用户名: 密码: 验证码:
卫星集群导航与轨道控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着新型航天任务的发展,卫星集群技术成为国际航天领域研究的一个重要方向。卫星集群是指多颗卫星保持在较近空间区域内运行,借助于星间通信链路实现信息交互和任务协作,以完成在轨任务的卫星系统。与传统卫星编队飞行技术相比,卫星集群技术具有特殊性:1)卫星集群不依赖星间相对测量信息,运行时成员卫星长期保持在一定的空间范围内,但并未规定精确的星间相位和距离联系,不必保持严格的空间构型;2)需具备长期自主运行能力,如长期自主导航、长期运行轨道设计、长期自主轨道保持与碰撞规避等。针对上述特殊性,本学文论文着重围绕卫星集群的长期自主导航、集群初始轨道建立和在轨安全运行策略展开深入研究,论文主要内容由以下部分组成:
     针对卫星集群成员卫星采用平均轨道根数作为导航参数的自主导航问题,研究了多摄动影响下平均轨道根数的动力学模型。分析并给出适用于平均轨道根数建模的坐标系;推导瞬时轨道根数的数学描述,并在此基础上定义了文中使用的平均轨道根数;考虑近地空间任务的主要影响因素,推导地球非球形摄动带谐项、田谐项和大气阻力摄动对平均轨道根数变化率的影响,并结合轨道根数短周期项完成平均轨道根数到瞬时轨道根数的映射关系。
     针对卫星集群成员卫星在轨长期自主精确估计平均轨道根数的问题,提出基于滤波的平均轨道根数在轨估计方法。首先,以平均轨道根数作为状态量并结合平均轨道根数变化率模型和高斯型摄动运动方程建立状态方程,以瞬时轨道根数作为量测值建立量测方程;其次,提出采用EKF和UKF滤波算法估计平均轨道根数,其中,为提高UKF滤波稳定性,并在不损失估计精度的条件下尽可能降低计算量,将球形单边采样方法应用于平方根形式的UKF滤波;最后,在无轨道控制、脉冲机动控制、连续推力控制三种工况下仿真验证了平均轨道根数滤波估计算法的有效性。
     针对卫星集群星间相对距离长期有界的特殊要求,提出了入轨后初始轨道的建立方法。考虑非球形摄动带谐项和球形大气阻力摄动的影响,基于平均轨道根数提出了卫星集群星间相对距离有界的初始轨道约束条件;为建立卫星集群初始轨道,采用常值连续推力器,从燃料平衡方面,提出了基于环形控制策略的分布式轨道控制方法,对稳定性进行了详细的数学证明,并针对近圆轨道情况给出了简化的控制器;从燃料最优方面,提出了基于改进高斯伪谱法的最优轨道控制方法,将终端状态约束改进为线性逼近形式,并采用闭环方式改进误差因素对控制结果的影响;最后仿真验证了初始轨道条件和两类入轨控制算法的有效性。
     针对在轨运行期间的安全保障问题,提出了卫星集群轨道保持方法和碰撞规避策略。当星间相对距离不能满足最远相对距离或最近相对距离约束时,利用星间相对运动关系、星间轨道根数关系,以及最远相对距离和最近相对距离约束,提出了卫星集群轨道保持策略和轨道保持算法;为保证相对距离较近时的运行安全,以碰撞预警级别作为判断是否进行规避的条件,给出了碰撞概率计算方法、碰撞发生时间区间近似计算方法,并分别提出了基于碰撞概率和基于相对距离的避让机动策略;考虑采用常值连续推力的情况提出了避让机动时间的约束;推导了碰撞规避后进行轨道控制的目标条件计算方法;最后,仿真验证了轨道保持和碰撞规避方法的有效性。
With the rapid development of the aerospace missions, the satellite cluster flight has become an important focus of the aerospace field all over the world. Satellite cluster is described as a kind of satellite system in which multiple satellites remain in close spatial region, satellite communication links are utilized to achieve information exchange and task collaboration. Compared with traditional satellite formation flying technology, satellite cluster has the particularities:1) satellite cluster does not depend on the relative measurement information, all the members remain in a certain region for long time, but does not provide a precise inter-satellite phase and distance contact, and do not maintain a strict configuration;2) the long-term autonomous abilities are needed, such as autonomous navigation, long-term orbit designed and establishment and the strategy for orbit-keeping and collision avoidance and so on. Based on these particularities, this dissertation focuses on the long term autonomous navigation, the establishment of the cluster flight and the strategy of cluster flight safety. The major contents of this dissertation are consisted of the following parts.
     Firstly, the formulations of the mean orbital elements are derived. The coordinate frames are analyzed, the proper frame for this dissertation is selected. The mathematical description of the osculating orbital elements is presented. The mean orbital elements are defined from the osculating orbital elements. A semi analytical dynamical model of mean orbital elements that includes zonal/tesseral/sectorial harmonics and drag is formulated to capture the daily, long-periodic, and secular evolution of the mean orbital elements.
