用户名: 密码: 验证码:
小型燃料电池混合动力车驱动系统构建与控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以小型燃料电池车辆为研究对象,分析风冷氢空燃料电池在小型车辆上应用情况,以求燃料电池在该车上的应用有所突破,代替我国众多的以蓄电池、小型内燃机为动力的小型车辆,更好保护环境。基于这种愿景,研制小型质子交换膜燃料电池(PEMFC)混合动力车,并进行相关的测试试验,主要的研究内容为:
     (1)车用PEMFC运行机理分析。分析了PEMFC工作机理,包括燃料电池工作原理、电化学模型和燃料电池主要部件。探讨了双极板、扩散层、催化层和质子膜的材料使用情况,以及反应物在它们内部如何传输。重点分析燃料电池功率衰退的原因,探讨减少其衰退的措施。
     (2)小型PEMFC混合动力车辆控制策略分析与建模仿真。小型PEMFC混合动力车辆控制策略是保持车辆正常运行和节省能量消耗必要条件,因此在分析不同控制策略基础上,使用Simulink构建控制策略的仿真图,将仿真图嵌入自主开发的小型PEMFC混合动力车辆仿真模块内,进行仿真,以评价各控制策略的优缺点,找出适合本次研究车辆的控制策略。根据动力学原理预估车辆电机功率为3kW,以燃料最小消耗为原则,通过研发的仿真模块,优化与电机构成驱动链的燃料电池和蓄电池动力参数。另外,基于研发的仿真模块,评估构建的小型PEMFC混合动力车辆的经济性和动力性。
     (3)车用风冷PEMFC电堆建模、制造、测试与功率衰退分析。在分析风冷电堆传热机理情况下,建立2kW电堆模型,其尺寸为100mm*60mm*345.68mm。通过仿真模拟,优化燃料电池运行条件和流场形式,为设计风冷电堆做参考。根据风冷电堆特点,建立电堆出口末端均温散热模型,加强电堆散热,以保持电堆内温度分布均匀。依据模拟分析,研制风冷的氢空燃料电池电堆,建立了电堆气管理系统、热管理系统和安全控制系统。通过LABVIEW软件,编写测试程序,在校内试验台架上进行测试分析。同时进行5kW电堆功率衰退试验,以评价小型车辆PEMFC混合动力车辆使用成本。
     (4)小型PEMFC混合动力车辆构建与试验分析。依据仿真模拟的结果,构建小型PEMFC混合动力车辆。改装原有的高尔夫球车,拆除其动力系统。选购电机和蓄电池,搭建自制的燃料电池电堆,重建小型PEMFC混合动力车辆的驱动链。根据小型车辆功能的要求,简化车辆总控制器,增加DC/DC转换器控制功能,改进风机控制。最后进行室内测试和道路测试,评价车辆性能及其控制策略。
     本论文研究结果表明小型PEMFC混合动力车辆的优势在于设计和制造灵活,便于项目开展。重点是保证电堆能够正常运行,防止过早衰退;车辆控制系统要简单、有效,既要保护电堆,又要减少燃料消耗。良好的仿真能够更好地设计电堆,评价车辆性能,有利于项目的推进。
This paper studies the light vehicle with fuel cell. By analyzing the application ofair-cooled hydrogen-air fuel cell in the light vehicle, we wish to substitute numerous lightvehicles powered by batteries and mini internal combustion engines with the light vehiclepowered by air-cooled hydrogen-air fuel cell so as to better protect the environment. Hence,the light hybrid electric vehicle powered by proton exchange membrane fuel cell (PEMFC) isdeveloped, manufactured and tested. The main studying contents are as follows:
     1. Analysis on the PEMFC working mechanism employed in vehicles. The PEMFC workingmechanism analyzed in this paper including fuel cell running mechanism,electrochemistry mode as well as the main components of fuel cell. The paper probed intothe application circumstance of materials including bipolar plate, diffusing layer, catalystlayer and proton membrane and worked out how their reactants transmit inside. Analysisis emphasized on the reasons of fuel cell power recession, probing into the measures oflessening their recession.
     2. Analysis on the light PEMFC hybrid vehicle control strategy and modeling simulation.Control strategies of the light PEMFC hybrid vehicle are necessary conditions to keep thevehicle work normally and save energy, therefore, based on different control strategiesanalysis, Simulink is applied to build simulation diagram of control strategy, to simulateby inserting the simulation diagram into a self-development light PEMFC hybrid vehiclesimulation model, it aims to estimate the advantages and disadvantages of all the controlstrategies and to find out the optimal development of the vehicle control strategies.According to dynamics principles, the motor power is estimated to be3kW, which setsthe minimum consumption of the fuel as its principle, optimizing the fuel cell andbatteries dynamic parameters. In addition, the economic efficiency and powerperformance of the established light PEMFC hybrid vehicle are estimated based on thedeveloped simulation model.
