用户名: 密码: 验证码:
带压开采底板构造裂隙带活化导渗机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着煤矿延深开采,底板突水已成为威胁煤矿安全生产的最主要灾害之一,构造裂隙带突水是其主要表现形式,研究采掘过程中底板构造裂隙带活化渗流机制,对于矿井水害的预测和防治具有重要意义。为此,论文综合运用室内实验、理论分析及现场实测等方法,针对带压开采过程中的构造裂隙带活化突水通道形成机制及渗流突变规律进行了深入研究,取得如下成果:
     对岩石裂隙渗流的细观特征进行试验,分析岩石破坏过程中不同阶段渗透性变化及其与岩石内部微裂纹的演化关系,探讨岩石渗透性随变形的变化特点以及渗透系数应力之间的关联性,得出塑性软岩和脆性坚硬岩石在全应力应变过程中的变形规律及渗透性差异;根据脆性岩石的破坏机制与渗透系数的演化类比关系,结合岩石统计强度和重整化群理论,在岩石试样承载能力概率函数基础上推导出了预测岩石临界破坏点处应变的表达式。
     根据底板不同突水模式的力学共性特征,将底板突水划分为突水蓄势和突水失稳两个过程,并阐述各突水过程的基本力学特征,结合已有突水实例的统计结果,分析突水的发生条件、灾变特征及影响因素;通过现场原位压渗实测,获取煤系完整岩层及裂隙带岩体的平均阻渗强度,研究底板岩体的阻渗特征,提出采用底板有效隔水层(单位厚度阻渗强度)评价断层带阻渗条件的方法。
     通过室内物理模拟试验,基于采用孔隙流裂隙流管道流的渗流组合类型来表示断层带渗流过程的思想,指出断层带中充填物颗粒的流失是断层突水量和渗流类型发生改变的基础;结合现场压渗试验结果获得了构造裂隙带渗透破坏是底板突水的前兆过程,构造裂隙带活化突水实质是底板岩体发生渗透破坏,也是底板水害防治的重要阶段。
     考虑断层破碎带中介质的不同力学性质及外界采掘扰动的影响,用突变理论建立断层活化失稳的非线性模型,推导出断层活化失稳的充要力学判据及突水临界压力;从非线性的角度将诱发断层活化突水的外界扰动条件分为临界微扰动和超前强扰动,分析煤层底板断层活化突水与外界采掘扰动条件的关联性,揭示外界扰动条件下的断层活化突水机理。
     论文最后将试验及理论成果应用于现场,检验断层带岩体阻渗强度评价方法及断层活化突变模型的适用性,为带压开采构造扰动底板突水危险性评价提供了理论依据。
With the coal mine extension mining, coal seam floor water inrush has become one of the majorhazards that threaten the safety of mine production. Water inrush from structural fracture zone isthe main form of mine water disasters. The study of seepage mechanism and activation ofstructural fracture floor during the mining process is of great significance for the prediction andprevention of mine water disaster. Therefore, with laboratory test, theoretical analysis and fieldmeasurement used comprehensively, the formation mechanism of fracture fissure zone activationinduced water inrush channel and the seepage mutation law during mining above confinedaquifer was investigated deeply. The results were as follows:
     The permeability change at different stages in rock failure process and relationship with theevolution of internal micro cracks were analyzed by the research experiment on micro seepagecharacteristics of rock fracture. With the variation of permeability following with deformationand the correlation between permeability and stress investigated, deformation law and varianceof permeability of plastic soft rock and brittleness hard rock was obtained in complete process ofstress and strain. According to the analogy and development of the failure mechanism andintrinsic permeability of brittle rock, combining with rock statistical strength and renormalizationgroup theory, the expression used to forecast strain on critical destructive point of rock wasderived on basis of probability function used to describe bearing capacity of rock specimen.