     Secondly, a new approach for onboard estimation of mean orbital elements is studied based on recursive filter for long-term autonomous navigation. The filter model of mean orbital elements is formulated. The Extend Kalman Filter (EKF) and Unscented Kalman Filter (UKF) are served as estimator The spherical simplex sigma-point selection and the square root form of UKF are fused for less computational cost and better numerical stability on-board A kind of direct computation method is presented for comparisons The effectiveness and robustness of the filter-based mean orbital elements estimation approach is validated by numerical simulations of three conditions, including without orbit maneuver, with impulsive orbit control and with continuous orbit control. And the accuracy is compared by the simulations.
     Thirdly, the initial orbit establishment approaches are studied for distance bounded cluster flight. According to the special requirement of cluster flight mission, the distance-bounded natural orbit using mean orbital elements is derived under the perturbation of zonal harmonics and spherical drag. For fuel balance, a kind of distribute orbit controller is offered to establish cluster initial orbit, using cyclic strategy and constant continuous thrusters, and the stability of the orbit control law is proven. The controller is simplified for the near circular orbit mission. For fuel optimal, a kind of Improved Gauss Pseudospectral Method (IGPM) is offered. The nonlinear state integral constraint is transformed into the equivalent linear form for faster convergence speed. The closed-loop control strategy of IGPM is used to decrease the effects of undesired errors and uncertainties. The effectiveness of the initial orbit constraints and two kinds of orbit establishment approaches are validated by numerical simulations.
     Finally, the cluster flight and collision avoidance strategies are studied to fulfill the safety requirements. A cluster-keeping strategy and cluster-keeping controller is developed for the relative distance of any pair of cluster members reaches the upper or lower bound using the relationships of relative distance, orbital elements and distant-bounded constraints. To ensure the safety, the collision warning level is used to evaluate the collision risk. The collision probability calculation methods are given. The prediction method of the time duration for collision is derived. Two collision avoidance maneuver strategies are given based on collision probability and relative distance, respectively. The thruster working duration constraint is offered. The desired conditions for postmaneuver orbit are designed. The effectiveness of strategies is validated by numerical simulation.
引文
[1]林兴来,张小琳.星群、星座与编队飞行的概念辨析[J].航天器工程,2012,21(5):97-102.
    [2]董云峰,王兴龙.卫星集群概念研究[J].航天器工程,2012,21(4):83-88.
    [3] Brown O, Eremenko P. Fractionated Space Architectures: A Vision forResponsive Space[C]. The4th Responsive Space Conference, LA, CA, USA,2006:24-27.
    [4] Brown O, Eremenko P. Fractionated Space Architectures: Tracing the Path toReality[C]. USU/AIAA the23rd Annual Conference on Small Satellites,Logan, Utah, USA, Aug.10-13,2009.
    [5] Guo J, Maessen D C, Gill E. Fracntionated Spacecraft: the New Sprout inDistributed Space System[C]. The60th International Astronautical Congress,Daejeon, Korea, Oct.12-16,2009.
    [6] Mathieu C, Weigel A L. Assessing the Fractionated Spacecraft Concept[C].AIAA Space Conference&Exposition, CA, USA, Sep.9-21,2006.
    [7] Mathieu C, Weigel A L. Assessing the Flexibility Provided by FractionatedSpacecraft[C]. AIAA Space Conference&Exposition, California, USA, Aug.30-Sep.1,2006.
    [8]苟亮,魏迎军,申振等.分离模块航天器研究综述[J].飞行测控学报,2012,21(2):7-12.
    [9] Ardaens J S, Fischer D. TanDEM-X Autonomous Formation Flying System:Flight Results[J]. Journal of Mechanics Engineering and Automation,2012,2(5):332-340.
    [10] Truszkowski W, Hallock H, Rouff C, et al. Autonomous and AutonomicSystems: With Applications to NASA Intelligent Spacecraft Operations andExploration Systems[M]. Springer,2009:3-23.
    [11]林兴来.分布式空间系统和航天器编队飞行辨析[J].航天器工程,2008,17(4):24-29.
    [12]刘美生.全球定位系统及其应用综述——GPS[J].中国测试技术,2006,32(6):5-11.
    [13]王琦.全球导航卫星系统综述[J].卫星与网络,2011(5):36-42.
    [14]张孟阳.北斗卫星导航系统应用发展概述[J].国际太空,2009(11):27-31.
    [15] Colavita M M, McGuire J P, Bartman R K. Separated SpacecraftInterferometer Concept for the New Millennium Program[C]. Proceedings ofSPIE,1996,2807:51-58.
    [16] Robertson A, Inalhan G, How J P. Formation Control Strategies for aSeparated Spacecraft Interferometer[C]. Proceedings of the AmericanControl Conference, CA, USA, June,1999:4142-4147.
    [17] Guinn J R. Earth Oberving-1Preliminary Technology and Science ValidationReport: JPL Enhanced Formation Flying[R]. Jet Propulsion Laboratory,California Institute of Technology, Pasadena, California, USA,2002:4-6.
    [18] Ruilier C, Krawczyk R, Sghedoni M, et al. System Assessment Study of theESA Darwin Mission: Concepts Trade-Off and First Iteration Design onNovel Emma Arrangement[C]. Proceedings of SPIE,2007,6693:1-10.