     3. Analysis on the PEMFC stacks model establishment, manufacture, test and powerrecession employed in vehicles. A2kW stack model is established with a size of100mm *60mm*345.68mm according to analysis on air-cooled stack heat transfer mechanism.The working conditions and flow distributions of the fuel cell are optimized throughsimulation so as to make the reference to designing air-cooled stack. An equal heatdiffusing model is built at the end of the stack exit and the stack heat diffusing isreinforced so as to maintain the equal temperature distribution in the stack according tothe air-cooled stack features. Based on the simulation, an air-cooled hydrogen-air fuel cellstack is developed, manufactured, where the stack gas management system, heatmanagement system as well as security control system are established. Test analysis isconducted in the university bench through LABVIEW which compiles the test procedure.Meanwhile, a5kW stack power recession is tested to estimate the using cost of lightvehicle with PEMFC hybrid power.
     4. The rebuilding and test analysis of light PEMFC hybrid vehicle. A light PEMFC hybridvehicle is built according to simulation results. The original golf cart is adapted and itspower system is removed. The motor and batteries are selected and purchased, aself-made fuel cell stack is built and the driving chains of light PEMFC hybrid vehicle arerebuilt. According to the requirements of the light vehicle features, simplifying thevehicle main controller, adding DC/DC converter control function, improving fan controlfunction. Finally, bench test and road test are conducted to estimate the vehicleperformance as well as its control strategies.
     The researching result indicates the advantages of light PEMFC hybrid vehicle lie in thedesign and manufacture flexibility, which is convenient for the project to carry on. Theemphasis is to validate the normal working of the stack, preventing its fast recession; thevehicle control system is supposed to be simple and effective, which is to protect the stackand to reduce fuel consumption. A better simulation can better design the stack and estimatethe vehicle performance, which is benefit for the project development.
引文
[1] Colombo C, Monhemius A J, Plant J A. The estimation of the bioavailabilities ofplatinum, palladium and rhodium in vehicle exhaust catalysts and road dusts using aphysiologically based extraction test [J]. Science of the total environment,2008,389(1):46-51.
    [2] Knecht W. Diesel engine development in view of reduced emission standards [J]. Energy,2008,33(2):264-271.
    [3] a atay Bayindir K, G zükü ük M A, Teke A. A comprehensive overview of hybridelectric vehicle: Powertrain configurations, powertrain control techniques and electroniccontrol units [J]. Energy Conversion and Management,2011,52(2):1305-1313.
    [4] Vong C, Wong P. Case-based adaptation for automotive engine electronic control unitcalibration [J]. Expert Systems with Applications,2010,37(4):3184-3194.
    [5] http://en.wikipedia.org/wiki/Motor_vehicle.
    [6] Garshick E, Laden F, Hart J E, et al. Lung cancer and vehicle exhaust in truckingindustry workers [J]. Environmental Health Perspectives,2008,116(10):1327.
    [7] Hankey S, Marshall J D. Impacts of urban form on future US passenger-vehiclegreenhouse gas emissions [J]. Energy Policy,2010,38(9):4880-4887.
    [8] McCarthy R, Yang C. Determining marginal electricity for near-term plug-in and fuel cellvehicle demands in California: Impacts on vehicle greenhouse gas emissions [J]. Journalof Power Sources,2010,195(7):2099-2109.
    [9] Chuang H Y, Cheng W C, Chen C Y, et al. A follow-up comparison of blood lead levelsbetween foreign and native workers of battery manufacturing in Taiwan [J]. Science ofthe total environment,2008,394(1):52-56.
    [10]http://www1.eere.energy.gov/hydrogenandfuelcells/fuelcells/fc_types.html.
    [11]http://www.fuelcells.org/base.cgim?template=types_of_fuel_cells.
    [12]曾潮流,张鉴清,吴维.熔融碳酸盐燃料电池[J].腐蚀科学与防护技术,1993,5(4):291-296.
    [13]王英旭,周利,王鹏杰,等. MCFC中隔膜和盐膜研制的分析[J].电池,2010,40(003):167-169.
    [14]彭苏萍,韩敏芳,杨翠柏,等.固体氧化物燃料电池[J].物理,2004,33(2):90-94.
    [15]McLean G F, Niet T, Prince-Richard S, et al. An assessment of alkaline fuel celltechnology [J]. International Journal of Hydrogen Energy,2002,27(5):507-526.
    [16]隋升,顾军.磷酸燃料电池(PAFC)进展[J].电源技术,2000,24(1):49-52.
    [17]Bernay C, Marchand M, Cassir M. Prospects of different fuel cell technologies forvehicle applications [J]. Journal of Power Sources,2002,108(1):139-152.