     According to the common mechanical characteristics of different water inrush mode, theprocess of fault water inrush was divided into two parts: water inrush preparation and activation.According to different mechanism of water inrush, the power of water inrush came fromhydrostatic force and hydrodynamic force. According to main influence factors of water inrush,the fault water inrush was classified into loose fault water inrush, dense filling fault water inrushand intermittent joint fault water inrush. The average water consisting strength of complete rockand fractured rock in coal bed was obtained through in-situ pressure percolation test. Afterwardseepage prevention characteristics of floor analyzed, effective aquiclude under floor was raisedto evaluate condition of seepage prevention in fault zone.
     By laboratory simulation test, we proposed the seepage evolution process, pore flow to fissureflow then to pipe flow, to signify the seepage process in fault zone. It is drawn a conclusion thatthe loss of filling particles in fault zone is the basis of fault water inrush quantity and change ofthe seepage type. The result of field water injection test came to the conclusion that the seepagefailure of structural fracture zone was the premonition of the floor water inrush. The structuralfracture zone activation induced water inrush, the important stage of floor water damageprevention, essentially was that the floor was seepage fractured.
     Considering the effect of different mechanical properties of medium in the fault zone andexternal mining disturbance, using the catastrophe theory, we established of fault activationinduced instability nonlinear model and derived necessary and sufficient mechanics criterion ofinstability and critical pressure of water inrush. From the non-linear perspective, the externaldisturbance conditions induced fault water inrush was divided into critical perturbationdisturbance and former strong disturbance. On basis of this, with correlation between faultactivation induced water inrush from coal seam floor and external mining disturbance analyzed,mechanism of fault activation induced water inrush under effect of external disturbance wasrevealed.
     Finally, the experimental and theoretical results were applied in field test to examine theapplicability of the evaluation method of water resisting strength and fault activation catastrophetheory model. It provide theoretical basis for the water inrush assessment of coal seam floorabove confined aquifer under the effect of structure in mining.
引文
[1]王作宇,刘鸿泉.承压水上采煤[M].北京:煤炭工业出版社,1993.
    [2]武强,金玉洁.华北型煤田矿井防治水决策系统[M].北京:煤炭工业出版社,1995:198-214.
    [3]乔伟.矿井深部裂隙岩溶富水规律及底板突水危险性评价研究[D].[博士学位论文].徐州:中国矿业大学,2011.
    [4]施龙青.底板突水机理及预测预报[M].江苏徐州:中国矿业大学出版社,2004.
    [5]中国统配煤矿总公司生产局,煤炭科技情报研究所,煤矿水害事故典型案例汇编[M].1992.
    [6]庞荫恒,王良.井陉矿区煤层底板突水综合分析[J].煤田地质与勘探,1982,10(6):37-45.
    [7]梁化儒,王培彝.肥城矿区奥陶系石灰岩岩溶水害的防治技术[C].岩石力学矿山压力和岩层控制国际学术讨论会论文集,1991.
    [8]赵全福主编.煤矿安全手册(第五篇)矿井防治水[M].北京:煤炭工业出版社,1992.
    [9]吴基文.断层带岩体工程地质力学特征与断层防水煤(岩)柱留设[M].北京:中国科学技术出版社,2009.
    [10]谷德振.岩体工程地质力学基础[M].北京:科学出版社,1979.
    [11]孙玉科,李建国.岩质边坡的工程地质研究[J].地质科学,1965,4.
    [12]孙广忠.岩体结构力学[M].北京:科学出版社,1988.
    [13]陈昌彦.工程岩体断裂结构系统复杂性研究及在边坡工程中的应用[D].[博士学位论文].北京:中国科学院地质研究所,1997.
    [14] Pinnaduwa H S, Kulatilake W, Fiedler R, et al. Panda. Box fractal dimension as a measure of statisticalhomogeneity of jointed rock masses [J]. Engineering Geology,1997,48:217-229.