    [19] Steyskal H, Schindler J K, Franchi P, et al. Pattern Synthesis for Techsat21-A Distributed Space-Based Radar System[C]. Proceedings of the IEEEAerospace Conference, Big Sky, USA,2001:725-732.
    [20]胡敏,曾国强.分离模块集群航天器发展概况[J].装备指挥技术学院学报,2011,4(22):61-66.
    [21] Izzo D, Pettazzi L, Ayre M. Mission Concept for Autonomous on OrbitAssembly of a Large Reflector in Space[C]. The56th InternationalAstronautical Congress.2005,8:4966-4974.
    [22] Ayre M, Izzo D, Pettazzi L. Self Assembly in Space using Behaviour BasedIntelligent Components[J]. Towards Autonomous Robotic Systems,2005.
    [23] Gurfil P, Herscovitz J, Pariente M. The SAMSON Project-Cluster flight andGeolocation with Three Autonomous Nano-Satellites[C]. The26thAIAA/USU Conference on Small Satellites, Salt Lake City, UT, USA, Aug.2012.
    [24]朱毅麟.新概念航天器——模块化分离式卫星[J].中国航天,2008,8:37-38.
    [25] Hinchey M G, Sterritt R, Rouff C. Swarms and Swarm Intelligence[J].Computer,2007,40(4):111-113.
    [26] Truszkowski W, Hinchey M, Rash J, et al. NASA's Swarm Missions: TheChallenge of Building Autonomous Software[J]. IT professional,2004,6(5):47-52.
    [27] Truszkowski W F, Hinchey M G, Rash J L, et al. Autonomous and AutonomicSystems: A Paradigm for Future Space Exploration Missions[J]. IEEETransactions on Systems, Man, and Cybernetics, Part C: Applications andReviews,2006,36(3):279-291.
    [28] Bodin P, Noteborn R, Larsson R, et al. The Prisma Formation FlyingDemonstrator: Overview and Conclusions from the Nominal Mission[J].Advances in the Astronautical Sciences,2012,144:441-460.
    [29] Persson S, Bodin P, Gill E, et al. PRISMA-An Autonomous FormationFlying Mission[C]. ESA Small Satellite Systems and Services Symposium(4S), Sardinia, Italy,2006:25-29.
    [30] Rajan R T, Engelen S, Bentum M, et al. Orbiting Low Frequency Array forRadio Astronomy[C]. IEEE Aerospace Conference,2011:1-11.
    [31] Dekens E, Engelen S, Noomen R. A Satellite Swarm for Radio Astronomy[J].Acta Astronautica,2014.
    [32] Schetter T, Campbell M, Surka D. Multiple Agent-Based Autonomy forSatellite Constellations[J]. Artificial Intelligence,2003,145(1):147-180.
    [33] Nayak P, Kurien J, Dorais G, et al. Validating the DS-1Remote AgentExperiment[C]. Artificial Intelligence, Robotics and Automation in Space,1999,440:349-356.
    [34] Sterritt R, Hinchey M. SPAACE IV: Self-Properties for an Autonomous&Autonomic Computing Environment[C]. The7th IEEE InternationalConference and Workshops on Engineering of Autonomic and AutonomousSystems,2010:119-125.
    [35] Sterritt R, Chung S. Personal Autonomic Computing Self-Healing Tool[C].Proceedings of the11th IEEE International Conference and Workshop on theEngineering of Computer-Based Systems,2004:513-520.
    [36] Sterritt R. Autonomic Computing: the Natural Fusion of Soft Computing andHard Computing[C]. IEEE International Conference on Systems, Man andCybernetics,2003,5:4754-4759.
    [37] Burgon R, Roberts P, Roberts J, et al. Science Operations PlanningOptimization for Spacecraft Formation Flying Maneuvers[J]. Journal ofSpacecraft and Rockets,2009,46(3):634-644.
    [38] Smith S, Zimmerman T. Planning Tactics within Scheduling Problems[C].Proceedings of ICAPS Workshop on Integrating Planning Into Scheduling,2004:83-90.
    [39]陈菲,路长厚等.微型卫星集群系统协同任务下的目标分配研究.宇航学报,2010,31(5):1374-1380.
    [40] Curtis S A, Truszkowski W, Rilee M L, et al. ANTS for Human Explorationand Development of Space[C]. Proceedings of IEEE Aerospace Conference,2003,1:1-261.
    [41]刘豪,梁巍.美国国防高级研究计划局F6项目发展研究[J].航天器工程,2010,19(2):92-98.
    [42]小卫星设计特点之一——提高卫星的自主能力[J].国际太空,1997,(6):22-25.
    [43] Yoon J C, Lee B S, Choi K H. Spacecraft Orbit Determination using GPSNavigation Solutions[J]. Aerospace Science and Technology,2000,4(3):215-221.
    [44]潘科炎.航天器的自主导航技术[J].航天控制,1994(2):18-27.