    [18]Aguiar P, Brett D J L, Brandon N P. Feasibility study and techno-economic analysis of anSOFC/battery hybrid system for vehicle applications[J]. Journal of Power Sources,2007,171(1):186-197
    [19]Kang K M, Park S H, Gwak G H, et al. Development of a Lightweight200W DirectMethanol Fuel Cell Stack for UAV Applications and Study of its OperatingCharacteristics (II)[J]. Transactions of the Korean hydrogen and new energy society,2012,23(3):243-249.
    [20]http://www.docin.com/p-715987201.html.
    [21]吴魁,解东来.高温质子交换膜研究进展[J].化工进展,2012,31(10):2202-2206.
    [22]Scholta J, Messerschmidt M, J rissen L, et al. Externally cooled high temperaturepolymer electrolyte membrane fuel cell stack [J]. Journal of Power Sources,2009,190(1):83-85.
    [23]Peng J, Lee S J. Numerical simulation of proton exchange membrane fuel cells at highoperating temperature [J]. Journal of Power Sources,2006,162(2):1182-1191.
    [24]Guizzi G L, Manno M, De Falco M. Hybrid fuel cell-based energy system with metalhydride hydrogen storage for small mobile applications [J]. International journal ofhydrogen energy,2009,34(7):3112-3124.
    [25]http://tech.sina.com.cn/d/2011-09-02/11166015607.shtml.
    [26]Tang Y, Zhou W, Pan M, et al. Porous copper fiber sintered felts: an innovative catalystsupport of methanol steam reformer for hydrogen production [J]. International Journal ofHydrogen Energy,2008,33(12):2950-2956.
    [27]Singh D, Lu D M, Djilali N. A two-dimensional analysis of mass transport in protonexchange membrane fuel cells [J]. International Journal of Engineering Science,1999,37(4):431-452.
    [28]Miao Z, He Y L, Li X L, et al. A two-dimensional two-phase mass transport model fordirect methanol fuel cells adopting a modified agglomerate approach [J]. Journal ofPower Sources,2008,185(2):1233-1246.
    [29]Santarelli M G, Torchio M F. Experimental analysis of the effects of the operatingvariables on the performance of a single PEMFC [J]. Energy Conversion andManagement,2007,48(1):40-51.
    [30]Li X, Xu L, Hua J, et al. Power management strategy for vehicular-applied hybrid fuelcell/battery power system [J]. Journal of Power Sources,2009,191(2):542-549.
    [31]http://www.fuelcells.org/info/charts/carchart.pdf.
    [32]任学佑.质子交换膜燃料电池的研究进展[J].中国工程科学,2005,7(1):86-94
    [33]Hwang J J, Chang W R, Weng F B, et al. Development of a small vehicular PEM fuelcell system [J]. International Journal of Hydrogen Energy,2008,33(14):3801-3807.
    [34]Pacella D, Donateo T, Masciullo A, et al. A Fuel Cell Hybrid Powertrain for the VolksbotMobile Robot [J].2009.
    [35]Candusso D, Rullière E, Toutain E. A fuel cell hybrid power source for a small electricvehicle[C], Proc. Universities Power Engineering Conf.2001.
    [36]Hwang J J, Wang D Y, Shih N C. Development of a lightweight fuel cell vehicle[J].Journal of Power Sources,2005,141(1):108-115.
    [37]Corbo P, Migliardini F, Veneri O. Performance investigation of2.4kW PEM fuel cellstack in vehicles [J]. International Journal of Hydrogen Energy,2007,32(17):4340-4349.
    [38]Fontela P, Soria A, Mielgo J, et al. Airport electric vehicle powered by fuel cell[J].Journal of power sources,2007,169(1):184-193.
    [39]Candusso D, Harel F, De Bernardinis A, et al. Characterisation and modelling of a5kWPEMFC for transportation applications[J]. International journal of hydrogen energy,2006,31(8):1019-1030.
    [40]del Real A J, Arce A, Bordons C. Development and experimental validation of a PEMfuel cell dynamic model[J]. Journal of power sources,2007,173(1):310-324.
    [41]Zhao H, Burke A F, Miller M. Comparison of Hybrid Fuel Cell Vehicle Technology andFuel Efficiency[C]. International Conference of Hydrogen and Fuel Cell.2011.
    [42]Kolavennu P, Telotte J C, Palanki S. Analysis of battery backup and switching controllerfor a fuel-cell powered automobile[J]. International journal of hydrogen energy,2009,34(1):380-387.
    [43]Xu L, Hua J, Li X, et al. Control strategy optimization of a hybrid fuel cell vehicle withbraking energy regeneration[C].Vehicle Power and Propulsion Conference, IEEE,2008:1-6.
    [44]Thounthong P, Rael S, Davat B. Energy management of fuel cell/battery/supercapacitorhybrid power source for vehicle applications [J]. Journal of Power Sources,2009,193(1):376-385.
