用户名: 密码: 验证码:
提高串联机械臂运动精度的关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业机器人的市场需求越来越大,各种类型的服务机器人层出不穷,挖掘串联机械臂的核心共性技术,探索国内外串联机械臂存在的问题并提供有效的解决方案是一项十分紧迫的任务。运动精度作为串联机械臂的一个重要性能指标,是机械臂完成操作任务的重要保证。随着机械臂应用环境的逐步复杂化,人们对机械臂的运动精度提出了更高的要求。但由于机械臂几何误差、环境噪声、振动干扰等原因导致机械臂实际的运动性能与期望的高精度运动性能相比还有较大的差距。因此,对提高串联机械臂的运动精度的关键技术展开研究具有非常重要的意义。
     本文以六自由度串联机械臂作为研制对象和实验平台,采用理论分析、仿真和实验相结合的方法,以提高串联机械臂运动精度为目标,对其展开了较为全面的研究。内容包括:精度分析、运动学建模、轨迹规划和优化、控制系统的研制、参数标定及控制变量补偿和主动动态平衡的实现。
     全文主要解决了串联机械臂精度提升的理论分析和技术实现两个基本问题,并在以下几个方面取得一些创新成果:
     1、研究了串联机械臂轨迹优化算法。对关节轨迹的执行时间进行归一化处理,并在此基础上提出一种五阶关节运动轨迹插值算法,充分满足轨迹给定的约束条件,保证关节位置轨迹、速度轨迹和加速度轨迹的连续性。通过理论分析和仿真验证了关节轨迹的时间起点和执行时间对关节运动轨迹曲线的影响。在此基础上,以避免超调量、能耗最小、轨迹最平滑等指标作为优化目标,计算关节轨迹执行时间的最优解集。通过数值仿真,证明优化后的运动轨迹可有效避免位置轨迹的超调量、提高机械臂的工作效率,并且保证关节位置始终处于机械臂的运动空间。依据该方法构建多关节运动时间间隔的约束条件,并以此为基础完成串联机械臂多关节轨迹规划。
     2、提出一套简单且实时性强的机械臂控制变量补偿方法以减少甚至消除机械臂的运动学误差。针对机械臂关节位置闭环控制系统提出一种配对交叉实数编码遗传算法,优化机械臂控制变量。同时,采用实时预测补偿控制方法,将关节位置期望输入信号以及根据位姿误差预测估计的控制变量补偿量作为控制系统的参考输入,优化关节位置闭环控制系统,对机械臂末端执行器的位姿误差进行补偿,以提升串联机械臂的绝对定位精度。在串联机械臂上进行的实验,结果表明该补偿策略可有效提高串联机械臂的运动精度。
     3、为了减小机械振动对机械臂运动精度造成的影响,设计主动动态平衡机构抵消机械臂承受的振动力或振动力矩。详细介绍了实时的主动动态平衡技术。首先介绍一维力平衡机构,分析机构的动力学模型。在此基础上研究一维力矩平衡机构,分析旋转圆盘的主动动态平衡原理,将该平衡机构安装在串联机械臂上以实现机械臂一维力矩动态平衡。实验验证了该机构的动态性能以及其主动消振性能。最后,为了实现振动力和振动力矩的同时消除,设计一个紧凑、易安装的三自由度动态平衡机构。
     论文为了满足串联机械臂严格的安装空间限制要求,将平衡机构设计为由三个独立运动的连杆构成。通过三个连杆旋转运动产生期望的转矩实现机械臂基座的力矩平衡,同时实时调整三个连杆在平面内的质心位置产生平衡力,从而同时实现机械臂基座的二维力以及一维力矩的动态平衡。采用拉格朗日方程对该机构的动力学进行分析,并计算平衡机构内部连杆的运动参数与其产生的平衡力以及平衡力矩的数学关系。在Matlab和Maple环境中进行数值仿真,验证了主动动态平衡机构的有效性、可靠性及灵活性。
The growing market for industrial and service robots requires the development of common and core technology for serial manipulators by taking insight into and addressing the related existing problems. As an important criterion for serial manipulators, motion accuracy is the key for perfect operation. Since application environments are becoming complex gradually, better motion accuracy of the manipulator is required. However, there is a big gap between the actual motion performance and the desired high accuracy robust motion performance of the manipulator, owing to the geometrical errors, ambient noise, vibration interferences of the manipulator. Therefore, improving motion accuracy of serial manipulator is of great significance in the development of robotic technology.
