用户名: 密码: 验证码:
地铁客流短期预测及客流疏散模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在地铁客流组织与优化研究领域,客流短期预测和行人运动模拟是其关键技术。虽然不少研究学者已开展了相关工作,但如何适应轨道交通业务发展需要提高客流短期预测效果,对重大事件引发的大客流进行实时预测,以及由于大客流和重大事件引发对地铁站内不同场景进行乘客疏散模拟等问题亟待解决。本文的内容要点如下:
     (1)提出了一种基于小波分析的支持向量机客流预测算法,首先对原始客流时间序列数据进行小波分解,然后利用最小二乘支持向量对分解得到的低频和高频信息进行学习与预测,最后用小波合成重构低频预测信号与高频预测信号,得到预测客流时间序列数据。实验采用北京市轨道交通客流数据和标准评价方法,结果表明该算法具有较好的预测效果,且优于两种常见的客流预测算法。
     (2)构建了一种基于灰色马尔科夫的大客流实时预测算法,利用灰色预测算法对客流数据建立灰色模型,然后建立马尔科夫修正模型,最后利用预测误差对灰色预测结果进行修正得到大客流预测值。实验针对多种类型的大型活动和重大节假日进行大客流实时预测,结果表明该模型对真实的重大事件大客流预测效果较好。
     (3)建立了一种面向多向行人疏散流的向量地场模型,模拟地铁站内行人多向行走和疏散过程。鉴于行人对于不同方向的敏感程度是不同的,该模型着重考虑方向的影响,在向量地场模型中更细致地表现在不同方向行人之间的相互影响。仿真实验表明,该模型能较好地模拟和再现地铁站内不同场景下多向行人之间的复杂相互作用和自组织现象。
     (4)由于正常情况下行人通行时表现出一种相互排斥作用,因此本文在传统地场模型的基础上,用排斥作用代替了适宜模拟紧急疏散情况的跟随作用,建立了一个引入排斥动态场的行人疏散地场模型。仿真结果表明,适当的排斥力作用可提高模拟场景的拥堵临界密度。
ABSTRACT:In the research field of Metro passenger flow organization and optimization, short-time passenger flow prediction and pedestrian movement simulation are significant technologies. Although a lot of researchers have done some related works, several difficulties, such as how to increase the passenger forecasting performance with the metro transportation business, predict the real-time passenger flow for important events effectively, and simulate the pedestrian evacuations in different metro scenes for some special cases, need to be improved. The main works in this dissertation include:
     1. A wavelet based support vector machine short-time passenger prediction algorithm is presented. This method firstly decomposes the original passenger flow time series into low-frequency and high-frequency information by wavelet, and then the least squares support vector machine method is applied to learn from the decomposed information and then to forecast, and finally the predicted low-frequency and high-frequency time series are reconstructed to obtain the predicted passenger flow data. The experiments are based on the passenger flow data from Beijing Metro system and standard evaluation methods, and the results show that the proposed algorithm has better prediction effectiveness than the two existing forecasting methods.
     2. This paper introduces a grey Markov based larger passenger flow real-time prediction method, and this algorithm establishes the grey model for passenger time-series data by grey prediction method at first, and then constructs the improved Markov model, and grey forecasting results are corrected by the prediction error to acquire the predicted large-scale passenger flow finally. Based on several kinds of large-scale activities and major holiday events, the experimental results indicate that the presented model has achieved better predicting effectiveness for large-scale passenger flows in important events.
     3. A vector floor field model for mixed movement with multi-direction pedestrian evacuation flow is proposed. It is used to simulate the pedestrian dynamic process in subway stations. As the pedestrians' sensitivities in different direction are diverse, this model considers the direction factor, and the interactions among pedestrians with different directions can be reproduced much better in the vector floor field model. The results show that this model could realistically and effectively simulate and reproduce the complex interactions and self-organization phenomena among multi-directional pedestrians under a variety of subway station scenarios.