    [45]Feroldi D, Serra M, Riera J. Energy management strategies based on efficiency map forfuel cell hybrid vehicles[J]. Journal of Power Sources,2009,190(2):387-401.
    [46]Li Q, Chen W, Li Y, et al. Energy management strategy for fuel cell/battery/ultracapacitorhybrid vehicle based on fuzzy logic [J]. International Journal of Electrical Power&Energy Systems,2012,43(1):514-525.
    [47]李瑛,王林山.燃料电池[M].北京:冶金工业出版社,2000:11-51.
    [48]衣宝廉.燃料电池——原理·技术·应用[M].北京:化学工业出版社,2004:5-384
    [49]Basu S. Fuel Cell Science and Technology [M]. Anamaya Publishers, New Delhi, India,2007:1-37.
    [50]Srinivasan S, Bommaraju T. ELECTROCHEMICAL TECHNOLOGIES ANDAPPLICATIONS [M].Fuel Cells. Springer US,2006:93-97.
    [51]Squadrito G, Giacoppo G, Barbera O, et al. Design and development of a7kW polymerelectrolyte membrane fuel cell stack for UPS application [J]. International journal ofhydrogen energy,2010,35(18):9983-9989.
    [52]Amphlett J C, Mann R F, Peppley B A, et al. A model predicting transient responses ofproton exchange membrane fuel cells [J]. Journal of Power Sources,1996,61(1):183-188.
    [53]Xue X D, Cheng K W E, Sutanto D. Unified mathematical modelling of steady-state anddynamic voltage–current characteristics for PEM fuel cells [J]. Electrochimica Acta,2006,52(3):1135-1144.
    [54]Amphlett J C, Mann R F, Peppley B A, et al. A practical PEM fuel cell model forsimulating vehicle power sources[C]. Battery Conference on Applications and Advances,1995, Proceedings of the Tenth Annual. IEEE,1995:221-226.
    [55]Wishart J, Dong Z, Secanell M. Optimization of a PEM fuel cell system based onempirical data and a generalized electrochemical semi-empirical model [J]. Journal ofPower Sources,2006,161(2):1041-1055.
    [56]Jiang R, Chu D. Voltage–time behavior of a polymer electrolyte membrane fuel cell stackat constant current discharge [J]. Journal of power sources,2001,92(1):193-198.
    [57]Mann R F, Amphlett J C, Hooper M A I, et al. Development and application of ageneralised steady-state electrochemical model for a PEM fuel cell [J]. Journal of PowerSources,2000,86(1):173-180.
    [58]F.N. Buchi, G.G. Scherer, In-situ resistance measurements of Nafion(R)117membranes inpolymer electrolyte fuel cells, J. Electroanal. Chem.404(1)(1996)37–43.
    [59]Riascos L A M, Simoes M G, Miyagi P E. Controlling PEM fuel cells applying a constanthumidity technique[C]. ABCM Symposium Series in Mechatronics.2008,3:774-783.
    [60]Owejan J P, Gagliardo J J, Sergi J M, et al. Water management studies in PEM fuel cells,Part I: Fuel cell design and in situ water distributions [J]. International Journal ofHydrogen Energy,2009,34(8):3436-3444.
    [61]Obayopo S O, Bello-Ochende T, Meyer J P. Modelling and optimization of reactant gastransport in a PEM fuel cell with a transverse pin fin insert in channel flow [J].International journal of hydrogen energy,2012,37(13):10286-10298.
    [62]Cheng C H, Lin H H. Numerical analysis of effects of flow channel size on reactanttransport in a proton exchange membrane fuel cell stack [J]. Journal of Power Sources,2009,194(1):349-359.
    [63]Tucker D, Lawson L, Gemmen R. Characterization of air flow management and controlin a fuel cell turbine hybrid power system using hardware simulation[C]. ASME2005Power Conference. American Society of Mechanical Engineers,2005:959-967.
    [64]Carcadea E, Ene H, Ingham D B, et al. Numerical simulation of mass and charge transferfor a PEM fuel cell [J]. International communications in heat and mass transfer,2005,32(10):1273-1280.
    [65]Peng J, Lee S J. Numerical simulation of proton exchange membrane fuel cells at highoperating temperature [J]. Journal of Power Sources,2006,162(2):1182-1191.
    [66]Luo Y, Guo Q, Du Q, et al. Analysis of cold start processes in proton exchangemembrane fuel cell stacks [J]. Journal of Power Sources,2013,224:99-114.
    [67]Ramos-Alvarado B, Hernandez-Guerrero A, Elizalde-Blancas F, et al. Constructal flowdistributor as a bipolar plate for proton exchange membrane fuel cells [J]. InternationalJournal of Hydrogen Energy,2011,36(20):12965-12976.
    [68]Meng H. Numerical studies of cold-start phenomenon in PEM fuel cells [J].Electrochimica Acta,2008,53(22):6521-6529.