    [15]王金安,谢和平.剪切过程中岩石节理粗糙度分形演化及力学特征[J].岩土工程学报,1997,19(4):2-9.
    [16]谭学术.复合岩体力学理论及应用[M].北京:煤炭工业出版社,1994.
    [17]徐志斌,王继尧.断裂构造的分形结构.见:晁吉祥等主编.断裂构造分形模型和反转构造研究新发展[M].徐州:中国矿业大学出版社,1994.
    [18]孙岩,韩克从.断裂构造岩带的划分[M].北京:科学出版社,1985.
    [19]孟召平,彭苏萍.正断层附近煤的物理力学性质变化及其对矿压分布的影响[J].煤炭学报,2001,26(6):561-566.
    [20]黄桂芝,秦宪礼.断层附近反牵引现象的研究[J].黑龙江科技学院学报,2001,11(3):43-45.
    [21]武强,刘金韬,钟亚平,等.开滦赵各庄矿断裂滞后突水数值仿真模拟[J].煤炭学报,2002,27(5):511-516.
    [22]武强,周英杰,刘金韬,等.煤层底板断层滞后型突水时效机理的力学试验研究[J].煤炭学报,2003,28(6):561-565.
    [23]吴基文,刘小红.断层带岩体阻水能力原位测试研究与评价[J].岩土力学,24(Supp1):447-450.
    [24]史兴国.断层泥阻隔承压水的力学分析[J].河北煤炭,1992,4:216-219.
    [25] Motyka J, Bosch A P. Karstic phenomena in calcareous-dolomitic rocks and their influence over theinrushes of water in lead-zinc mines in Olkusz region (South of Poland)[J]. International Journal ofMine Water,1985,4:1-12.
    [26] Sammarco. Spontaneous inrushes of water in underground mines [J]. International Journal of MineWater,1986,5(2):29-42.
    [27] Sammarco. Inrush prevention in an underground mine [J].International Journal of Mine Water,1988,7(4):43-52.
    [28] Kuscer D. Hydrological regime of the water inrush into the Kotredez Coal Mine (Slovenia, Yugoslavia)[J]. Mine Water and the Environment,1991,10:93-102.
    [29] Mironenko V, Strelsky F. Hydrogeomechanical problems in mining [J].Mine Water and theEnvironment,1993,12(1):35-40.
    [30] Schreck P. Environmental impact of uncontrolled waste disposal in mining and industrial areas inCentral Germany [J]. Environmental Geology,1998,35(1):66-72.
    [31] Wolkersdorfer C, Bowell R. Contemporary Reviews of Mine Water Studies in Europe, Part1[J]. MineWater and the Environment,2004,23:162-182.
    [32] Wolkersdorfer C, Bowell R. Contemporary Reviews of Mine Water Studies in Europe, Part3[J]. MineWater and the Environment,2005,24:58-76.
    [33] Wolkersdorfer C, Saxony F. Mine Water Notes [J]. Mine Water and the Environment,2004,23:54-55.
    [34] Younger P L, Wolkersdorfer C. Mining Impacts on the Fresh Water Environment [J]. Mine Water andthe Environment, Mine Water and the Environment,2004,23:2-80.
    [35] Wolkersdorfer C, Bowell R. Contemporary Reviews of Mine Water Studies in Europe [J]. Mine Waterand the Environment,2004,23:161.
    [36] Isam M R, Shinjo R. Mining-induced fault reactivation associated with the main conveyor beltroadway and safety of Barapukuria Coal Mine in Bangladesh: Constraints from BEM simulations [J].International Journal of Coal Geology,2009,79:115-130.
    [37] Bailey W R, Walsh J J, Manzocchi T. Fault populations, strain distrution and basement faultreactivation in the East Pennines Coalfield, UK [J]. Journal of Structural Geology,2005,27:913-928.
    [38] Bell F G, Jermy C A. An investigation of primary permeability in strata from a mine in the EasternTransvaal Coalfield[C]. SouthAfrica: Quarterly Journal of Engineering Geology and Hydrogeology,2002,(35):391-402.