     4. Considering the fact that the interactions among pedestrians are regarded as mutual repllsion at normal circumstance, a new floor field model for pedestrian evacuation movement with dynamic repulsion field is presented, and in this model the repulsion is used to instead the following effect widely applied in the emergency evacuation. The results show that the appropriate repulsion can improve the congestion critical density in simulation scenarios.
引文
[1]兰鹏.基于出行目的链的轨道交通客流预测模型研究[D].北京.北京交通大学交通运输学院,2009.
    [2]李枭.轨道交通换乘站客流预测方法研究[D].北京.北京交通大学交通运输学院,2010.
    [3]钟绍林.城际快速轨道交通客流预测方法研究[J].交通运输与经济.2009,2(22):39-42
    [4]马鹤龄,郭志勇.轨道交通客流预测非集聚模型研究初探[J].华中科技大学学报.2002,1(1):67-70
    [5]孔雪萍.短时交通信息动态预测方法的研究与实现[D].北京.北京航空航天大学计算机学院,2010
    [6]Wang Y B, Papageorgiou M. Real time freeway traffic state estimation based on extended Kalman filter[J]. Transportation Research Part B.2005,39(2):141-167
    [7]Yang J S. Travel time prediction using the GPS test vehicle and Kalman filtering techniques[C]. American Control Conference. USA.2005:2128-2133
    [8]傅慧,徐建闽.基于卡尔曼滤波的路径行程时间预测方法[J].微型计算信息.2007,22(2):123-128
    [9]方礼君,叶霞飞,明瑞利.上海、首尔、东京城市轨道交通客流发展趋势对比分析[J].交通与运输 2007,1(1):105-107
    [10]Lee S, Lee Y.-I, Cho B. Short-term travel speed prediction models in car navigation systems[J]. Journal of Advanced Transportation.2006,40(2):123-139.
    [11]Huang N E, Shen Z, Long S R, Wu M C, Shih H.H, Zheng Q, Yen N C, Tung,C C, Liu H H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Royal Society of London A.1998,454(8):903-995
    [12]Bollerslev T, Chou Ray Y, Kenneth F. ARCH modeling in finance:A review of the theory and empirical evidence[J]. Journal of Econometrics.1992,52(1-2):5-5
    [13]Kitamura R. An evaluation of activity-based travel analysis[J]. Transportation.1998,15(1-2):9-34
    [14]牛东晓.电力负荷预测技术及其应用[M].北京.中国电力出版社.2009
    [15]Chen C, Chen J, Barry J. Diurnal pattern of transit ridership:a case study of. the New York city subway system[J]. Journal of Transport Geography.2009,3(17):176-186
    [16]Dauwels J, Rutkowski T M, Vialatte F, Cichocki A. On the synchrony of empirical mode decompositions with application to electroencephalography[J]. Acoustics, "Speech and Signal Processing. USA.2008:473-476
    [17]王正武,黄中样.短时交通流预测模型的分析与评价[J].系统工程.2003,6(21):97-100
    [18]Zhang X Y, John A R. Short-term Travel Time Prediction Using A Time-varying Coefficient Linear Model[J]. Transportation Research Part C.2003,11(3-4):187-210
    [19]Vlahogianni E I, Golia J C, Karlaftis M G. Short-term traffic forecasting:overview of objectives and methods[J]. Transport Reviews.2004,5(24):533-557
    [20]Alfa A S. A review of models for the temporal distribution of peak traffic demand[J]. Transportation Research Part B.1986,6(20):491-499.
    [21]邓聚龙.灰预测与灰决策[M].武汉.华中群技大学出版社.2002.
