells[J]. Chem Res Toxicol,2007,20(5):815-820.
    [27]Stradling GN. Decorporation of actinides: a review of recent research[J]. J Ally Compd,1998,271-273(1):72-77.
    [28]Ramounet Le Gall B, Grillon G, Rateau G, Burgada R, Bailly T, Fritsch P.Comparativedecorporation efficacy of3,4,3-LIHOPO,4,4,4-LIHOPO and DTPA after contaminationof rats with soluble forms of238Pu and233U[J]. Radiat Prot Dosim,2003,105(1-4):535-538.
    [29]Martinez AB, Mandalunis PM, Bozal CB, Cabrini RL, Ubios AM. Renal function inmice poisoned with oral uranium and treated with ethane-1-hydroxy-1,1-bisphosphonate (EHBP)[J].Health Phys,2003,85(3):343-347.
    [30]刘实晶,罗梅初,陈桂宝,张美珍,孙梅贞.小剂量8102对大鼠急性铀中毒的促排效果[J].上海医科大学学报,1996,23(4):275-277.
    [31]Fukuda S, Ikeda M, Nakamura M, Katoh A, Yan X, Xie Y, Kontoghiorghes GJ. Theeffects of bicarbonate and its combination with chelating agents used for the removal ofdepleted uranium in rats[J]. Hemoglobin,2008,32(1-2):191-198.
    [32]李蓉,任泂,冷言冰,杨峥嵘,艾国平,徐辉,粟永萍,程天民.对急性DU中毒的促排措施研究[J].第三军医大学学报,2006,3(6):461-464.
    [33]丁志斌,罗凌江. DU武器对人体健康和环境的影响[J].解放军预防医学杂志,2003,21(30):225-228.
    [1] Priest ND. Toxicity of depleted uranium[J]. Lancet,2001,357(9252):244-246.
    [2] Hindin R, Brugge D, Panikkar B. Teratogenicity of depleted uranium aerosols: a reviewfrom an epidemiological perspective[J]. Environ Health,2005,4(4):17-36.
    [3] Briner W. The Toxicity of depleted uranium[J]. Int J Environ Res Public Health,2010,7(1),303-313.
    [4] Goertzen MM, Hauck DW, Phibbs J, Weber LP, Janz DM. Swim performance andenergy homeostasis in spottail shiner (Notropis hudsonius) collected downstream of auranium mill[J]. Ecotoxicol Environ Saf,2012,75(1):142-150.
    [5] Wan B,Fleming JT,Schultz TW,Sayler GS. In vitro immune toxicity of depleteduranium: effects on murine macrophages, CD4+T cells, and gene expressionprofiles[J]. Environ Health Perspect,2006,114(1):85-91.
    [6] Hao YH, Li R, Leng YB, Ren J, Liu J, Ai GP, Xu H, Su YP, Cheng TM. Thereproductive effects in rats after chronic oral exposure to low-dose depleted uranium[J].J Radiat Res,2012,53(3):377-384.
    [7] Hao YH, Li R, Leng YB, Ren J, Liu J, Ai GP, Xu H, Su YP, Cheng TM. A studyassessing the genotoxicity in rats after chronic oral exposure to a low dose of depleteduranium[J]. J Radiat Res,2009,50(6):521-528.
    [8] Louren o J, Pereira R, Silva A, Carvalho F, Oliveira J, Malta M, Paiva A, Gon alves F,Mendo S. Evaluation of the sensitivity of genotoxicity and cytotoxicity endpoints inearthworms exposed in situ to uranium mining wastes[J]. Ecotoxicol Environ Saf,2012,75(1):46-54.
    [9] Pereira S, Camilleri V, Floriani M, Cavalié I, Garnier-Laplace J, Adam-Guillermin C.Genotoxicity of uranium contamination in embryonic zebrafish cells[J]. Aquat Toxicol,2012,109(3):11-16.
    [10]Craft E, Abu-Qare A, Flaherty M, Garofolo M, Rincavage H, Abou-Donia M..Depleted and natural uranium: chemistry and toxicological effects[J]. J ToxicolEnviron Health B Crit Rev,2004,7(4):297-317.
    [11]Kurttio P, Harmoinen A, Saha H, Salonen L, Karpas Z, Komulainen H, Auvinen A.Kidney toxicity of ingested uranium from drinking water[J]. Am J Kidney Dis,2006,47(6):972-982.
    [12]Kathren RL, Burklin RK. Acute chemical toxicity of uranium[J]. Health Phys,2008,94(2):170–179.
    [13]Tannenbaum A, Silverstone H, Koziol J. The distribution and excretion of uranium inmice,rats and dogs//Tannenbaum A. Toxicology of uranium compounds[J]. NewYork:McGraw-Hill,1951:128-181.