     With the goal of improving the motion accuracy of serial manipulator, the dissertation addresses the comprehensive study of a6-DOF serial manipulator, based on the integrated approach of theoretical analysis, numerical simulation and experimental validation. The research focuses on precision analysis, kinematics modeling, trajectory planning and optimization, real-time control system, parameter calibration, control variable compensation and active dynamic balancing of the serial manipulator.
     The innovative contents of the dissertation are summarized as follows:
     1. Research on trajectory optimization algorithm for serial manipulator is carried out. A fifth order polynomial is used for joint trajectory planning of the manipulator. Both theoretical analysis and simulation results illustrate that the execution time of the trajectory wields a lot of influence over the movements of the joints. In order to solve this problem, an optimizing method of execution time is proposed for generating smooth motion trajectories with smallest overshoot and lowest energy consumption. Numerical examples are presented in order to evaluate the performance of this optimizing method. Simulation results indicate that the high-performance of the optimized movements can produce effective enhancements of the productivity of the manipulator. On the basis of this optimization method, the execution time constraints of the multi-joint motion planning are established, and multi-joint motion planning for six-DOF manipulator are hence obtained.
     2. In order to reduce or even eliminate kinematics error of the manipulator's end-effector, a compensation method with high reliability, strong real-time capability is introduced in this dissertation. A real-coded and arithmetic recombination genetic algorithm is adopted in joints' closed-loop servo motion control system, with the aim to optimize the control variables. Optimized parameters are used in the real-time predictive compensation control system with the purpose of reducing the manipulator's motion errors. Numerical examples are presented in order to evaluate the performance of the compensation strategy, as well as the feasibility and effectiveness of improving positioning accuracy.
     3. In consideration of adverse impacts of the machine vibrations, an active dynamic balancing mechanism is designed to reduce the shaking forces and shaking moments of the manipulator. The dissertation presents the real-time active balancing techniques. A one-DOF force balancing,mechanism is firstly presented, and its dynamic modeling is built and analyzed. Moreover, the dissertation presents a study on a one-DOF moment balancing mechanism. Active vibration control for rotating machinery is explained in detail. Then the balancing machanism is mounted on an unbalanced serial manipulator, hence one-dimensional moment of the manipulator is dynamically balanced. Experiments are carried out with the aim to validate the dynamic performance of the balancing mechanism and the active vibration cancellation. Finally, a simple and compact three-DOF balancing unit is designed to balance both shaking-force and shaking-moment of the manipulator simultaneously.
     Due to the limited setting space, three independent links are used to constitute the balancing unit. By using the Lagrange equations, their dynamics model are established, and mathematical relations among the links' motion parameters and balancing-force and balancing-moment are formulated as well. In addition, numerical simulations are presented with the aim to give insight in the possibilities and effectiveness of three-DOF active dynamic balancing.
引文
[1]斯利格.机器人学的几何基础(第二版)[M].北京:清华大学出版社,2008.
    [2]张微微.6-DOF串联机器人动力学性能指标分析与仿真[D],燕山大学,2007.
    [3]蔡自新.机器人学[M].北京:清华大学出版社,2000.
    [4]蒋新松.机器人学导论[M].辽宁:机械工业出版社,1997.
    [5]向先波.主从遥控作业机械手控制系统研究[D].华中科学大学.2003。
    [6]Herman Bruyninckx. http://www.roble.info/roboties/serial/html/SerialRobots-lse2.html# x3-20002.2005.
    [7]朱世强,王宣银.机器人技术及其应用[M].浙江:浙江大学出版社,2007.
    [8]唐新华.焊接机器人的现状及发展趋势(二)[J].电焊机,2006,36(4):43-46.
    [9]孙斌,杨汝清.开放式机器人控制器综述[J].机器人,2001,23(4):374-378.