    [22]Lin C T, Yang S Y. Forecast of the output value of Taiwan's opto-electronics industry using the Grey forecasting model[J]. Technological Forecasting and Social Change.2003,70(2):177-186
    [23]任工昌,刘丽,苗新强.改进灰色模型在电力负荷中的预测与实现[J].机械设计与制造.2010,1(2):232-234
    [24]盖春英,裴玉龙.公路货运量灰色模型——马尔可夫链预测方法研究[J].中国公路学报.2003,3(16):113-116
    [25]Hassan M R. A combination of hidden Markov model and fuzzy model for stock market forecasting[J]. Neurocomputing.2009,72(16-18):3439-3446.
    [26]胡腾波,叶建栲.马尔科夫链模型在GIS数据预测中的应用[J].计算机系统应用.2008,1(8):90-93
    [27]刘晓琴,姚晓晖.马尔科夫链模型在铁路春运客流预测中的应用[J].安全科学技术.2010,1(12):5-8
    [28]Kou X Z, Zhang Q Y. The Forecast for the Wear Trend of the Diesel Engine Based on Grey Markov Chain Model[J]. the 2009 Second International Symposium on Computational Intelligence and Design. USA 2009:288-291
    [29]Hsu Y T, Liu M C, Yeh J, Hung H F. Forecasting the turning time of stock market based on Markov-Fourier grey model[J]. Expert Systems with Applications.2009,36(4):8597-8603
    [30]李东,苏小红,马双玉.基于新维灰色马尔科大模型的股价预测算法[J].哈尔滨工业大学学报.2003,2(35):244.
    [31]关静.中国民航旅客吞吐量的灰色-马尔科夫模型预测[J].中国民航大学学报.2010,28(1):45-48
    [32]张益,高蓉.实时交通量的灰色马尔柯夫预测方法[J].南京师大学报.2009,32(2):41-46
    [33]Varagouli E G, Simos T E, Xeidarkis G S. Fitting a multiple regression line to travel demand forecasting:the case of the prefecture of Xanthi[J]. Northern Greece Mathematical and Computer Modeling.2005,42(7-8):817-836
    [34]Abdel M A, Pemmanaboina R. Calibrating a real-time traffic crash prediction model using archived weather and ITS traffic data[J]. IEEE Transactions on Intelligent Transportation Systems.2006, 2(7):167-174
    [35]张涛,陈先,谢美萍,张明杰.基于K近邻非参数回归的短时交通流预测方法[J].系统工程理论与实践.2010,30(2):376-384
    [36]张晓利,贺国光,陆化普.基与K-邻域非参数回归短时交通流预测方法[J].系统工程学报.2009,24(2):178-183
    [37]Simroth A, Zahle H. Travel Time Prediction Using Floating Car Data Applied to Logistics Planning[J]. IEEE Transaction on Intelligent Transportation Systems.2011,12(1):243-253
    [38]Liu J S, F H, L X X. Combination Prediction for Short-term Traffic Flow Based on Artificial Neural Network[C]. the 6th World Congress on Intelligent Control and Automation. USA.2006: 8659-8663
    [39]Feng H L, Chen D, Lin Q J. Multi-scale Network Traffic Prediction Using A Two-stage Neural Network Combined Model. In Proceedings of Wireless Communications[J], Networking and Mobile Computing. USA.2006:1-5
    [40]尚宁,覃明贵,王亚琴,崔中发,崔岩,朱扬勇.基于BP神经网络的路口短时交通流量预测方法[J].计算机应用与软件.2006,23(2):32-33
    [41]Yan X K, Liu Y, Mao Z Y. SVM-based Elevator Traffic Flow Prediction[J]. the 6th World Congress on Intelligent Control and Automation. USA.2006:8814-8818
    [42]Vanajaksi L, Rilett L R. Support vector machine technique for the short term prediction of travel time[J]. Intelligent Vehicles Symposium. USA.2007:600-605
    [43]杨兆升,王媛,管青.基于支持向量机方法的短时交通流量预测方法[J].吉材大学学报(工学版).2006,26(6):881-884
    [44]Wu C H, Ho J M, Lee D T.2004. Travel-time prediction with support vector regression[J]. IEEE Transaction on Intelligent Transportation.2004,5(4):276-281