    [39] Burgi C, Parriaux A, Franciosi C. Geological characterization of weak anticlastic fault rocks withregards to the assessment of their geotechnical properties[C]. Quarterly Journal of EngineeringGeology and Hydrogeology.2001,(34):225-232.
    [40]赵铁锤.华北地区奥灰水综合防治技术[M].北京:煤炭工业出版社,2006.
    [41]高延法,施龙青,等.底板突水规律与突水优势面[M].徐州:中国矿业大学出版社,1999.
    [42] Zhang Rui, Jiang Zhenquan, Sun Qiang, et al. The relationship between the deformation mechanismand permeability on brittle rock [J]. Natural Hazards,2013, vol.66(1):1179-1187.
    [43]黎良杰,钱鸣高,李树刚.断层突水机理分析[J].煤炭学报,1996,21(2):119-123.
    [44]黎良杰.采场底板突水机理的研究[D].[博士学位论文].徐州:中国矿业大学,1995.
    [45]谭志祥.断层突水机制的力学浅析[J].江苏煤炭,1998,3:16-18.
    [46]营志杰.煤层渗透性变化规律在防水煤柱上的应用[J].江苏煤炭,1998,1:31-31.
    [47]施龙青,曲有刚,徐望国.采场底板断层突水判别方法[J].矿山压力与底板管理,2000,2:49-51.
    [48]张文泉.矿井(底板)突水灾害的动态机理及综合判测和预报软件开发研究[D].[博士学位论文].泰安:山东科技大学,2004.
    [49]李青峰,王卫军,朱川曲,等.基于隔水关键层原理的断层突水机理分析[J].采矿与安全工程学报,2009,26(1):87-90.
    [50]卜万奎.采场底板断层活化及突水力学机理研究[D].[博士学位论文].徐州:中国矿业大学,2010.
    [51]高德福.深矿井底板岩层采动变形与阻水能力分析[J].煤田地质与勘探,1990,18(4):42-47.
    [52]杨善安.采场底板断层突水及其防治方法[J].煤炭学报,1994,19(6):621-625.
    [53]高延法,于永辛,牛学良.水压在底板突水中的力学作用[J].煤田地质与勘探,1996,24(6):37-39.
    [54]卜昌森.矿压作用下地质构造对底板突水的影响[J].山东煤炭科技,1996,1:47-50.
    [55]刘燕学.峰峰煤田煤层底板强度及断裂构造控水作用[J].河北煤炭,1998,(3):19-20.
    [56]杨新安,程军.峰峰矿区矿井突水分类及发生机理研究[J].地质灾害与环境保护,1999,10(2):24-29.
    [57]倪宏革,罗国煜.地下开采中优势面控水控稳机制分析[J].工程地质学报,2000,08(3):316-319.
    [58]周瑞光,成彬芳,叶贵钧,等.断层破碎带突水的时效特性研究[J].工程地质学报,2000,8(4):411-415.
    [59]杜文堂.断层防水煤柱可靠度分析[J].煤田地质与勘探,2001,29(1):34-36.
    [60]韩爱民,白玉华,孙家齐.断层透水性工程地质评价[J].南京建筑工程学院学报,2002,60(1):21-25.
    [61]李晓昭,罗国煜.地下工程突水的富水优势断裂[J].中国地质灾害与防治学报,2003,14(1):36-41.
    [62]李晓昭,罗国煜,陈忠胜.地下工程突水的断裂变形活化导水机制[J].岩土工程学报,2002,24(6):695-700.
    [63]李晓昭,张国永,罗国煜.地下工程中由控稳到控水的断裂屏障机制[J].岩土力学,2003,24(2):220-224.
    [64]于广明,谢和平,杨伦,等.采动断层活化分形界面效应的数值模拟研究[J].煤炭学报,1998,23(4):396-400.