    [14]ATSDR (Agency for Toxic Substances aDR). Toxicological profile for uranium[M].Washington, DC:US Public Health Services,1991.
    [15]Fukuda S, Ikeda M, Chiba M, Kaneko K. Clinical diagnostic indicators of renal andbone damage in rats intramuscularly injected with depleted uranium[J]. Radiat ProtDosim,2006,118(3):307-314.
    [16]Lu S, Zhao FY. Nephrotoxic limit and annual limit on intake for natural U[J]. HealthPhys,1990,58(5):619-623.
    [17]Bassett SH,Frenkel A,Cedars N,VanAlstine H, Waterhouse C, Cusson K. Theexcretion of hexavalent uranium following intravenous administration. II. Studies onhuman subjects[J]. Washington, DC: The University of Rochester,1948.
    [18]Hursh JB, Spoor NH. Data on man. In uranium plutonium transplutonic elements//Hodge HC, Stannard JN, Hursh JB. Handbook of experimental pharmacology[J]. NewYork: Springer-Verlag,1973:197-236.
    [19]Pavlakis N, Pollock CA, McLean G, Bartrop R. Deliberate overdose of uranium:toxicity and treatment[J]. Nephron,1996,72(2):313-317.
    [20]Tanigawara Y, Saito Y, Aiba T, Ohoka K, Kamiya A, Hori R. Moment analysis of drugdisposition in kidney. III: transport of paminohippurate and tetraethylammonium in theperfused kidney isolated from uranyl nitrate-induced acute renal failure rats[J]. J PharmSci,1990,79(3):249-256.
    [21]Friberg L, Nordberg GF, Vouk VB. General aspects//Nordberg GF, Friberg L.Handbook on the toxicology of metals[J]. Amsterdam: Elsevier Science Publishing,1986:623-637.
    [22]Bijlsma J A, Slottje P, Huizink AC, Twisk JW, van der Voet GB, de Wolff FA,Vanhaecke F, Moens L, Smid T. Urinary uranium and kidney function parameters inprofessional assistance workers in the Epidemiological Study Air Disaster inAmsterdam (ESADA)[J]. Nephrol Dial Transplant,2008,23(1):249-255.
    [23]Vicente-Vicente L, Quiros Y, P é rez-Barriocanal F, López-Novoa JM,López-Hernández FJ, Morales AI. l. Nephrotoxicity of uranium:pathophysiological,diagnostic and therapeutic perspectives[J]. Toxicol Sci,2010,118(2):324-347.
    [24]Zimmerman KL, Barber DS, Ehrich MF, Tobias L, Hancock S, Hinckley J, Binder EM,Jortner BS. Temporal clinical chemistry and microscopic renal effects following acuteuranyl acetate exposure[J]. Toxicol Pathol,2007,35(7):1000-1009.
    [25]Shim WS, Park JH, Ahn SJ, Han L, Jin QR, Li H, Choi MK, Kim DD, Chung SJ, ShimCK.Testosterone-independent down-regulation of Oct2in the kidney medulla from auranyl nitrate-induced rat model of acute renal failure: effects on distribution of amodel organic cation, tetraethylammonium[J]. J Pharm Sci,2009,98(2):739-747.
    [26]Banday AA, Priyamvada S, Farooq N, Yusufi AN, Khan F. Effect of uranyl nitrate onenzymes of carbohydrate metabolism and brush border membrane in different kidneytissues[J]. Food Chem Toxicol,2008,46(6):2080-2088.
    [27]Fukuda S, Ikeda M, Chiba M, Kaneko K. Clinical diagnostic indicator of renal andbone damage in rats intramuscularly injected with depleted uranium[J]. Radiat ProtDosim,2005,118(3):307-314.
    [28]Fukuda S, Ikeda M, Nakamura M, Katoh A, Yan X, Xie Y, Kontoghiorghes GJ. Theeffects of bicarbonate and its combination with chelating agents used for the removal ofdepleted uranium in rats[J]. Hemoglobin,2008,32(1-2):191-198.
    [29]Hao YH, Ren J, Liu J, Luo S, Ma T, Li R, Su Y. The protective role of zinc againstacute toxicity of depleted uranium in rats[J]. Basic Clin Pharmacol,2012,111(6):402-410.
    [30]Tolson JK, Roberts SM, Jortner B, Pomeroy M, Barber DS. Heat shock proteins andacquired resistance to uranium nephrotoxicity[J]. Toxicol,2005,206(1):59-73.
    [31]Taulan M, Paquet F, Argiles A, Demaille J, Romey MC. Comprehensive analysis of therenal transcriptional response to acute uranyl nitrate exposure[J]. BMC Genomics,2006,7(1):14-27.
    [32]Goldman M, Yaari A, Doshnitzki Z, Cohen-Luria R, Moran A. Nephrotoxicity ofuranyl acetate: effect on rat kidney brush border membrane vesicles[J]. Arch Toxicol,2006,80(7):387-393.