    [45]Theja P V V K, Vanajakshi L. Short Term Prediction of Traffic Parameters Using Support Vector Machines Technique[J]. Emerging Trends in Engineering and Technology. USA.2010:70-75
    [46]Chandra S R, Al-Deek H. Predictions of freeway traffic speeds and volumes using vector autoregressive models[J]. Journal of Intelligent Transportation Systems.2009,13(2):53-72
    [47]姚智胜,邵春福,高永亮.基于支持向量回归机的交通状态短时预测方法研究[J].北京交通大学学报.2006,30(3):4-7
    [48]Pang M, He G. Traffic Flow Predicting of Chaos Time Series Using Support Vector Learning Mechanism for Fuzzy Rule-based Modeling[C]. the IEEE International Conference on Automation and Logistics. USA.2007:666-670
    [49]Wang J, Shi Q X, Lu H P. The Study of Short-Term Traffic Flow Forecasting Based on Theory of Chaos[J]. Intelligent Vehicles Symposium. USA.2005:869-874
    [50]Nikolopoulos K, Goodwin P, Patelis A, Assimakopoulos V. Forecasting with cue information:a comparison of multiple regression with alternative forecasting approaches[J]. European Journal of Operational Research.2007,180(1):354-368
    [51]马社祥,刘贵忠,曾召华.基于小波分析的非平稳时间序列分析与预测[J].系统工程学报.2000,15(4):305-311
    [52]王文圣,李跃清,向红莲.基于小波分析的组合随机模型及其在径流预测中的应用[J].高原气象 2004,23:146-149
    [53]龚亚琴.基于小波分析和RBF神经网络的铜价预测[J].陕西理工学院学报(自然科学版)2007,23(2):87-90
    [54]Jiang X, Hon H A. Dynamic wavelet neural network model for traffic flow forecasting[J]. Journal of Transportation Engineering.2005,131(10):771-779
    [55]Huang D W. Wavelet analysis in a traffic model[J]. Physic A.2003,320(1-2):298-308.
    [56]Xie Y, Zhang Y. A wavelet network model for short-term traffic volume forecasting.[J] Journal of Intelligent Transportation Systems.2006,10(3):141-150
    [57]Chen S Y. Traffic flow forecasting based on grey neural network model[J]. Machine Learning and Cybernetics. USA.2003:1275-1278
    [58]Chen C, Wang Y, Li L, Hu J, Zhang Z. The retrieval of intra-day trend and its influence on traffic prediction. Transportation Research Part C.2012,22(1):103-118.
    [59]Tong G, Fan C, Cui F Y. Fuzzy Neural Network Model Applied in the Traffic Flow Prediction[C]. the 2006 IEEE International Conference on Information Acquisition. USA.2006:1229-1233
    [60]Sukens J K, Brabanter J D, Lukas L and Vanewalle J. Weighted Least Squares Support Vector Machines:Robustness and Sparse Approximation[J]. Neurocomputing.2002,48(1):85-105
    [61]Bar-Gera H, Boyce D. Origin-based algorithms for combined travel forecasting models[J]. Transportation Research Part B.2003,37(5):405-422
    [62]Zhao S Z. A new approach to the prediction of passenger flow in a transit system[J]. Computers and Mathematics with Application.2010,61(8):1968-1974
    [63]Burstedde C, Klauck K, Schadschneider A, and Zittartz J. Simulation of pedestrian dynamics using a two-dimensional cellular automaton[J]. Physica A.2001,295(3-4):507-525.
    [64]Dijkstra J, Jessurun J, and Timmermans H. A multi-agent cellular automata model of pedestrian movement. M. Schreckenberg and S.D. Sharma(ed.):Pedestrian and Evacuation Dynamics. Springer-Verlag, Berlin.2001, pp.173-181.