    [65]邱秀梅,王连国.断层采动型突水自组织临界特性研究[J].山东科技大学学报(自然科学版),2002,21(1):59-61.
    [66]王连国,宋扬.底板突水的非线性特征及预测[M].北京:煤炭工业出版社,2001.
    [67]白峰青,姜兴阁,蒋勤明.断层防水煤柱设计的可靠度方法[J].辽宁工程技术大学学报,2000,19(4):356-359.
    [68]潘岳,谢金玉,顾善发.非均匀围压下矿井断层冲击地压的突变理论分析[J].岩石力学与工程学报,2001,20(3):310-314.
    [69]杨映涛,李抗抗.用物理相似模拟技术研究煤层底板突水机理[J].煤田地质与勘探,1997,25(supp):33-36.
    [70]周钢,李世平,张晓龙.微山湖下断层煤柱留设与开采技术的模拟试验[J].煤炭科学技术,1997,25(5):13-15.
    [71]彭苏萍,孟召平,李玉林.断层对顶板稳定性影响相似模拟实验研究[J].煤田地质与勘探,2001,29(3):1-4.
    [72]左建平,陈忠辉,王怀文,等.深部煤矿采动诱发断层活化规律[J].煤炭学报,2009,34(3):305-310.
    [73]刘启蒙.高承压水上采煤断层突水渗流转换机理研究[D].[博士学位论文].徐州:中国矿业大学,2007.
    [74]徐德金.高承压含水层上煤层开采底板断裂活化致灾机制[D].[博士学位论文].徐州:中国矿业大学,2011.
    [75]李连崇,唐春安,梁正召,等.含断层煤层底板突水通道形成过程的仿真分析[J].岩石力学与工程学报,2009,28(2):290-297.
    [76]卢兴利,刘泉声,吴昌勇.断层破裂带附近采场采动效应的流固耦合分析[J].岩土力学,2009,30(supp1):165-168.
    [77]武强,朱斌,刘守强.矿井断裂构造滞后突水的流-固耦合模拟方法分析与滞后时间确定[J].岩石力学与工程学报,2011,30(1):93-104.
    [78]黄存捍.采动断层机理研究[D].[博士学位论文].徐州:中南大学,2010.
    [79] Habib P. The malpasset dam failure [J]. Engineering Geology.1987,24:331-338.
    [80] Snow D T. A parallel plate model of fractured permeable media [D]. PH.D, Thesis, University ofCalifornia. Berkeley,1965.
    [81] Romm, E S. Flow characteristics of fractured rocks [J]. Nedra, Moscow,1966.
    [82] Louis C, Maini Y NT. Determination of in situ hydraulic parameters in jointed rock [J]. Rroc.2ndCongr. ISRM,1970,1:235-245.
    [83] Louis C. Introduction a La hydraulique Des roches [J]. Orleans, Bureau Recherches GeologiqueMiniers,1974.
    [84] Jones F O. A laboratory study of the effects of confining pressure on fracture flow and storage capacityin carbonate rocks [J]. Journal of Petroleum Technology,1975,1:21-27.
    [85] Iwai K. Fundamental studies of fluid flow through a single fracture [D]. PH.D. thesis, University ofCalifornia, Berkeley,1976.
    [86] Oda M. An equivalent continuum model for coupled stress and fluid flow analysis in jointed rockmasses [J]. Water research,1986,13(22):1845-1856.
    [87] Erichsen C. Gekoppctlte Spannungs-Sickerstromungsberechnungcn von Bauwetken in kluftigem felsunter Berucksichtigung dcs Nichtilinearcn Spannung-Sverschungsverhaltens von Trennflachen [J].Verffentlichungen dcs Institutes of Grundbau, Bodcnmechanik, Felsmechanik and Verkchswasscrbauder RWTH Aachen,1987.