    [45] Enderle W, Feng Y, Zhou N. Orbit Determination of FedSat Based on GPSReceiver Position Solutions[C]. The6th International Symposium of SatelliteNavigation Technology and Applications, Melbourne, Australia, July,22-25,2003.
    [46] Anne C L, Dominic L, David F, et al. Autonomous Navigation of High-EarthSatellites using Celestial Objects and Doppler Measurements. AIAA/AASAstrodynamics Specialist Conference, Denver, CO, USA, Aug.14-17,2000.
    [47] Ning X, Fang J. An Autonomous Celestial Navigation Method for LEOSatellite based on Unscented Kalman Filter and Information Fusion[J].Aerospace Science and Technology,2007,11(2):222-228.
    [48] Ning X, Fang J. Spacecraft Autonomous Navigation using Unscented ParticleFilter-Based Celestial/Doppler Information Fusion[J]. Measurement Scienceand Technology,2008,19(9):5203.
    [49] Li L L, Sun H X. A Method of Astronomical Autonomous Orbit and AttitudeDeterminations for Satellites[J]. Chinese Astronomy and Astrophysics,2003,27(4):481-489.
    [50] Gounley R, White R, Gai E. Autonomous Satellite Navigation by StellarRefraction[J]. Journal of Guidance, Control, and Dynamics,1984,7(2):129-134.
    [51]周凤岐,赵黎平,周军.基于星光大气折射的卫星自主轨道确定[J].宇航学报,2002,23(4):20-23.
    [52]李琳琳,孙辉先.基于星敏感器的星光折射卫星自主导航方法研究[J].系统工程与电子技术,2004,26(3):353-357.
    [53] Chester T J, Butman S A. Navigation using X-Ray Pulsars[J]. Jet PropulsionLaboratory, Pasadena, CA, NASA Tech. Rep.81N27129,1981:22-25
    [54] Wood K S. Navigation Studies Utilizing the NRL-801Experiment and theARGOS Satellite[J]. Small Satellite Technology and Applications III,1993:105-116.
    [55] Wood K S, Determan J R, Ray P S, et al. Using the Unconventional StellarAspect (USA) Experiment on ARGOS to Determine Atmospheric Parametersby X-Ray Occultation[C]. International Symposium on Optical Science andTechnology. International Society for Optics and Photonics,2002:258-265.
    [56] Wood K S, Fritz G G, Hertz P L, et al. USA Experiment on the ARGOSSatellite: a Low-Cost Instrument for Timing X-Ray Binaries[C]. Society ofPhoto-Optical Instrumentation Engineers (SPIE) Conference Series,1994,2280:19-30.
    [57] Pines D J. X-Ray Source-Based Navigation for Autonomous PositionDetermination Program[J]. DARPA/TTO,2004:1-15.
    [58] Sheikh S I, Hellings R W, Matzner R A. High-Order Pulsar Timing forNavigation[C]. Proceedings of the63rd Annual Meeting of the Institute ofNavigation,2001:432-443.
    [59] Sheikh S I, Pines D J, Ray P S, et al. Spacecraft Navigation using X-RayPulsars[J]. Journal of Guidance, Control, and Dynamics,2006,29(1):49-63.
    [60] Sheikh S I, Pines D J. Recursive Estimation of Spacecraft Position UsingX-Ray Pulsar Time of Arrival Measurements[C]. Proceedings of the61stAnnual Meeting of the Institute of Navigation,2001:464-475.
    [61] Shorshi G, Bar-Itzhack I Y. Satellite Autonomous Navigation and OrbitDetermination using Magnetometers[C]. Proceedings of the31st IEEEConference on Decision and Control,1992:542-548.
    [62] Psiaki M L. Autonomous Low-Earth-Orbit Determination fromMagnetometer and Sun Sensor Data[J]. Journal of Guidance, Control, andDynamics,1999,22(2):296-304.
    [63] Cheon Y J. Unscented Filtering Approach to Magnetometer-Only OrbitDetermination[C]. International Conference on Control, Automation andSystems, Gyeongju, Korea. Oct.22-25,2003:2331-2334.
    [64] Roh K M, Park S Y, Choi K H. Orbit Determination Using the GeomagneticField Measurement via the Unscented Kalman Filter[J]. Journal of Spacecraftand Rockets,2007,44(1):246-253.
    [65] Basil H, Ananthasayanam M R, Puri S N. Adaptive Kalman Filter Tuning inIntegration of Low-Cost MEMS-INS/GPS[C]. AIAA Guidance, Navigation,and Control Conference and Exhibit, Providence, Rhode Island,2004.
    [66] Ali J, Jiancheng F. SINS/ANS/GPS Integration Using Federated KalmanFilter Based on Optimized Information-Sharing Coefficients[C]. AIAAGuidance, Navigation, and Control Conference and Exhibit,2005,6452:1-13.
    [67] Adams J, Robertson A, Zimmerman K, et al. Technologies for SpacecraftFormation Flying[C]. Proceedings of the9th International Technical Meetingof the Satellite Division of the Institute of Navigation (ION GPS1996),1996,9:1321-1330.