    [65]Blue V J and Adler J L. Cellular automata microsimulation of bi-directional pedestrian flows[J]. Transportation Research Record:Journal of the Transportation Research Board.2000, 1678:135-141.
    [66]Frisch U, Hasslacher B, and Pomeau Y. Lattice-gas automata for the Navier-Stokes equation[J]. Physical Review Letters.1986,56:1505.
    [67]Kirchner A, Klupfel H, Nishinari K, Schadschneider A, and Schreckenberg M. Discretization effects and the influence of walking speed in cellular automata models for pedestrian dynamics[J]. Journal of Statistical Mechanics:Theory and Experiment.2004,10 P10011.
    [68]Weng W G, Pan L L, Shen S F, and Yuan H Y. Small-grid analysis of discrete model for evacuation from a hall[J]. PhysicaA.2007,374:821-826.
    [69]Guo R Y, Huang H J. A modified floor field cellular automata model for pedestrian evacuation simulation[J]. Physics A.2008,41(38).
    [70]Xu X, Song W G, and Zheng H Y. Discretization effect in a multi-grid egress model[J]. Physica A. 2008,387:5567-5574.
    [71]Nagai R, Nagatani T. Jamming transition in counter flow of slender particles on square lattice[J]. PhysicaA.2006,366:503-512.
    [72]Xu X, and Song W G. Staircase evacuation modeling and its comparison with an egress drill[J]. Building and Environment.2009,44:1039-1046.
    [73]Fukamachi M, Nagatani T. Sidle effect on pedestrian counter flow[J]. Physica A.2007, 377:269-78.
    [74]Hartmann D. Adaptive pedestrian dynamics based on geodesics[J]. New Journal of Physics.2010, 12043032.
    [75]Guo R Y, Huang H J, and Wong S C. Collection, spillback, and dissipation in pedestrian evacuation: A network-based method[J]. Transportation Research Part B.2011,45490-506.
    [76]Weng W G, Chen T, Yuan H Y, and Fan W C. Cellular automaton simulation of pedestrian counter flow with different walk velocities[J]. Physical Review E.2006,74036102.
    [77]Yang L Z, Li J, and Liu S B. Simulation of pedestrian counter-flow with right-moving preference[J]. Physica A.2008,387:3281-3289.
    [78]Yue H, Guan H Z, Zhang J, and Shao C F. Study on bi-direction pedestrian flow using cellular automoata simulation[J]. Physica A.2010,389:527-539.
    [79]Yue H, Hao H, Chen X M, and Shao C F. Simulation of pedestrian flow on square lattice based on cellular automata model[J]. Physica A.2007,384:567-588.
    [80]Yu Y F and Song W G Effect of traffic rule breaking behavior on pedestrian counterflow in a channelwith a partition line[J]. Physical Review E.2007,76026102.
    [81]Kuang H, Li X L, Song T and Dai S Q. Analysis of pedestrian dynamics in counter flow via an extended lattice gas model[J]. Physical Review E.2008,78066117.
    [82]Yanagisawa D, Kimura A, Tomoeda A, Nishi R, Suma Y, Ohtsuka K, and Nishinari K. Introduction of frictional and turning function for pedestrian outflow with an obstacle[J]. Physical Review E. 2009,80036110.
    [83]Song W G,Yu Y F, Wang B H, and Fan W C. Evacuation behaviors at exit in CA model with force essentials:A comparison with social force model[J]. Physica A.2006,371:658-666.
    [84]Henein C M, and White T. Macroscopic effects of microscopic forces between agents in crowd models[J]. Physica A.2007,373:694-712.
    [85]Chen M J, Barwolff G, and Schwandt H. A derived grid-based model for simulation of pedestrian flow[J]. Journal of Zhejiang University-Science A.2009,102:209-220.