    [88] Kelsall P C, Kesall J B, Cass C R. Evaluation of excavation-induced changes in rock permeability [J].International Journal of Rock Mechanics and Mining Sciences,1984,21(3):123-135.
    [89] Larson K J, Basagaoglu H, Marino M A. Land subsidence in the Los Banos-Kettleman, Prediction ofoptimal safe ground water yield and City area, California, using a calibrated numerical s imulationmodel [J]. Journal of Hydrology,2001,242(1):801-818.
    [90] Sheorey P R, Loui J P, Singh K B, ea al. Ground subsidence observations and a modified influencefunction method for complete subsidence prediction [J]. International Journal of Rock Mechanics andMining Sciences,2000,37(5):801-818.
    [91] Panel, Conceptual models of flow and transport in the fractured vadose zone[A]:CGER, ConceptualModels of Flow and Transport in the Fractured Vadose Zone [C]. Washington, D.C:National AcademyPress,2001
    [92] Sheik A K, Pariseau.W.G. Role of water in the stability of a shallow underground mine [J]. Engineering,2001,37(5):80-88.
    [93] Geir J. Discrete fracture modeling of in-situ hydrologic and tracer experiments[C]. ProceedingInternational Conference on Fracrured and Jointed Rock Masses. Lake Tahoe CA1992.
    [94]仵彦卿.岩体结构类型与水力学模型[J].岩石力学与工程学报,2000,19(6):687-691.
    [95]仵彦卿,柴军瑞.作用在岩体裂隙网络中的渗透力分析[J].工程地质学报,2001,9(1):24-28.
    [96]刘继山.单裂隙受正应力作用时的渗流公式[J].水文地质与工程地质,1987(2):32-33.
    [97]刘继山.结构面力学参数与水力参数耦合关系及其应用[J].水文地质与工程地质,1998,8(2):7-12.
    [98]郑少河,朱维申.裂隙岩体渗流损伤耦合模型的理论分析[J].岩石力学与工程学报,2001,20(2):156-159.
    [99]潘国营,武强,仝长水.裂隙水运动理论与渗流模拟实践[M].北京:中国地质大学出版社,2001.
    [100]缪协兴,刘卫群,陈占清.采动岩体渗流理论[M].北京:科学出版社,2004.
    [101]周创兵,陈益峰,姜清辉,等.论岩体多场广义耦合及其工程应用[J].岩石力学与工程学报,2008,27(7):1329-1340.
    [102] Noorishad J, Ayatojjahi M S, Witherspoon P A. A finite element method for stress and fluid flowanalys is in fractured rock masses [J]. International Journal of Rock Mechanics and Mining Sciences,1982,19(1):185-193.
    [103] Barton N, Bandis S C. Strength deformation and conductivity coupling of rock joints [J]. InternationalJournal of Rock Mechanics and Mining Sciences,1985,22(3):121-140.
    [104] Jing L, Tsang C F, Stephansson O. DCOVALEX-an international cooperative research project onmathematical models of coupled THM progresses for safety analysis of radioactive waste repositories[J]. International Journal of Rock Mechanics and Mining Sciences,1995,32(5):389-398.
    [105]申晋,赵阳升,段康廉.低渗透煤岩体水力压裂的数值模拟[J].煤炭学报,1997,22(6):580-584.
    [106]刘汉湖,裴宗平,郑世书,等.带压开采时隔水层的隔水能力研究[J].中国煤田地质,1998,10(2):40-43.
    [107]杨栋,赵阳升.裂隙状采场底板固流耦合作用的数值模拟[J].煤炭学报,1998,23(1):37-41.
    [108]郑少河,朱维申,王书法.承压水上采煤的固流耦合问题研究[J].岩石力学与工程学报,2000,19(4):421-424.
    [109]杨天鸿.岩石破裂过程渗透性质及其与应力耦合作用研究[D].[博士论文].沈阳:东北大学.2000.