    [68] Olsen E A, Stadter P A, Asher M S. Long-Baseline Differential GPS BasedRelative Navigation for Spacecraft with Crosslink Ranging Measurements[C].Proceedings of the13th International Technical Meeting of the SatelliteDivision of the Institute of Navigation (ION GPS2000),2000:1612-1621.
    [69] Busse F D, How J P, Simpson J. Demonstration of Adaptive ExtendedKalman Filter for Low Earth Orbit Formation Estimation Using CDGPS[C].Proceedings of the15th International Technical Meeting of the SatelliteDivision of the Institute of Navigation (ION GPS2002),2002:2047-2058.
    [70] Kroes R, Montenbruck O, Bertiger W, et al. Precise GRACE BaselineDetermination using GPS[J]. GPS Solutions,2005,9(1):21-31.
    [71] Kroes R, Montenbruck O. Spacecraft Formation Flying-Relative Positioningusing Dual Frequency Carrier Phase[J]. GPS World,2004,(7):37-42
    [72] Aung M, Purcell G H, Tien J Y, et al. Autonomous Formation-Flying Sensorfor the StarLight Mission[R]. Interplanetary Network Progress Report,2002,152:1-15.
    [73] Purcell G, Kuang D, Lichten S, et al. Autonomous Formation Flyer (AFF)Sensor Technology Development[R]. Telecommunications and MissionOperations Progress Report,1998,42-134
    [74]易东云,朱炬波,刘洋等.编队飞行环境与星间基线测量[C].小卫星编队飞行空间状态测量技术研讨会论文集,长沙,2005:9-23.
    [75]谭久彬,王元钦,刘俭等.小卫星分布式雷达兴建极限激光测量系统[C].小卫星编队飞行空间状态测量技术研讨会论文集,长沙,2005:61-68.
    [76] Alonso R, Crassidis J L, Junkins J L. Vision-Based Relative Navigation forFormation Flying of Spacecraft[C]. AIAA Guidance, Navigation, and ControlConference and Exhibit, Denver, CO.2000.
    [77] Crassidis J L, Alonso R, Junkins J L. Optimal Attitude and PositionDetermination from Line-of-sight Measurements[J]. Journal of AstronauticalSciences,2000,48(2):391-408.
    [78]张世杰.基于单目是觉得航天器相对导航理论与算法研究[D].哈尔滨工业大学博士学位论文,2005:15-16
    [79] Song T L, Speyer J L. The Modified Gain Extended Kalman Filter andParameter Identification in Linear Systems[J]. Automatica,1986,2(1):59-75.
    [80] Sasiadek J, Wang Q, Johnson R, et al. UAV Navigation Based on ParallelExtended Kalman Filter[C]. AIAA Guidance, Navigation and ControlConference, Denver, Colorado, USA,2000.
    [81] Chao C T, Teng C C. A Fuzzy Neural Network Based Extended KalmanFilter[J]. International Journal of Systems Science,1996,27(3):333-339.
    [82] Algrain M C, Saniie J. Interlaced Kalman Filtering of3D Angular MotionBased on Euler's Nonlinear Equations[J]. IEEE Transactions on Aerospaceand Electronic Systems,1994,30(1):175-185.
    [83]张友民,戴冠中,张洪才.卡尔曼滤波计算方法研究进展[J].控制理论与应用,1995,12(5):529-538.
    [84] Julier S J. The Scaled Unscented Transformation[C]. Proceedings of theAmerican Control Conference, Piscataway, NJ, USA,2002,6:4555-4559.
    [85] Arulampalam M S, Maskell S, Gordon N, et al. A Tutorial on Particle Filtersfor Online Nonlinear/Non-Gaussian Bayesian Tracking[J]. IEEETransactions on Signal Processing,2002,50(2):174-188.
    [86] Van Der Merwe, R, and Wan, E. The Square-Root Unscented Kalman Filterfor State and Parameter-Estimation[C]. IEEE International Conference onAcoustics, Speech, and Signal Processing, Piscataway, NJ, USA,2001,6:3461-3464.
    [87]邓泓.拦截卫星末段拦截轨道的控制与规划方法研究[D].哈尔滨工业大学博士学位论文,2012,11-13.
    [88] He S, Liu F. Robust Peak-to-Peak Filtering for Markov Jump Systems[J].Signal Processing,2010,90(2):513-522.
    [89] Li Y, Liang Y, Luo X. Delay-Dependent L1Filtering for LPV Systems withParameter-Varying Delays[J]. Journal of Dynamic Systems, Measurement,and Control,2011,133:1-4.
    [90] Mahmoud M S. Resilient L2-L∞Filtering of Polytopic Systems with StateDelays[J]. IET Control Theory and Application,2007,1(1):141-154.
    [91] Li L, Jia Y, Du J, et al. Robust Energy-to-Peak Filtering for UncertainSingular Systems with Time-Varying Delay[C]. Control and DecisionConference, China,2008:4161-4166.
    [92] Karlgaard C D, Schaub H. Huber-Based Divided Difference Filtering[J].Journal of Guidance, Control, and Dynamics,2007,30(3):885-891.
    [93]王小刚,路菲,崔乃刚. Huber-based滤波及其在相对导航问题中的应用[J].控制与决策,2010,25(2):287-290.