    [10]神原伸介,张炜.日本工业机器人最新发展动向[J].机器人技术与应用,2008,4:23-25.
    [11]丁渊明.6R型串联弧焊机器人结构优化及其控制研究[D].浙江:浙江大学,2009.
    [12]刘松国.六自由度串联机器人运动优化与轨迹跟踪控制研究[D].浙江:浙江大学,2009.
    [13]http://www.yr-robot.com/Pro_details.asp?ClassID=2&ID=12.
    [14]方建军.移动式采摘机器人研究现状与进展[J].农业工程学报,2004,20(2):273-277.
    [15]Markus Gsrebenstein, Patrick van der Smagt. Antagonism for a highly anthropomorphic hand-arm system [J]. Advanced Robotics,2008,22:39-55.
    [16]郭大宝.老人服务机器人机械臂的轻量化设计和分析[D].合肥:中国科学院合肥物质科学研究院,2011.
    [17]Vatchara Lertpiriyasuwat. Real-time estimation of end-effector position and orientation for manufacturing robots[D].U.S.A:Universtity of Washington,2000.
    [18]JUDD R P, KNASINSKI A B. A technique to calibrate industrial robots with experimental verification [J]. IEEE Trans. on Robotics&Automation,1991,6(1):20-30.
    [19]李祖踏,童水光.基于欧氏范数的刚体转动误差测度的分析[J].机器人,1999,21(1):30-33.
    [20]K. Okamura, F. Park. Kinematic calibration using the product of exponentials formula[J]. Robotica,1996,14:415-421.
    [21]I. Chen, G. Yang. Kinematic calibration of modular reconfigurable robots using product-of-exponentials formula[J]. Jounal of robot. System,1997,14(11):807-821.
    [22]S.-H. Kang, M.W. Pryor, D. Tesar. Kinematic model and metrology system formodular robot calibration[C], Proceedings of IEEE Conference on Robot and Automation,2004,3: 2894-2899.
    [23]S. K. Mustafa, G. Yang, S. H. Yeo, et al. Kinematic calibration of a 7-DOF self-calibrated modular cable-driven robotic arm[C]. Proceedings of IEEE Conference on Robot and Automation,2008,1288-1293.
    [24]J. Santolaria, J. Aguilar, J. Yag"ue, et al. Kinematic parameter estimation technique for calibration and repeatability improvement of articulated arm coordinate measuring machines[J]. Precision Engineering,2008,32(4):251-268.
    [25]Bennett, D.J., Hollerbach,J.M. Self-calibration of Single-loop, Closed kinematic chains formed by dual or redundant manipulators[C]. Proceedings of the 27th IEEE Conference on Decision and Control,1988,1:627-629.
    [26]Samad Hayati, Kam Tso, Gerald Roston. Robot Geometry calibration[C]. Proceedings of International Conference on Robotics and Automation,1988,2:pp.947-951.
    [27]Veitschegger, W.K. Robot Calibration and Compensation[J]. IEEE Journal of Robotics and Automation,1988,4(6):643-656.
    [28]Newman W S, Birkhimer C E, Horning R J, et al. Calibration of a Motoman P8 robot based on laser tracking[C]. Proceedings of International Conference on Robotics and Automation, San Francisco,2000. (4):3597-3602.
    [29]Gautier M, Janot A, Vandanjon P O. DIDIM:A new method for the dynamic identification of robots from only torque data[C]. Proceedings of International Conference on Robotics and Automation, Pasadena,2008,2122-2127.
    [30]Sun L, Liu J T, Sun W W, et al. Geometry-Based Robot Calibration Methoed[C]. Proceedings of International Conference on Robotics and Automation, New Orleans, LA,2004, 2:1907-1912.
    [31]任永杰,邾继贵,杨学友,等.利用激光跟踪仪对机器人进行标定的方法[J].机械工程学报.2007,43(9):195-200.
    [32]Jorge Santolaria, Jose-Antonio Yagiie, Roberto Jimenez, et al. Calibration-based thermal error model for articulated arm coordinate measuring machines[J]. Precision Engineering,2009, 33(4):476-485.