    [110]李云鹏.用似双重介质模型进行岩体应力与渗流耦合分析[J].西安科技学院学报,2002,22(4):407-410.
    [111]黄涛.裂隙岩体渗流—应力—温度耦合作用研究[J].岩石力学与工程学报,2002,21(1):77-82.
    [112]刘志军,胡耀青.承压水上采煤断层突水的流固耦合研究[J].煤炭学报,2007,32(10):1046-1050.
    [113]李文平,刘启蒙,孙如华.构造破碎带滞后突水渗流转换理论与试验研究[J].煤炭科学技术,2011,39(11):11-13.
    [114]胡戈.综放开采断层活化导水机理研究[D].[博士学位论文].徐州:中国矿业大学,2008.
    [115]乔伟,胡戈,李文平.综放开采断层活化突水渗-流转换试验研究[J].采矿与安全工程学报,2013,30(1):30-37.
    [116]隋旺华,蔡光桃,董青红.近松散层采煤覆岩采动裂缝水砂突涌临界水力坡度试验[J].岩石力学与工程学报,2007,26(10):2084-2091.
    [117]隋旺华,董青红.近松散层开采空隙水压力变化及其对水砂突涌的前兆意义[J].岩石力学与工程学报,2008,27(9):1908-1916.
    [118]董青红.近松散层下开采水砂突涌机制及判别研究[D].[博士学位论文].徐州:中国矿业大学,2006.
    [119]杨伟峰.薄基岩采动破断及其诱发水砂混合流运移特性研究[D].[博士学位论文].徐州:中国矿业大学,2009.
    [120]杨伟峰,隋旺华,吉育兵,等.薄基岩采动裂缝水砂运移过程的模拟试验[J].煤炭学报,2012,37(1):141-146.
    [121]杨伟峰,吉育兵,赵国荣,等.厚松散层薄基岩采动诱发水砂流运移特征试验[J].岩土力学学报,2012,34(4):141-146
    [122]秦四清,王媛媛,马平.崩滑灾害临界位移演化的指数律[J].岩石力学与工程学报,2010,29(5):873-880.
    [123]秦四清,徐锡伟,胡平等.孕震断层的多锁固段脆性破裂机制与地震预测新方法的探索[J].地球物理学报,2010,53(4):1001-1014.
    [124]姜振泉,季梁军.岩石全应力—应变过程渗透性试验研究.岩土工程学报[J].2001,23(2):153-156.
    [125] Hudson, J A, Fairhurst C. Tensile strength, Weibull’s theory and a general statistical approach to rockfailure[C]. The Proceedings of the Southampton1969Civil Engineering Materials Conference,1969,901-914.
    [126] Smalley R F, Turcotte D L, Salla A Solla. A renormalization group approach to the stick slip behaviorof faults [J]. Journal of Geophysical Research,1985,90:1894-1900.
    [127]王小江,荣冠,周创兵.粗砂岩变形破坏过程中渗透性试验研究[J].岩石力学与工程学报,2012,31(S1):2940-2947.
    [128]刘洪磊,杨天鸿,于庆磊,等.凝灰岩破坏全过程渗流演化规律的实验研究[J].东北大学学报(自然科学版),2009,30(7):10301033.
    [129] Bieniawski Z T. Time-dependent behavior of fractured rock [J]. Rock Mechanics and RockEngineering,1970,2(3):123-137.
    [130]曹文贵,赵明华,刘成学.基于weibull分布的岩石损伤软化模型及其修正方法研究[J].岩石力学与工程学报,2004,23(19):3226-3231.
    [131]周维垣,吴澎,杨若琼.节理岩体的损伤模型[A].见:中国岩石力学与工程学会教育工作委员会.岩石力学新进展[C].沈阳:东北工学院出版社,1989.
    [132]朱珍德,张爱军,徐卫亚.脆性岩石全应力—应变过程渗流特性试验研究[J].岩土力学,2002,23(5):555-563.