    [94] Basin M, Shi P, Calderon-Alvarez D. Central Suboptimal H∞Filter Designfor Nonlinear Polynomial Systems[J]. International Journal of AdaptiveControl and Signal Processing,2009,23(10):926-939.
    [95] Lee C M, Fan H F. Robust H Filter Design for Singular Systems withNetworked Missing Measurements[C]. Proceedings of the IEEE InternationalConference on Networking, Sensing and Control, Okayama, Japan,2009:565-569.
    [96] Wang J, Nakasuka S. Cluster Flight Orbit Design Method for FractionatedSpacecraft[J]. Aircraft Engineering and Aerospace Technology,2012,84(5):330-343.
    [97] Sabol C, Burns R, McLaughlin C A. Satellite Formation Flying Design andEvolution[J]. Journal of Spacecraft and Rockets,2001,38(2):270-278.
    [98]高云峰,李俊峰.卫星编队飞行中的队形设计研究[J].工程力学,2003,20(4):128-131.
    [99]李响,李俊峰,高云峰.卫星编队飞行中相对轨道构型研究[J].清华大学学报(自然科学版),2002,42(11):1496-1499.
    [100]张玉坤.卫星编队飞行的动力学与控制技术研究[D].国防科技大学博士学位论文,2002:10-48.
    [101] Zhang H, Sun L. Spacecraft Formation Flying in Eccentric Orbits[C].Proceedings of AIAA Guidance, Navigation and Control Conference, Austin,Texas, USA,2003:5589.
    [102]张晓敏.航天器相对轨道动力学与控制研究[D].北京航空航天大学博士学位论文,2000:15-40.
    [103]安雪滢.椭圆轨道航天器编队飞行动力学及应用研究[D].国防科技大学博士学位论文,2006:32-46.
    [104] Vadali S R, Vaddi S S, Alfriend K T. A New Concept for ControllingFormation Flying Satellite Constellations[C]. Proceeding of the11th AnnualAAS/AIAA Space Flight Mechanics Meeting, Santa Barbara, CA, USA, Feb.11-15,2001,2:1631-1647.
    [105] Vaddi S S, Vadali S R, Alfriend K T. Formation Flying: AccommodatingNonlinearity and Eccentricity Perturbations[J]. Journal of Guidance, Control,and Dynamics,2003,26(2):214-223.
    [106] Schaub H, Alfriend K T. J2Invariant Relative Orbits for SpacecraftFormations[J]. Celestial Mechanics and Dynamical Astronomy,2001,79(2):77-95.
    [107]张锦绣,曹喜滨,林晓辉.基于平均轨道要素的干涉SAR构型设计方法研究[J].宇航学报,2006,27(4):670-675.
    [108]朱仁章.航天器交会对接技术[M].北京:国防工业出版社,2007:64-242.
    [109] Vadali S R, Vaddi S S. Orbit Establishment for Formation Flying ofSatellites[C]. Proceedings of the AAS/AIAA Space Flight MechanicsMeeting, Clearwater, FL, USA, Jan.23-26,2000,105(1):181-194.
    [110]孟云鹤.近地轨道航天器编队飞行控制与应用研究[D].国防科技大学博士学文论文,2006:110-120.
    [111]佘志坤,薛白,丛源良等.最优双冲量交会问题的数学建模与数值求解[J].宇航学报.2010,31(1):155-161.
    [112] Luo Y Z, Lei Y J, Tang G J. Optimal Multi-Objective Nonlinear ImpulsiveRendezvous[J]. Journal of Guidance, Control, and Dynamics,2007,30(4):994-1002.
    [113] Williams J L, Lightsey E G. Optimal Impulsive Maneuvering within aConfined Hover Region[C]. Proceedings of American Institute ofAeronautics&Astronautics Guidance, Navigation, and Control Conferenceand Exhibit,2008:1-12.
    [114] Jifuku R, Ichikawa A, Bando M. Optimal Pulse Strategies for Relative OrbitTransfer Along a Circular Orbit[J]. Journal of Guidance, Control, andDynamics,2011,34(5):1329-1341.
    [115] Schaub H, Alfriend K T. Impulsive Feedback Control to Establish SpecificMean Orbit Elements of Spacecraft Formations[J]. Journal of Guidance,Control, and Dynamics,2001,24(4):739-745.
    [116] Liu H, Li J, Hexi B. Sliding Mode Control for Low-Thrust Earth-OrbitingSpacecraft Formation Maneuvering[J]. Aerospace Science and Technology,2006,10(7):636-643.
    [117] McConaghy T T, Longuski J M. Parameterization Effects on ConvergenceWhen Optimizing a Low-Thrust Trajectory with Gravity Assists[C].AIAA/AAS Astrodynamics Specialist Conference and Exhibit,2004,5403:16-19.
    [118]涂良辉,袁建平,罗建军.基于伪光谱方法的有限推力轨道转移优化设计[J].宇航学报,2008,29(4):1189-1193.