    [33]Zhuang, H., Wu, J., Huang, W. Optimal planning of robot calibration experiments by genetic algorithms[C]. Proceedings of International Conference on Robotics and Automation,1996,2: 981-986.
    [34]Alici G, Shirinzadeh B. A systematic technique to estimate positioning errors for robot accuracy improvement using laser interferometry based sensing[J]. Mechanism and Machine Theory,2005,40(8):879-906.
    [35]Zhong Xiaolin, Lewis J, Nnagy F. Inverse robot calibration using artificial neural networks[J]. Engineering Applications of Artificial Intelligence,1996,9(1):83-93.
    [36]Shamma J S, W Hitney D E. A method for inverse robot calibration[J]. Transactions of the ASME,1987,109(1):36-43.
    [37]Kesheng Wang. Application of genetic algorithms to robot kinematics calibration [J]. International Journal of Systems Science,2009,40(2):147-153.
    [38]Xiao-Lin Zhong, John M Lewis. A new method for autonomous robot calibration[C]. Proceedings of robotics and automation,1995,2:1790-1795.
    [39]Dali Wang, Ying Bai. Improving position accuracy of robot manipulators using neural networks[C]. Proceedings of instrumentation and measurement technology conference,2005, 2:1524-1526.
    [40]Gursel Alici, Romuald Jagielski, Ahmet Sekercioglu, et al. Prediction of geometric errors of robot manipulators with Particle Swarm Optimisation method[J]. Robotics and autonomous systems,2006,54(12):956-966.
    [41]何炳蔚,林志航.易与CMM集成的线激光视觉传感器建模及标定技术[J].机器人,2002,24:513-516.
    [42]Motyl, G., Martinet, P., Gallice, J., et al. Visual servoing in robotics scheme using a camera/ laser-stripe sensor[J]. IEEE Transactions on Robotics and Automation,1996,12(5),743-750.
    [43]王东署,张志佳,史泽林.基于视觉定位的脑外科机器人坐标变换问题研究[J].计算机工程与应用,2005,14-16.
    [44]Bonarini, A., Aliverti, P., Lucioni, M. An omnidirectional vision sensor for fast tracking for mobile robots[J]. IEEE Transactions on Instrumentation and Measurement,2000,49(3),509-512.
    [45]Whitcomb, L.L.,Taylor, R.H., Jensen, P. A miniature microsurgical instrument tip force sensor for enhanced force feedback during robot-assisted manipulation[J]. IEEE Transactions on Robotics and Automation,2003,19(5):917-921.
    [46]Paul, R.P., Hillberry, B. The effect of wrist force sensor stiffness on the control of robot manipulators. Proceedings of International Conference on Robotics and Automation,1985,2: 269-274.
    [47]M Uchiyama, E Bayo, E Palma-Villalon. A systematic design procedure to minimize a performance index for robot force sensors[J]. ASME Transactions on Journal of Dynamic,1991, 113(3):388-394.
    [48]Komatsu, T., Uchiyama, K.. Dexterous anthropomorphic robot hand with distributed tactile sensor:Gifu hand Ⅱ[J]. IEEE/ASME Transactions on Mechatronics,2002,7(3):296-303.
    [49]Onishi, M., Odashima, T., Hirano, S., et al. Development of the Tactile Sensor System of a Human-Interactive Robot "RI-MAN"[J]. IEEE Transactions on Robotics,2008,24(2),505-512.
    [50]Kerpa, O., Weiss, K., Worn, H. Development of a flexible tactile sensor system for a humanoid robot[C]. Proceedings of Intelligent Robots and Systems,2003,1:1-6.
    [51]Monteverde, E.A., Howe, R.D..A tactile sensor for localizing transient events in manipulation[C]. Proceedings of Robotics and Automation,1994,1:471-476.
    [52]Corke, P.I. Real-time vision, Tracking and Control[C]. Proceedings Of International Conference on Robotics and Automation,2000,1:622-629.
    [53]P. Corkc. Visual control of robot manipulators-A review[J]. Issual Srrvoing K. Hashimoto. Ed. Singapore:World Scientific,1993,1-31.