    [33]Muller DS, Houpert P, Cambar J, Hengé-Napoli MH. Role of the sodium-dependentphosphate cotransporters and absorptive endocytosis in the uptake of lowconcentrations of uranium and its toxicity at higher concentrations in LLC-PK1cells[J]. Toxicol Sci,2008,101(2):254-262.
    [34]Thiebault C, Carriere M, Milgram S, Simon A, Avoscan L, Gouget B. Uranium inducesapoptosis and is genotoxic to normal rat kidney (NRK-52E) proximal cells[J]. ToxicolSci,2007,98(2):479-487.
    [35]Pourahmad J, Ghashang M, Ettehadi HA, Ghalandari R.. A search for cellular andmolecular mechanisms involved in depleted uranium (DU) toxicity[J]. Environ Toxicol,2006,21(4):349-354.
    [36]Al Kaddissi S, Legeay A, Elia AC, Gonzalez P, Camilleri V, Gilbin R, Simon O.Effects of uranium on crayfish Procambarus clarkii mitochondria and antioxidantsresponses after chronic exposure: what have we learned?[J].Ecotoxicol Environ Saf,2012,78(4):218-224.
    [37]VanEngelen MR, Szilagyi RK, Gerlach R, Lee BD, Apel WA, Peyton BM. Uraniumexerts acute toxicity by binding to pyrroloquinoline quinone cofactor[J]. Environ SciTechnol,2011,45(3):937-942.
    [38]Prat O, Berenguer F, Malard V, Tavan E, Sage N, Steinmetz G, Quemeneur E.Transcriptomic and proteomic responses of human renal HEK293cells to uraniumtoxicity[J]. Proteomics,2005,5(1):297-306.
    [39]Prat O, Ansoborlo E, Sage N, Cavadore D, Lecoix J, Kurttio P, Quemeneur E. Fromcell to man: evaluation of osteopontin as a possible biomarker of uranium exposure[J].Environ Int,2011,37(4):657-662.
    [40]International Commission on Radiological Protection (ICRP). International Commissionon Radiological Protection. Recommendations of the International Commission onRadiological Protection[J]. Annals of the ICRP. Publication60. Oxford:PergamonPress,1991.
    [41]Neuman WF, Fleming RW, Dounce AL, Carlson AB, O’leary J, Mulryan B. Thedistribution and excretion of injected uranium[J]. J Biol Chem,1948,173(2):737-748.
    [42]Domingo JL, Colomina MT, Llobet JM, Jones MM, Singh PK, Campbell RA. Theaction of chelating agents in experimental uranium intoxication in mice: variations withstructure and time of administration[J]. Fundam Appl Toxicol,1992,19(3):350–357.
    [43]World Health Organization (WHO). Guidelines for Drinking Water Quality[J].Geneva:WHO,1984.
    [44]Lloyd RD, Taylor GN, Boseman JJ, Mays CW, Atherton DR. Further comparison ofCa-DTPA and Zn-DTPA for removal of241Am from beagles[J]. Health Phys,1997,33(1):92-94.
    [45]Doolan PD, Schwartz SL, Hayes JR, Mullen JC, Cummings NB. An evaluation of thenephrotoxicity of ethylenediaminetetraacetate and diethylenetriaminepentaacetate inthe rat[J]. Toxicol Appl Pharmacol,1967,10(3):481-500.
    [46]Diamond GL, Morrow PE, Panner BJ, Gelein RM, Baggs RB. Reversible uranylfluoride nephrotoxicity in the Long Evans rat[J]. Fundam Appl Toxicol,1989,13(1):65-78.
    [47]Houpert P, Muller D, Chazel V, Claraz M, Paquet F. Effect of DTPA on thenephrotoxicity induced by uranium in the rat[J]. Radiat Prot Dosimetry,2003,105(1-4):517-520.
    [48]Ortega A, Domingo JL, Llobet JM, Tomás JM, Paternain JL. Evaluation of the oraltoxicity of uranium in a4-week drinking-water study in rats[J]. Bull. Environ ContamToxicol,1989,42(6):935-941.
    [49]Durbin PW, Kullgren B, Xu J, Raymond KN. New agents for in vivo chelation ofuranium(VI): efficacy and toxicity in mice of multidentate catecholate andhydroxypyridinonate ligands[J]. Health Phys,1997,72(6):865-879.
    [50]Fukuda S, Ikeda M, Nakamura M, Yan X, Xie Y. Acute toxicity of subcutaneouslyadministered depleted uranium and the effects of CBMIDA in the simulated wounds ofrats[J]. Health Physics,2009,96(4):483-492.