    [119] Lu S, Xu S. Adaptive Control for Autonomous Rendezvous of Spacecraft onElliptical Orbit[J]. Acta Mechanica Sinica,2009,25(4):539-545.
    [120] Singla P, Subbarao K, Junkins J L. Adaptive Output Feedback Control forSpacecraft Rendezvous and Docking under Measurement Uncertainty[J].Journal of Guidance, Control, and Dynamics,2006,29(4):892-902.
    [121] Gao H, Yang X, Shi P. Multi-Objective Robust Control of SpacecraftRendezvous[J]. IEEE Transactions on Control Systems Technology,2009,17(4):794-802.
    [122] Clohessy W H, Wiltshire R S. Terminal Guidance System for SatelliteRendezvous[J]. Journal of the Aerospace Sciences,1960,27(9):653-658.
    [123] Tschauner J, Hempel P. Rendezvous zu einem in Elliptischer BahnUmlaufenden Ziel[J]. Astronautica Acta,1965,11(2):104-109.
    [124] Bando M, Ichikawa A. Periodic Orbits of Nonlinear Relative Dynamics alongan Eccentric Orbit[J]. Journal of Guidance, Control, and Dynamics,2010,33(2):385-395.
    [125] Vigano L, Lovera M, Drai R. An LTP/LPV Approach to Orbit Control ofSpacecraft on Elliptical Orbits[C]. World Congress.2008,17(1):2105-2110.
    [126] Irvin D J, Cobb R G, Lovell T A. Fuel-Optimal Maneuvers for ConstrainedRelative Satellite Orbits[J]. Journal of Guidance, Control, and Dynamics,2009,32(3):960-973.
    [127] Yoon H, Agrawal B N. Novel Expressions of Equations of Relative Motionand Control in Keplerian Orbits[J]. Journal of Guidance, Control, andDynamics,2009,32(2):664-669.
    [128] Schaub H. Incorporating Secular Drifts into the Orbit Element DifferenceDescription of Relative Orbits[J]. Advances in the Astronautical Sciences,2003,114:227-246.
    [129] Vadali S R. Model for Linearized Satellite Relative Motion about aJ2-Perturbed Mean Circular Orbit[J]. Journal of Guidance, Control, andDynamics,2009,32(5):1687-1691.
    [130] Naasz B J. Classical Element Feedback Control for Spacecraft OrbitalManeuvers[D]. Virginia Polytechnic Institute and State University,2002:20-85.
    [131] Hamel J F, Lafontaine J D. Fuel-Equivalent Relative Orbit Element Space[J].Journal of Guidance, Control, and Dynamics,2008,31(1):238-244.
    [132] Ardaens J S, D'Amico S. Spaceborne Autonomous Relative Control Systemfor Dual Satellite Formations[J]. Journal of Guidance, Control, andDynamics,2009,32(6):1859-1870.
    [133] Zeng G, Hu M. Finite-Time Control for Electromagnetic SatelliteFormations[J]. Acta Astronautica,2012,74:120-130.
    [134] Akella M R, Alfriend K T. Probability of Collision between Space Objects[J].Journal of Guidance, Control, and Dynamics,2000,23(5):769-772.
    [135] Patera R P. Satellite Collision Probability for Nonlinear Relative Motion[J].Journal of Guidance, Control, and Dynamics,2003,26(5):728-733.
    [136] Armellin R, Massari M, Finzi A E. Optimal Formation FlyingReconfiguration and Station Keeping Maneuvers using Low ThrustPropulsion[C].18th International Symposium on Space Flight Dynamics,Munich, Germany, Oct.,2004,548:429.
    [137] Wang S, Schaub H. Spacecraft Collision Avoidance using Coulomb Forceswith Separation Distance and Rate Feedback[J]. Journal of Guidance,Control, and Dynamics,2008,31(3):740-750.
    [138] Starin S R, Yedavalli R K, Sparks A G. Spacecraft Formation FlyingManeuvers using Linear Quadratic Regulation with no Radial Axis Inputs[C].Proceedings of the AIAA Guidance, Navigation and Control Conference andExhibit, Montreal, Canada, Aug.,2001:6-9.
    [139] D'Amico S, Montenbruck O. Proximity Operations of Formation-FlyingSpacecraft using an Eccentricity/Inclination Vector Separation[J]. Journal ofGuidance, Control, and Dynamics,2006,29(3):554-563.
    [140] Vaddi S S, Alfriend K T, Vadali S R, et al. Formation Establishment andReconfiguration using Impulsive Control[J]. Journal of Guidance, Control,and Dynamics,2005,28(2):262-268.
    [141] Gurfil P, Mishne D. Cyclic Spacecraft Formations: Relative Motion Controlusing Line-of-Sight Measurements Only[J]. Journal of Guidance, Control,and Dynamics,2007,30(1):214-226.
    [142] Williams T, Register J, Slater G. Formation-Keeping Maneuver Dispersionsand Safe Mode Insertion for Satellite Formation Flight[C]. AIAA/AASAstrodynamics Specialists Conference and Exhibit,2004:16-19.
    [143] Brouwer D. Solution of the Problem of Artificial Satellite Theory WithoutDrag[J]. Astronomical Journal,1959,64:378-396.