    [54]Preising, Boris Martin. Computer vision based robot calibration and control[D]. U.S.A: University of California,1990.
    [55]Y. Shirai, H. Inoue. Guiding a robot by visual feedback in assembling tasks[J]. Puttern Recognil,1973,5:99-108.
    [56]J. Hill, W. T. Park. Real time control of a robot with a camera[C]. Proceedings of 9th ISIR, Washington, D.C.,1979,233-246.
    [57]S. Ganapathy. Real-time motion tracking using a single camera[D]. U.S.A:Technical Memorandum, AT&T Bell Laboratories,1984.
    [58]Zheng li. Visual Servoing in Robotic Manufacturing Systems for accurate positioning[D], Canada:Concordia University,2007.
    [59]Seth Hutchinson. A tutorial on visual servo control[J]. IEEE Transactions On Robotics And Automation,1996,12(5):651-670.
    [60]Peter I. Corke. Performance Tests for Visual servo control systems, with application to Partitioned approaches to visual servo control[J]. International Journal Of Robotics Research,2003,20(10-11):955-981.
    [61]K Lau, RJ Hocken, WC Haight. Automatic laser tracking interferometer system for robot metrology[J]. Precision Engineering,1986,8(1):3-8.
    [62]M Vincze, JP Prenninger, H Gander. A laser tracking system to measure position and orientation of robot end effectors under motion[J]. The International journal of robotics research, 1994,13(4):305-314.
    [63]O Nakamura, M Goto, K Toyoda, N Takai. A laser tracking robot-performance calibration system using ball-seated bearing mechanisms and a spherically shaped cat's-eye retroreflector[J]. Review of Scientific Instruments,1994,65(4):1006-1011.
    [64]K Lau, R Hocken, L Haynes. Robot performance measurements using automatic laser tracking techniques[J]. Robotics and Computer-Integrated Manufacturing, 1985,2(3-4):227-236.
    [65]Mayer, J.R.R. A portable instrument for 3-D dynamic robot measurements using triangulation and laser tracking[J], IEEE Transactions on Robotics and Automation,1994,10(4),504-516.
    [66]Liu Guo-cheng, Wang Yong-Ji. An algorithm for multi-sensor data fusion target tracking[C]. Proceedings of Control and Decision Conference,2008,3311-3316.
    [67]Luo, R.C, Lin, M.H, Scherp,R.S.. Dynamic multi-sensor data fusion system for intelligent robots[J], IEEE Journal of Robotics and Automation,1988,4(4):386-396.
    [68]Chand, A., Yuta, S..Vision and laser sensor data fusion technique for target approaching by outdoor mobile robot[C].Proceedings of International Conference on Robotics and Biomimetics, 2010,1624-1629.
    [69]Robert James Bickel. Disturbance Observer based robot control with applications to force conrol[D]. U.S.A:University of California at Berkeley,1996.
    [70]刘金锟.机器人控制系统的设计与MATLAB仿真[M],清华大学出版社,2008.
    [71]Saridis, G.N.. Intelligent robotic control[J]. IEEE Transactions on Automatic Control,1983, 28(5):547-557.
    [72]Leslie, A., Oscar C., Patricia, M., et al. Intelligent Control of an Autonomous Mobile Robot using Type-2 Fuzzy Logic[J]. Engineering Letters,2006,13(2):13-16.
    [73]D. Chwa.. Sliding-Mode Tracking Control of Nonholonomic Wheeled Mobile Robots in Polar coordinates [J]. IEEE Transactions on Control Systems Technology.2004,12(4):633-644.
    [74]Pramod Gupta, Naresh K. Sinha.Intelligent control of robotic manipulators:experimental study using neural networks[J]. Mechatronics,2000,10(1-2):289-305.
    [75]Lingli Cui,Jianyu Zhang,Lixin Gao. Intelligent Control of a Flexible Manipulator Using a Robust Controller[C]. Proceedings of Third International Conference onNatural Computation, 2007,4:248-250.
    [76]Gangbing Song. Robust control and adaptive robust control of robot manipulators [M]. U.S.A: Columbia University,1995.