    [133]彭苏萍,孟召平,王虎,等.不同围压下砂岩孔渗规律试验研究[J].岩石力学与工程学报,2003,22(5):742-746.
    [134]王环玲,徐卫亚,杨圣奇.岩石变形破坏过程中渗透率演化规律的试验研究[J].岩土力学,2006,27(10):1703-1708.
    [135]李长洪,张立新,姚作强,等.两种岩石的不同类型渗透特性实验及其机理分析[J].北京科技大学学报,2010,32(2):159-163.
    [136] Wang J A, Park H D. Fluid permeability of sedimentary rock in a complete stress-strain process [J].Engineering Geology,2002(63):291-300.
    [137]李利平.高风险岩溶隧道突水灾变演化机理及其应用研究[D].[博士学位论文].济南:山东大学,2009.
    [138]田干.煤层底板隔水层阻抗高承压水侵入机理研究[D].[硕士学位论文].西安:煤炭科学研究总院,2005.
    [139]张金才,张玉卓,刘天泉.岩体渗流与煤层底板突水[M].北京:地质出版社,1997.
    [140]李白英.预防矿井突水的“下三带”理论及其发展与应用[J].山东矿业学院学报,1999,18(4):4-7.
    [141]王梦玉.煤层底板突水机理及预测方法探讨[J].煤炭科学技术,1979,(09):34-39.
    [142]李金凯.矿井岩溶水防治[M].北京:煤炭工业出版社,1990.
    [143]王永红,沈文.中国煤矿水害预防及治理[M].北京:煤炭工业出版社,1996.
    [144]国家煤炭工业局.建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规范[M].北京:煤炭工业出版社,2000.
    [145]魏宁,李金都,傅旭东.钻孔高压压水试验的数值模拟[J].岩石力学与工程学报,2005,25(5):1037-1042.
    [146]蒋中明,傅胜,李尚高,等.高压引水隧道陡倾角断层岩体高压压水试验研究[J].岩石力学与工程学报,2007,26(11):2318-2323.
    [147]张新敏,蒋中明,冯树荣,等.岩体高压压水试验的渗透系数取值方法探讨[J].水利发电学报,2011,30(1):155-159.
    [148]钱家忠,赵卫东,潘国营.单一流迳基岩裂隙水流态的实验研究[J].焦作工学院学报(自然科学版),2000,19(3):192-195.
    [149]丁留谦,许国安.三维非达西渗流的有限元分析[J].水力学报,1990,16:48-54.
    [150]蒋中明,陈胜宏,冯树荣,等.高压条件下岩体渗透系数取值方法研究[J].水力学报,2010,41(10):1228-1233.
    [151]孙鸿銮.煤矿床裂隙喀斯特水突水通道特征[J].煤炭学报,1965,2(4):52-57.
    [152]尹尚先.煤层底板突水模式及机理研究[J].西安科技大学学报,2009,29(6):661-666.
    [153]林韵梅.试验岩石力学模拟研究[M].北京:煤炭工业出版社,1984.
    [154]姚邦华.破碎岩体变质量流固耦合动力学理论及应用研究[D].[博士学位论文].徐州:中国矿业大学,2012.
    [155]姜春露.富水孔隙砂岩含水层扰动过程的水动力学特征[D].[博士学位论文].徐州:中国矿业大学,2013.
    [156]黄润秋,许强.开挖过程的非线性分析[J].工程地质学报,1997,7(1):9-14.
    [157]许强.外界扰动诱发地质灾害的机理分析[J].岩石力学与工程学报,2002,21(2):280-284.
    [158]殷有泉.断层地震的尖点突变模型[J].地球物理学报,1988,31(6):657-663.
    [159]秦四清,王思敬,孙强,等.非线性岩土力学基础[M].北京:地质出版社,2008.
    [160]桑德斯著,凌复华译.突变理论入门[M].上海:上海科学技术文献出版社,1983.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700