    [144] Brouwer D, Hori G. I. Theoretical Evaluation of Atmospheric Drag Effects inthe Motion of an Artificial Satellite[J]. Astronomical Journal,1961,64:193-225.
    [145] Liu J J F. Alford R L. Semianalytic Theory for a Close-Earth ArtificialSatellite[J]. Journal of Guidance, Control, and Dynamics,1980,3(4):304-311.
    [146] Liu J J F. Advances in Orbit Theory for an Artificial Satellite with Drag[J].Journal of Astronautical Sciences,1983,31(2):165-188.
    [147] Liu J J F, Alford R L. A Semi-Analytic Theory for the Motion of aClose-Earth Artificial Satellite with Drag[C]. AIAA Aerospace SciencesMeeting,1979,1.
    [148] Vallado D A, Crawford P. SGP4Orbit Determination[C]. AIAA/AASAstrodynamics Specialist Conference and Exhibit, AIAA,2008:6770.
    [149] Zeis E, Cefola P. Computerized Algebraic Utilities for the Construction ofNonsingular Satellite Theories[J]. Journal of Guidance, Control, andDynamics,1980,3(1):48-54.
    [150] Cefola P, McClain W, Early L. A Semianalytical Satellite Theory for WeakTime-Dependent Perturbations[C]. Flight Mechanics/Estimation TheorySymposium, MD: NASA Goddard Spaceflight Center,1980,1:67-91.
    [151] Seidelmann P K. Explanatory Supplement to the Astronomical Almanac[M].University Science Books, Herndon, VA,1992,3:167-187.
    [152] Bate R R, Mueller D D, White J E. Fundamentals of Astrodynamics[M].Courier Dover Publications,1971:51-149.
    [153] Battin R H. An Introduction to the Mathematics and Methods ofAstrodynamics[M]. AIAA,1999,10:471-508.
    [154] Newman W I, Efroimsky M. The Method of Variation of Constants andMultiple Time Scales in Orbital Mechanics[J]. Chaos: An InterdisciplinaryJournal of Nonlinear Science,2003,13(2):476-485.
    [155] Gurfil P. Effect of Equinoctial Precession on Geosynchronous EarthSatellites[J]. Journal of Guidance, Control, and Dynamics,2007,30(1):237-247.
    [156] Zwillinger D, Jeffrey A. Table of Integrals, Series, and Products[M].Academic Press,2007:916-919.
    [157] Lane M H. The Development of an Artificial Satellite Theory Using aPower-Law Atmospheric Density Representation[C]. AIAA SecondAerospace Sciences Meeting, Jan.1965, AIAA Paper65-35.
    [158] Lane M H. On the Representation of Air Density in Satellite DecelerationEquations by Power Functions with Integral Exponents[R]. DefenseTechnical Information Center, Fort Belvoir, VA, USA,1962, Rept.APGC-TDR-62-15.
    [159] Hoots F R. Theory of the Motion of an Artificial Earth Satellite[J]. CelestialMechanics,1981,23(4):307-363.
    [160] Lin L, Zhao D Z. Combined Perturbation on Near-Earth Satellite Orbits[J].Chinese Astronomy and Astrophysics,1981,5(4):422-433.
    [161] Bezdek A, Vokrouhlicky D. Semianalytic Theory of Motion for Close-EarthSpherical Satellites Including Drag and Gravitational Perturbations[J].Planetary and Space Science,2004,52(14):1233-1249.
    [162] Salama O. Autonomous Orbit Maintenance Law for LEO Sun Synchronous,Earth Repeating Satellites with Electric Propulsion System[C]. AIAA/AASAstrodynamics Specialist Conference and Exhibit, Honolulu, Hawaii, USA,2008:7197.
    [163] Schaub H, Alfriend K T. Impulsive Feedback Control to Establish SpecificMean Orbit Elements of Spacecraft Formations[J]. Journal of Guidance,Control, and Dynamics,2001,24(4):739-745.
    [164] Julier S J. The Spherical Simplex Unscented Transformation[C]. Proceedingsof the American Control Conference,2003,3:2430-2434.
    [165] Schaub H, Junkins J L, Schetz J A. Analytical Mechanics of SpaceSystems[M]. AIAA Education Series, American Institute of Aeronautics andAstronautics USA,2003:573-576.
    [166] Khalil H K, Grizzle J W. Nonlinear Systems[M]. Upper Saddle River:Prentice Hall,2002:111-181.
    [167] Gurfil P. Accessibility, Stabilizability, and Feedback Control of ContinuousOrbital Transfer[J]. Annals of the New York Academy of Sciences,2004,1017(1):190-209.
    [168] Gurfil P. Nonlinear Feedback Control Of Low-Thrust Orbital Transfer In ACentral Gravitational Field[J]. Acta Astronautica,2007,60(8):631-648.
    [169] Jian J G, Liao X X. Partial Exponential Stability Of Nonlinear Time-VaryingLarge-Scale Systems[J]. Nonlinear Analysis: Theory, Methods&Applications,2004,59(5):789-800.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700