    [77]胡绳荪,李顺华,孙栋.焊缝跟踪模糊控制器的研究[J].电焊机,2000,30(9):32-34.
    [78]M Norrlof. An adaptive iterative learning control algorithm with experiments on an industrial robot[J]. IEEE Transactions on Robotics and Automation,2002.18(2):245-251.
    [79]JJE Slotine, W Li. On the adaptive control of robot manipulators [J]. The International Journal of Robotics Research,1987,6(3):49-59.
    [80]F Mondada, E Franzi, P Ienne. Mobile robot miniaturisation:A tool for investigation in control algorithms [J]. Experimental Robotics Ⅲ,1994,501-513.
    [81]T Yoshikawa. Analysis and control of robot manipulators with redundancy, Robotics research: the first international,1984.
    [82]张立勋,路敦民,王岚,等.基于差动机构的五连杆式人机合作机器人的动力学分析[J].机器人,2004,26(2):123-126.
    [83]PC Parks, J Militzer. A comparison of five algorithms for the training of CMAC memories for learning control systems [J]. Automatica,1992,28(5):1027-1035.
    [84]J.S. Albus. A New Approach to Manipulator Control:The Cerebellar Model Articulation Controller[J]. Journal of dynamic systems,measurement and control.1975,237-240.
    [85]JJ Buckley. Fuzzy hierarchical analysis[J], Fuzzy sets and systems,1985,17(3).233-247.
    [86]EH Mamdani, S Assilian. An experiment in linguistic synthesis with a fuzzy logic controller [J], International journal of man-machine studies,1999,51(2):135-147.
    [87]W Li, C Ma, FM Wahl. A neuro-fuzzy system architecture for behavior-based control of a mobile robot in unknown environments[J]. Fuzzy Sets and Systems,1997,87(2):133-140.
    [88]C Zhou, Q Meng. Dynamic balance of a biped robot using fuzzy reinforcement learning agents[J]. Fuzzy sets and systems,2003,134(1):169-187.
    [89]BK Yoo, WC Ham. Adaptive control of robot manipulator using fuzzy compensator[J]. IEEE Transactions on Fuzzy Systems,2000,8(2):186-199.
    [90]CC Lee. Fuzzy logic in control systems:fuzzy logic controller [J]. IEEE Transactions on Systems, Man and Cybernetics,1990,20.(2):404-418.
    [91]Gang Qi. Optimal design of a lightweight robotic manipulator using carbon fiber-reinforced composites [D]. Canada:McGill University,2004.
    [92]费业泰.精度理论若干问题研究进展与未来[J].中国机械工程,2000,11(3):255-259.
    [93]孙麟治,李鸣鸣,程维明.精密定位技术研究[J].光学精密工程,2005,13:69-75.
    [94]焦国太,阿.德.依科拉夫,余跃庆.工业机器人位姿误差的计算[J].机械科学与技术,2002,21:35-39.
    [95]刘伟.串联式大行程高分辨率传动系统[J].机械制造,2004,42(478):31-33.
    [96]Denavit, J., Hartenberg, R.S.. A Kinematic Notation for Lower-pair Mechanisms Based on Matrices[J]. Journal of Applied Mechanics, ASME,1955,22:215-221.
    [97]穆海华,周云飞,严思杰,等.超精密点对点运动3阶轨迹规划算法研究[J].机械科学与技术,2008,27(2):234-240.
    [98]贾松涛,朱煜,尹文生,等.超精密工作台运动轨迹规划[J].设计与研究,2007:14-17.
    [99]Roover D, Sperling F. Point-to-point control of a high accuracy positioning mechanism [C]. Proceedings of the American control conference, Albuquerque, New Mexico,1997,1350-1354.
    [100]Dijkstra B G, Rambaratsingh N J, Scherer C, et al. Input design for optimal discrete-time point-to-point motion of an industrial XY positioning table [C]. Proceedings of the 39th IEEE conference on decision and control, Sydney, Australia,2000,901-906.
    [101]Zhou L, Misswa E A. Vibration suppression control profile generation with both acceleration and velocity constraints [C]. Proceedings of the American control conference, Portland,2005,4736-4741.