    [86]Kirchner A, Nishinari K, and Schadschneider A. Friction effects and clogging in a cellular automaton model for pedestrian dynamics[J]. Physical Review E.2003,67056122.
    [87]Zhao D L, Yang L Z, and Li J. Occupants'behavior of going with the crowd based on cellular automata occupant evacuation model[J]. Physica A.2008,387:3708-3718.
    [88]Henein C M, and White T. Microscopic information processing and communication in crowd dynamic[J]. Physical A.2010,389:4636-4653.
    [89]Zeng J B, Leng B, Xiong Z, Qin Z. Pedestrian dynamics in a two-dimensional complex scenario using a local view floor field model[J]. International Journal of Modern Physics C.2011,22 775-803.
    [90]Varas A, Comejo M D, Mainemer D, Toledo B, Rogan J, Munoz V, and Valdivia J A. Cellular automaton model for evacuation process with obstacles[J]. Physical A.2007,382:631-642.
    [91]Yu Y F, and Song W G. Cellular automaton simulation of pedestrian counter flow considering the surrounding environment[J]. Physical Review E.2007,75046112.
    [92]Guo R Y, and Huang H J. Route choice in pedestrian evacuation:formulated using a potential field[J]. Journal of Statistical Mechanics:Theory and Experiment.2011, P04018.
    [93]Fang J, Qin Z, Hu H, Xu Z H, and Li H. The fundamental diagram of pedestrian model with slow reaction[J]. Physica A.2012,23:6112-6120.
    [94]Weng W G, Hasemi Y, and Fan W C. Motor schema-based cellular automaton model for pedestrian dynamics[J]. International Journal of Modern Physics C.2006,17:853-859.
    [95]Weng W G, Yuan H Y, Fan W C, and Hasemi Y. Experimental validation of motor schema-based cellular automaton model for pedestrian dynamics[J]. International Journal of Modern Physics C. 2007,18:927-936.
    [96]Yamamoto K, Kokubo S, and Nishinari K. Simulation for pedestrian dynamics by real-coded cellular automata (RCA)[J]. Physica A.2007,379:654-660.
    [97]Yamamoto, K. Evacuation Simulation in Floor Field by Real-Coded Cellular Automata[J]. Lecture Notes in Computer Science,2008,5191:571-574.
    [98]Was J, Gudowski B, and Matuszyk P J. Social distances model of pedestrian dynamics[J]. Lecture Notes in Computer Science.2006,4173:492-501.
    [99]Zhao D L, Yang L Z, and Li J. Exit dynamics of occupant evacuation in an emergency [J]. Physica A.2006,363:501-511.
    [100]Yanagisawa D, Kimura A, Nishi R, Tomoeda A, and Nishinari K. Theoretical and Empirical Study of Pedestrian Outflow through an Exit[J]. Robotic Systems.2009,8,227-238.
    [101]Yanagisawa D, and Nishinari K. Mean-field theory for pedestrian outflow through an exit[J]. Physical Review E.2007,76061117.
    [102]Zheng X P, Li W, and Guan C. Simulation of evacuation processes in a square with a partition wall using a cellular automaton model for pedestrian dynamics[J]. Physica A.2010,389:2177-2188.
    [103]Liu S B, Yang L Z, Fang T Y, and Li J. Evacuation from a classroom considering the occupant density around exits[J]. Physica A.2009,388:1921-1928.
    [104]Zhao H, and Gao Z Y. Reserve capacity and exit choosing in pedestrian evacuation dynamics[J]. Physics A.2010,43105001.
    [105]Guo R Y, and Huang H J. Static floor field and exit choice for pedestrian evacuation in rooms with internal obstacles and multiple exits[J]. Physical Review E.2008,78 021131.
    [106]Guo R Y, and Huang H J. Logit-based exit choice model of evacuation in rooms with internal obstacles and multiple exits[J]. Chinese Physics B.2010,19 030501.