    [69]Suh D M, Park S. Transport phenomena in proton exchange membrane fuel cells andover-potential distribution of membrane electrode assembly [J]. International Journal ofThermal Sciences,2012,51:31-41.
    [70]U. Pasaogullari, C.Y. Wang, Two-phase modeling and flooding prediction of polymerelectrolyte fuel cell, J. Electrochem. Soc.152(2)(2005):380-390.
    [71] Nie J, Chen Y, Cohen S, et al. Numerical and experimental study of three-dimensionalfluid flow in the bipolar plate of a PEM electrolysis cell [J]. International journal ofthermal sciences,2009,48(10):1914-1922.
    [72]Ramos-Alvarado B, Hernandez-Guerrero A, Elizalde-Blancas F, et al. Constructal flowdistributor as a bipolar plate for proton exchange membrane fuel cells [J]. InternationalJournal of Hydrogen Energy,2011,36(20):12965-12976.
    [73]王东,王涛,张伟,等.高功率薄型金属双极板PEM燃料电池堆研究[J].电源技术,2009,8:013.
    [74]杨丽军,尉海军,朱磊,等.质子交换膜燃料电池双极板的研究现状及展望[J].金属功能材料,2009,16(5):50-54.
    [75]Litster S, Santiago J G. Dry gas operation of proton exchange membrane fuel cells withparallel channels: Non-porous versus porous plates[J]. Journal of Power Sources,2009,188(1):82-88.
    [76]Jiao K, Zhou B, Quan P. Liquid water transport in straight micro-parallel-channels withmanifolds for PEM fuel cell cathode[J]. Journal of Power Sources,2006,157(1):226-243.
    [77]Prasad K B, Jayanti S. Effect of channel-to-channel cross-flow on local flooding inserpentine flow-fields [J]. Journal of Power Sources,2008,180(1):227-231.
    [78]Park J, Li X. An experimental and numerical investigation on the cross flow through gasdiffusion layer in a PEM fuel cell with a serpentine flow channel [J]. Journal of PowerSources,2007,163(2):853-863.
    [79]Han I S, Lim J, Jeong J, et al. Effect of serpentine flow-field designs on performance ofPEMFC stacks for micro-CHP systems [J]. Renewable Energy,2013,54:180-188.
    [80]Berning T, Odgaard M, K r S K. A study of multi-phase flow through the cathode side ofan interdigitated flow field using a multi-fluid model [J]. Journal of Power Sources,2010,195(15):4842-4852.
    [81]Kuo J K, Chen C K. The effects of buoyancy on the performance of a PEM fuel cell witha wave-like gas flow channel design by numerical investigation [J]. International journalof heat and mass transfer,2007,50(21):4166-4179.
    [82]Ramos-Alvarado B, Hernandez-Guerrero A, Juarez-Robles D, et al. Numericalinvestigation of the performance of symmetric flow distributors as flow channels forPEM fuel cells [J]. International Journal of hydrogen energy,2012,37(1):436-448.
    [83]Liu H, Li P. Maintaining equal operating conditions for all cells in a fuel cell stack usingan external flow distributor [J]. International journal of hydrogen energy,2013,38(9):3757-3766.
    [84]Salomov U R, Chiavazzo E, Asinari P. Pore-scale modeling of fluid flow through gasdiffusion and catalyst layers for high temperature proton exchange membrane (HT-PEM)fuel cells [J]. Computers&Mathematics with Applications,2014,67(2):393-411.
    [85]Rea C. Degradation of a Polymer Electrolyte Membrane Fuel Cell Under Freeze Start-upOperation [D]. University of Waterloo,2011:6-20.
    [86]王晓丽,张华民,张建鲁,等.质子交换膜燃料电池气体扩散层的研究进展[J].化学进展,2006,18(4):507-513.
    [87]魏元露,唐浩林,潘牧.炭黑及聚四氟乙烯对气体扩散层性能的影响[J].电池工业,2012,16(5):317-320.
    [88]Song J M, Cha S Y, Lee W M. Optimal composition of polymer electrolyte fuel cellelectrodes determined by the AC impedance method[J]. Journal of Power Sources,2001,94(1):78-84.
    [89]李芬鄢,徐献芝,宋辉,等.粘结剂聚四氟乙烯乳液经过乙醇预处理后对气体扩散电极性能的影响[J].Acta Phys.-Chim. Sin,2009,25(11):2205-2210
    [90]Kopanidis A, Theodorakakos A, Gavaises M, et al. Pore scale3D modelling of heat andmass transfer in the gas diffusion layer and cathode channel of a PEM fuel cell[J].International Journal of Thermal Sciences,2011,50(4):456-467.
    [91]Al-Baghdadi M A R, Al-Janabi H A K. Effect of operating parameters on thehygro–thermal stresses in proton exchange membranes of fuel cells [J]. InternationalJournal of Hydrogen Energy,2007,32(17):4510-4522.