    [102]孙亮,马江,阮晓钢.六自由度机械臂轨迹规划与仿真研究[J].控制工程,2010,17(3):388-392.
    [103]贾庆轩,陈钢,孙汉旭,等.基于A*算法的空间机械臂避障路径规划[J].机械工程学报,2010,46(13):109-115.
    [104]谢文龙,苏剑波.基于状态空间的机械臂轨迹规划[J].控制与决策,2009,24(1):49-54.
    [105]Korayem M H,Nikoobin A. Maximum Payload for Flexible Joint Manipulators in Point-to-point Task Using Optimal Control Approach[J].The International Journal of Advanced Manufacturing Technology,2008,38(9):1045-1060.
    [106]戈新生,张奇志,刘延柱.基于遗传算法的空间机械臂的运动规划的最优控制[J].空间科学学报,2000,20(2):185-190.
    [107]Mobri A, Marushima S, Yamamoto M. Collision free trajectory planning for manipulator using potential function[J]. Robot and Automation,1995,3069-3074.
    [108]Volpe R, Khosla P. Manipulator control with superquadric artificial potential function[J]. Systems Man and Cybernetics,1990,379-386.
    [109]S.Cavalieri, A.D.Stefano, O.Mirabella. Impact of fieldbus on communication in robotic systems [J]. IEEE Transactions on Robotics and Automation,1997,13 (1):30-48.
    [110]S.Cavalieri, A.D.Stefano, O.Mirabella. Meeting time requirements in robotics by a fieldbus communication system [J].Industrial Electronics and Control Instrumentation,1993,3: 1915-1920.
    [111]D.Buhler, G.Nusser, W.Kuchlin, et al. The Java fieldbus control framework-object oriented control of fieldbus devices [J]. Object-Oriented Real-Time Distributed Computing,2001,153-160.
    [112]S. H. Hong. Experimental performance evaluation of Profibus-FMS [J]. IEEE Robotics & Automation,2000,7(4):64-72.
    [113]A.Valera, J.Salt, V.Casanova, S.Ferrus. Control of industrial robot with a fieldbus[J]. Emerging Technologies and Factory Automation,1999,2(2):1235-1241.
    [114]S.Hasnaoui, O.Kallel, R.Kbaier, S.B.Ahmed. An implementation of a proposed modification of CAN protocol on CAN fieldbus controller component for supporting a dynamic priority policy [C]. Industry Applications Conference,2003,1:23-31.
    [115]J.A Janet, W.J.Wiseman, R.D. Michelli, A.L.Walker. Applications of control networks in distributed robotic systems [J]. Systems, Man, and Cybernetics,1998,4:3365-3370.
    [116]S.Hasnaoui, A.Bouallegue. A proposal modification of CAN protocol to support a dynamic priority policy being able to be implemented on CAN fieldbus controller components [C]. Industry Applications Conference,2000,2:1129-1136.
    [117]王东署,李光彦,徐方,等.机器人标定算法及在打磨机器人中的应用[J].机器人,2005,27(6):491-497.
    [118]刘振宇,陈英林,曲道奎,等.机器人标定技术研究[J].机器人,2002,24(5):447-450.
    [119]Xiao-Lin Zhong, John M Lewis. A New Method for Autonomous Robot Calibration[C], Proceedings of International Conference on Robotics and Automation,1995, (2):1790-1795.
    [120]Yu Liu, Bin Liang, Wenyi Qiang, et al. Improvement on Robots Positioning Accuracy Based on Genetic Algorithm[C]. Proceedings of Computational Engineering in Systems Applications, Beijing, China,2006,(1):387-392.
    [121]Ruibo He, Yingjun Zhao, Shunian Yang, et al. Kinematic-Parameter Identification for Serial-Robot Calibration Based on POE Formula[J], IEEE transactions on robotics,2010,26(3), 411-423.
    [122]李祖踏,童水光.基于欧氏范数的刚体转动误差测度的分析[J].机器人,1999,21(1):30-33.