    [107]Muramatsu M, Irie T, Nagatani T. Jamming transition in pedestrian counter flow[J]. Physica A. 267:487-498.
    [108]Nagatani T. Freezing transition in bi-directional CA model for facing pedestrian traffic[J]. Physics Letters A.2009,373:2917-2921.
    [109]Nagatani T. Freezing transition in the mean-field approximation model of pedestrian counter flow[J]. Physica A.2009,388:4973-4978.
    [110]Nagatani T. Jamming and freezing transitions in CA model for facing pedestrian traffic with a soft boundary[J]. Physics Letters A 2010,374:1686-1689.
    [111]Nagatani T, and Komada K. Freezing transition in a four-directional traffic model for facing and crossing pedestrian flow.[J] Physica A.2010,389:1729-1738.
    [112]Liu X, Song W G, Zhang J. Extraction and quantitative analysis of microscopic evacuation characteristics based on digital image processing[J]. Physica A.2009,388:2717-2726.
    [113]Zhang J, Klingsch W, Schadschneider A, and Seyfried A. Transitions in pedestrian fundamental diagrams of straight corridors and T-junctions[J]. Journal of Statistical Mechanics:Theory and Experiment.2011, P06004.
    [114]Zhang J, Klingsch W, Schadschneider A, and Seyfried A. Ordering in bidirectional pedestrianflows and its influence on the fundamental diagram[J]. Journal of Statistical Mechanics:Theory and Experiment.2012 P02002.
    [115]Helbing D, Molnar P. Social force model for pedestrian dynamics[J]. Physical Review E.1995,51: 4282-4286.
    [116]Moussaid M, Helbing D, Gamier S, Johansson A. Experimental study of the behavioural mechanisms underlying self-organization in human crowds[J], Proceedings of the Royal Society B-Biological Sciences.2009,276,1668:2755-2762.
    [117]Helbing D. Traffic and related self-driven many-particle systems[J]. Reviews of Modern Physics. 2001,73:1067-1141.
    [118]Helbing D, Buzna L, Johansson A, Werner T. Self-organized pedestrian,crowd dynamics: experiments, simulations, and design solutions[J]. Transportation Science.2005,39:1-24.
    [119]Lakoba T I, Kaup D J, Finkelstein N M. Modifications of the Helbing-Molnar-Farkas-Vicsek Social ForceModel for Pedestrian Evolution[J]. Simulation,2005,815:339-352.
    [120]Helbing D, Farkas I, Vicsek T. Simulating dynamical features of escape panic[J]. Nature.2000,407: 487-490.
    [121]Helbing D, Farkas I J, Molnar P, and Vicsek T. Simulation of Pedestrian Crowds in Normal and Evacuation Situations[J]. Pedestrian and Evacuation Dynamics.2002,21-58.
    [122]Hoogendoorn S, Daamen W. Microscopic calibration and validation of-pedestrianmodels: Cross-comparison of models using experimental data[J]. Traffic and Granular Flow'05.2007, Part 3:329-340.
    [123]Steiner A, Philipp M, Schmid A. Parameter Estimation for a Pedestrian Simulation Model[C]. STRC:7th Swiss Transport Research Conference, Monte VeritaAscona.2007,9:1-29.
    [124]Johansson A, Helbing D, and Shukla P K. Specification of the Social Force Pedestrian Model by Evolutionary Adjustment to Video Tracking Data[J]. Advances in Complex Systems,2007,10: 271-288.
    [125]Johansson A, Helbing D. Analysis of Empirical Trajectory Data of Pedestrians[C]. Pedestrian and Evacuation Dynamics 2008.2010, pp 203-214.
    [126]北京市轨道交通清分管理中心清分方法研究[J],北京市轨道交通指挥中心,2007.5
    [127]http://www.asim.uni-wuppertal.de/database/corridor/video-andtrajectories.html
    [128]http://www.fz-juelich.de/jsc/hermes

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700