    [51]Fukuda S, Ikeda M, Nakamura M, Yan X, Xie Y. Efficacy of oral and intraperitonealadministration of CBMIDA for removing uranium in rats after parenteral injections ofdepleted uranium[J]. Radiat Prot Dosimetry,2009,133(1):12-19.
    [52]Sawicki M, Lecercle D, Grillon G, Le Gall B, Sérandour AL, Poncy JL, Bailly T,Burgada R, Lecouvey M, Challeix V, Leydier A, Pellet-Rostaing S, Ansoborlo E, TaranF. Bisphosphonate sequestering agents. Synthesis and preliminary evaluation for invitro and in vivo uranium(VI) chelation[J]. Eur J Med Chem,2008,43(12):2768-2777.
    [53]Misson J,Henner P,Morello M,Floriani M, Wu TD, Guerquinkern JL, Fevrier L. Useof phosphate to avoid uranium toxicity in Arabidopsis thaliana leads to alterations ofmorphological and physiological responses regulated by phosphate availability[J].Enviro Exp Bot,2009,67(2):353-362.
    [54]Yantasee W, Sangvanich T, Creim JA, Pattamakomsan K, Wiacek RJ, Fryxell GE,Addleman RS, Timchalk C. Functional sorbents for selective capture of plutonium,americium,uranium,and thorium in blood[J]. Health Phys,2010,99(3):413-419.
    [55]Zhang X, Ding C, Liu H, Liu LH, Zhao CQ. Protective effects of ion-imprintedchitooligosaccharides as uranium-specific chelating agents against the cytotoxicity ofdepleted uranium in human kidney cells[J]. Toxicology,2011,286(1-3):75-84.
    [56]Cavusoglu K, Yapar K, Yalcin E. Antioxidant potential of Ginkgo biloba leaf extracturanium-induced genotoxicity and oxidative stress in albino mice[J]. Fresen EnvironBull,2009,18(9):1551-1558.
    [57]Yapar K, Cavusoglu K, Oruc E, Yal in E. Protective role of ginkgo biloba againsthepatotoxicity and nephrotoxicity in uranium-treated mice[J]. J Med Food,2010,13(1):179-188.
    [58]Pourahmad J, Shaki F, Tanbakosazan F,Ghalandari R, Ettehadi HA, Dahaghin E.Protective effects of fungal beta-(1→3)-D-glucan against oxidative stress cytotoxicityinduced by depleted uranium in isolated rat hepatocytes[J]. Hum Exp Toxicol,2011,30(3):173-181.
    [59]McDiarmid M A, Engelhardt SM, Dorsey CD, Oliver M, Gucer P, Gaitens JM, Kane R,Cernich A, Kaup B, Hoover D, Gaspari AA, Shvartsbeyn M, Brown L, Squibb KS.Longitudinal health surveillance in a cohort of Gulf War veterans18Years after firstexposure to depleted uranium[J]. J Toxicol Environ Health A,2011,74(10):678-691.
    [60]McDiarmid M A, Engelhardt SM, Dorsey CD, Oliver M, Gucer P, Wilson PD, Kane R,Cernich A, Kaup B, Anderson L, Hoover D, Brown L, Albertini R, Gudi R, Squibb KS.Surveillance Results of Depleted Uranium-Exposed Gulf War I Veterans: SixteenYears of Follow-Up[J]. J Toxicol Environ Health A,2009,72(1):14-29.
    [61]Zamora ML, Zielinski JM, Moodie GB, Falcomer RA, Hunt WC, Capello K.Uraniumin drinking water: renal effects of long-term ingestion by an aboriginal community[J].Arch Environ Occup Health,2009,64(4):228-241.
    [62]Kurttio P, Auvinen A, Salonen L, Saha H, Pekkanen J, M kel inen I, V is nen SB,Penttil IM, Komulainen H. Renal effects of uranium in drinking water[J]. EnvironHealth Perspect,2002,110(4):337-342.
    [63]Arzuaga X, Rieth SH, Bathija A, Cooper GS. Cooper. Renal Effects of Exposure toNatural and Depleted Uranium: A Review of the Epidemiologic and ExperimentalData[J]. J Toxicol Environ Health B Crit Rev,2010,13(7-8):527-545.
    [64]64Brugge D, Buchner V. Health effects of uranium: new research findings[J]. RevEnviron Health,2011,26(4):231-249.
    [65]Fukuda S, Ikeda M, Nakamura M, Yan X, Xie Y. Effects of pH on DU intake andremoval by CBMIDA and EHBP[J]. Health Phys,2007,92(1):10-14.
    [66]Schmitt R. The role of stem cells in acute kidney injury:myths and potential[J]. DeutMed Wochenschr,2012,137(7):322-325.
    [67]Wise AF, Ricardo SD.Mesenchymal stem cells in kidney inflammation and repair[J].Nephrology,2012,17(1):1-10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700