    [92]Dawes J E, Hanspal N S, Family O A, et al. Three-dimensional CFD modelling of PEMfuel cells: an investigation into the effects of water flooding [J]. Chemical EngineeringScience,2009,64(12):2781-2794.
    [93]Jung C Y, Lee C S, Yi S C. Computational analysis of transport phenomena in protonexchange membrane for polymer electrolyte fuel cells [J]. Journal of Membrane Science,2008,309(1):1-6.
    [94]Jin Hyun Nam, M. Kaviany. Effective diffusivity and water-saturation distribution insingle-and two-layer PEMFC diffusion medium. International Journal of Heat and MassTransfer.2003,46:4595~4611
    [95]周圆圆.质子交换膜燃料电池中的传递过程研究[D].清华大学,2004,30-36.
    [96]袁伟.被动式直接甲醇燃料电池结构优化设计及作用机理研究[D].华南理工大学,2012:68-71.
    [97]Ding Y, Bi X, Wilkinson D P.3D simulations of the impact of two-phase flow on PEMfuel cell performance [J]. Chemical Engineering Science,2013,100:445-455.
    [98] Chen L, Cao T F, Li Z H, et al. Numerical investigation of liquid water distribution inthe cathode side of proton exchange membrane fuel cell and its effects on cellperformance [J]. International journal of hydrogen energy,2012,37(11):9155-9170.
    [99]俞红梅,衣宝廉.车用燃料电池现状与电催化[J].中国科学:化学,2012,42(4):480-494.
    [100] Zhang S, Yuan X, Wang H, et al. A review of accelerated stress tests of MEAdurability in PEM fuel cells [J]. International Journal of Hydrogen Energy,2009,34(1):388-404.
    [101] Park S, Oh I H. An analytical model of Nafion membrane humidifier for protonexchange membrane fuel cells [J]. Journal of Power Sources,2009,188(2):498-501.
    [102] Jeon D H, Kim K N, Baek S M, et al. The effect of relative humidity of the cathodeon the performance and the uniformity of PEM fuel cells [J]. International Journal ofHydrogen Energy,2011,36(19):12499-12511.
    [103] Hashemi F, Rowshanzamir S, Rezakazemi M. CFD simulation of PEM fuel cellperformance: effect of straight and serpentine flow fields [J]. Mathematical andComputer Modelling,2012,55(3):1540-1557.
    [104] Springer T E, Zawodzinski T A, Gottesfeld S. Polymer electrolyte fuel cell model [J].Journal of the Electrochemical Society,1991,138(8):2334-2342.
    [105] Kumar A, Reddy R G. Modeling of polymer electrolyte membrane fuel cell withmetal foam in the flow-field of the bipolar/end plates [J]. Journal of power sources,2003,114(1):54-62.
    [106] Nguyen T V, White R E. A water and heat management model forProton‐Exchange‐Membrane fuel cells [J]. Journal of the Electrochemical Society,1993,140(8):2178-2186.
    [107]秦孔建,郝冬,侯永平,等.车用PEMFC性能衰减影响因素的研究现状与展望[J].汽车工程学报,2013,3(4):242-250.
    [108]侯中军,衣宝廉.质子交换膜燃料电池性能衰减研究进展[J].电源技术,2005,29(7):482-487.
    [109]詹志刚,吕志勇,黄永,等.质子交换膜燃料电池冷启动及性能衰减研究[J].武汉理工大学学报,2011,33(001):151-155.
    [110] Luo Z, Li D, Tang H, et al. Degradation behavior of membrane–electrode-assemblymaterials in10-cell PEMFC stack [J]. International journal of hydrogen energy,2006,31(13):1831-1837.
    [111] Mamat M S, Grigoriev S A, Dzhus K A, et al. The performance and degradation ofPt electrocatalysts on novel carbon carriers for PEMFC applications [J]. InternationalJournal of Hydrogen Energy,2010,35(14):7580-7587.
    [112] Taniguchi A, Akita T, Yasuda K, et al. Analysis of degradation in PEMFC caused bycell reversal during air starvation [J]. International journal of hydrogen energy,2008,33(9):2323-2329.
    [113]余意,王谌,詹志刚,等.质子交换膜燃料电池启停衰减的研究进展[J].电池工业,2010,15(2):120-123.
    [114] Zheng C H, Kim N W, Park Y I, et al. The effect of battery temperature on total fuelconsumption of fuel cell hybrid vehicles [J]. International Journal of Hydrogen Energy,2013,38(13):5192-5200.
    [115] Schofield N, Yap H T, Bingham C M. A H2PEM fuel cell and high energy densebattery hybrid energy source for an urban electric vehicle[C]. Electric Machines andDrives,2005IEEE International Conference on. IEEE,2005:1793-1800.