    [123]刘松国,朱世强,李江波,等.6R机器人实时逆运动学算法研究[J].控制理论与应用,2008,25(6):1037-1041.
    [124]Gursel Alici, Romuald Jagielski, Y. Ahmet Sekercioglu, et al. Prediction of geometric errors of robot manipulators with Particle Swarm Optimisation method[J], Robotics and Autonomous Systems,2006,54(12):956-966.
    [125]Giirsel Alici, Bijan Shirinzadeh. A systematic technique to estimate positioning errors for robot accuracy improvement using laser interferometry based sensing[J], Mechanism and Machine Theory,2005,40(8):879-906.
    [126]Yangnian Wu, C. M. Gosselin. On the Dynamic Balancing of Multi-DOF Parallel Mechanisms with Multiple Legs[J]. Journal of Mechanical Design,2007,129(2):234-238.
    [127]K. D. Devine, E. G Boman, R. T. Heaphy. New challenges in dynamic load balancing[J]. Applied Numerical Mathematics,2005,52(2-3):133-152.
    [128]H. Chaudhary, S. K. Saha. Balancing of four-bar linkages using maximum recursive dynamic algorithm[J]. Mechanism and Machine Theory,2007,42(2):216-232.
    [129]S. T. Chiou, M. G Shieh, R. J. Tsai. The Two-Rotating-Mass Balancers for Partial Balancing of Spatial Mechanisms[J]. Mechanism and Machine Theory,1997,32(5):617-628.
    [130]Gursel Alici, Bijan Shirinzadeh.Optimum Dynamic Balancing of Planar Parallel Manipulators Based on Sensitivity Analysis [J]. Mechanism and Machine Theory, 2006,41(12):1520-1532.
    [131]Douglas G. Down, Mark E. Lewis. Dynamic load balancing in parallel queueing systems: Stability and optimal control[J]. European Journal of Operational Research, 2006,168(2):509-519.
    [132]T. A. H Coelho, Liang Yong, V. A. Alves. Decoupling of Dynamic Equations by Means of Adaptive Balancing of 2-Dof Open-Loop Mechanisms[J]. Mechanism and Machine Theory, 2004,39(8):871-881.
    [133]Volkert van der Wijk, Just L. Herder. Comparison of Various Dynamic Balancing Principles Regarding Additional Mass and Additional Inertia[J]. Journal of Mechanisms and Robotics,2009,1(4).
    [134]Simon Foucault, C. M.Gosselin. Synthesis, Design, and Prototyping of a Planar Three Degree-of-Freedom Reactionless Parallel Mechanism[J]. Journal of Mechanical Design,2004, 126(6):992-999.
    [135]Soo-Hun Lee, Bong-Suk Kim, et al. A Study on Active Balancing for Rotating Machinery Using Influence Coefficient Mechod[C]. Proceedings of International Symposium on Computational Intelligence in Robotics and Automation, Espoo, Finland,2005,659-664.
    [136]Yangnian Wu, C. M. Gosselin. Design of Reactionless 3-DOF and 6-DOF Parallel Manipulators Using Parallelepiped Mechanisms[J]. IEEE Transactions on Robotics,2005,21(5): 821-833.
    [137]C. M. Gosselin, Brian Mooreb, Josef Schicho. Dynamic balancing of planar mechanisms using toric geometry[J]. Journal of Symbolic Computation,2009,44(9):1346-1358.
    [138]I.S.Kochev. Active Balancing of the Frame Shaking Moment in High Speed Planar Machines[J].Mechanism and Machine Theory,1992,27(1):53-58.
    [139]I.S.Kochev. General Method for Active Balancing of Combined Shaking Moment and Torque Fluctuations in Planar Linkages[J]. Mechanism and Machine Theory,1990, 25(6):679-687.
    [140]I. Ebert-Uphoff, A. Dang. Active acceleration compensation for transport vehicles carrying delicate objects[J]. IEEE Transactions on Robotics,2004,20(5):830-839.
    [141]M. Hassouneh, H. Lee, E. Abed. Washout filters in feedback control:benefits, limitations and extensions[C]. Proceedings of American Control Conference, Boston, USA,2004,3950-3955.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700