    [116] Blackwelder M J, Dougal R A. Power coordination in a fuel cell–battery hybridpower source using commercial power controller circuits [J]. Journal of power sources,2004,134(1):139-147.
    [117] Kim M, Sohn Y J, Lee W Y, et al. Fuzzy control based engine sizing optimization fora fuel cell/battery hybrid mini-bus [J]. Journal of Power Sources,2008,178(2):706-710.
    [118] Hosseinzadeh E, Rokni M, Advani S G, et al. Performance simulation and analysis ofa fuel cell/battery hybrid forklift truck [J]. International Journal of Hydrogen Energy,2013,38(11):4241-4249.
    [119] Kisacikoglu M C, Uzunoglu M, Alam M S. Fuzzy logic control of a fuelcell/battery/ultra-capacitor hybrid vehicular power system[C]. Vehicle Power andPropulsion Conference, IEEE,2007:591-596.
    [120] Fadel A, Zhou B. An experimental and analytical comparison study of powermanagement methodologies of fuel cell–battery hybrid vehicles [J]. Journal of PowerSources,2011,196(6):3271-3279.
    [121] Design and optimization of powertrain system for a plug-in parallel diesel hybridelectric bus48-53.
    [122] Zhou Y L. Modeling and simulation of hybrid electric vehicles [D]. University ofVictoria,2007:20-22.
    [123] Kisacikoglu M C, Uzunoglu M, Alam M S. Load sharing using fuzzy logic control ina fuel cell/ultracapacitor hybrid vehicle [J]. International journal of hydrogen energy,2009,34(3):1497-1507.
    [124] Lin W S, Zheng C H. Energy management of a fuel cell/ultracapacitor hybrid powersystem using an adaptive optimal-control method [J]. Journal of Power Sources,2011,196(6):3280-3289.
    [125] Gao W. Performance comparison of a fuel cell-battery hybrid powertrain and a fuelcell-ultracapacitor hybrid powertrain [J]. Vehicular Technology, IEEE Transactions on,2005,54(3):846-855.
    [126] Wavelet-transform-based power management of hybrid vehicles with multipleon-board energy sources including fuel cell, battery and ultracapacitor
    [127] Eren Y, Erdinc O, Gorgun H, et al. A fuzzy logic based supervisory controller for anFC/UC hybrid vehicular power system [J]. International Journal of Hydrogen Energy,2009,34(20):8681-8694.
    [128] Onar O, Khaligh A. Dynamic modeling and control of a cascaded activebattery/ultra-capacitor based vehicular power system[C].Vehicle Power and PropulsionConference, IEEE,2008:1-4.
    [129] Hybrid electric vehicle regenerative-braking using ultracapacitors [D]. University ofVevada,2000:34-40.
    [130] Ouyang M, Xu L, Li J, et al. Performance comparison of two fuel cell hybrid buseswith different powertrain and energy management strategies [J]. Journal of powersources,2006,163(1):467-479.
    [131] A.Brooker,K.Haraldsson,T.Hendricks, V. Johnson, K. Kelly, and B. Kramer,ADVISOR Documentation (Version2002): National Renewable Energy Lab., Apr.30,2002.
    [132] Caux S, Hankache W, Fadel M, et al. On-line fuzzy energy management for hybridfuel cell systems [J]. International Journal of hydrogen energy,2010,35(5):2134-2143.
    [133] Gao D, Jin Z, Lu Q. Energy management strategy based on fuzzy logic for a fuel cellhybrid bus[J]. Journal of Power Sources,2008,185(1):311-317.
    [134] Li X, Xu L, Hua J, et al. Power management strategy for vehicular-applied hybridfuel cell/battery power system [J]. Journal of Power Sources,2009,191(2):542-549.
    [135] Haupt R L, Haupt S E. Practical genetic algorithms [M]. John Wiley&Sons,2004:10-24.
    [136] Mo Z J, Zhu X J, Wei L Y, et al. Parameter optimization for a PEMFC model with ahybrid genetic algorithm [J]. International journal of energy research,2006,30(8):585-597.
    [137] Lincun Fang; Shiyin Qin; et al. Simultaneous Optimization for Hybrid ElectricVehicle Parameters Based on Multi-Objective Genetic Algorithms. Energies,2011,4,532-544.
    [138] Arsalis A, Nielsen M P, K r S K. Modeling and parametric study of a1kWHT-PEMFC-based residential micro-CHP system[J]. International Journal of HydrogenEnergy,2011,36(8):5010-5020.
    [139] Xu J W, Zheng L. Simulation and Analysis of Series Hybrid Electric Vehicle (SHEV)Based on ADVISOR[C], Measuring Technology and Mechatronics Automation(ICMTMA),2010International Conference on. IEEE,2010,3:354-357.
    [140] Same A, Stipe A, Grossman D, et al. A study on optimization of hybrid drive trainusing Advanced Vehicle Simulator (ADVISOR)[J]. Journal of Power Sources,2010,195(19):6954-6963.
    [141] Gao W. Performance comparison of a fuel cell-battery hybrid powertrain and a fuelcell-ultracapacitor hybrid powertrain [J]. Vehicular Technology, IEEE Transactions on,2005,54(3):846-855.
    [142] Maxoulis C N, Tsinoglou D N, Koltsakis G C. Modeling of automotive fuel celloperation in driving cycles [J]. Energy conversion and management,2004,45(4):559-573.
    [143] S rensen B. Assessing current vehicle performance and simulating the performanceof hydrogen and hybrid cars [J]. International journal of hydrogen energy,2007,32(10):1597-1604.
    [144] Boyd B, Hooman K. Air-cooled micro-porous heat exchangers for thermalmanagement of fuel cells [J]. International Communications in Heat and Mass Transfer,2012,39(3):363-367
    [145] Wan Mohamed W A N, Atan R, Ismail A A. Heat transfer simulation of a singlechannel air-cooled Polymer Electrolyte Membrane fuel cell stack with extended coolingsurface[C]. Science and Social Research (CSSR),2010International Conference on.IEEE,2010:91-96.
    [146] Akbari M, Tamayol A, Bahrami M. Thermal Assessment of Convective HeatTransfer in Air-Cooled PEMFC Stacks: An Experimental Study [J]. Energy Procedia,2012,29:1-11.
    [147] K.P. Adzakpa, J. Ramousse, Y. Dubé. Transient air cooling thermal modeling of aPEM fuel cell [J], Journal of Power Sources,2008,179(1),164-176.
    [148] Kim K N, Jeon D H, Nam J H, et al. Numerical study of straight-parallel PEM fuelcells at automotive operation [J]. International Journal of Hydrogen Energy,2012,37(11):9212-9227.
    [149] A. F. Zafar, S. M. H. Hashmi. Numerical Simulation of Proton Exchange MembraneFuel Cell [C]. Proceedings of International Conference on Energy and Sustainability,2013:46-51.
    [150] Kandlikar S G, Lu Z. Thermal management issues in a PEMFC stack–A brief reviewof current status [J]. Applied Thermal Engineering,2009,29(7):1276-1280.
    [151] Harikishan Reddy E, Jayanti S. Thermal management strategies for a1kWe stack ofa high temperature proton exchange membrane fuel cell [J]. Applied ThermalEngineering,2012,48:465-475.
    [152] Ahn J W, Choe S Y. Coolant controls of a PEM fuel cell system [J]. Journal of PowerSources,2008,179(1):252-264.
    [153] Iranzo A, Mu oz M, López E, et al. Experimental fuel cell performance analysisunder different operating conditions and bipolar plate designs [J]. International Journal ofHydrogen Energy,2010,35(20):11437-11447.
    [154] http://fuelcell.com/techsheets/Brochure%20FC05&25.pdf.
    [155] Miao S J C J M, Wu S J. Numerical optimization design of PEM fuel cellperformance applying the Taguchi method[J].World Academy of Science, Engineeringand Technology,2010,(41):249-255
    [156] Iranzo A, Mu oz M, Rosa F, et al. Numerical model for the performance predictionof a PEM fuel cell. Model results and experimental validation [J]. International Journalof Hydrogen Energy,2010,35(20):11533-11550.
    [157] Baca C M, Travis R, Bang M. Three-dimensional, single-phase, non-isothermal CFDmodel of a PEM fuel cell [J]. Journal of Power Sources,2008,178(1):269-281.
    [158] Al-Baghdadi M A R, Al-Janabi H A K. Modeling optimizes PEM fuel cellperformance using three-dimensional multi-phase computational fluid dynamics model[J]. Energy conversion and management,2007,48(12):3102-3119.
    [159] http://www.horizonfuelcell.com/#!h-series-stacks/c52t.
    [160] Dalvi A, Guay M. Control and real-time optimization of an automotive hybrid fuelcell power system [J]. Control Engineering Practice,2009,17(8):924-938.
    [161] Kim M J, Peng H. Power management and design optimization of fuel cell/batteryhybrid vehicles [J]. Journal of Power Sources,2007,165(2):819-832.
    [162] Wang Y X, Xuan D J, Kim Y B. Design and experimental implementation of timedelay control for air supply in a polymer electrolyte membrane fuel cell system [J].International Journal of Hydrogen Energy,2013,38(30):13381-13392.
    [163] Xiong L, Sun Z, Wei X. Modeling and control simulation for fuel cell air supplysystem[C]. Vehicle Power and Propulsion Conference,2008. IEEE,2008:1-4.
    [164] Tang Y, Yuan W, Pan M, et al. Experimental investigation of dynamic performanceand transient responses of a kW-class PEM fuel cell stack under various load changes [J].Applied Energy,2010,87(4):1410-1417.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700