用户名: 密码: 验证码:
基于气动复合弹性体柔性关节机械手研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科技发展和社会进步,工业产品装卸与装配、军事机器人、农业机器人、伤残人员和服务机器人中需要大量的柔性机械手,完成类似人手的功能,代替人实现灵巧操作。因此,研究具有较高柔性和灵活性的仿人机械手的新型结构与理论,具有重要的学术价值和应用前景。
     气动仿人柔性五指机械手通过控制气压实现手指各关节的变形,完成机械手抓取操作。其研制目的是模拟人手的外形和功能,实现机械手对不同物体抓取的适应性。为了提高机械手的柔顺性,本文研制了一种新型气动人工肌肉,并在此基础上开发了气动多向弯曲柔性关节和无轴多铰链的单向弯曲柔性关节。柔性关节属于关节本体和驱动装置为一体的气动复合弹性体。建立了新型气动人工肌肉和两种柔性关节的力学理论模型,获得了气动人工肌肉的旋伸特性、单向弯曲关节和多向弯曲关节的弯曲特性,并通过静力学实验对理论模型进行了验证。
     利用两种柔性关节从仿生角度出发,提出了一种仿人柔性五指机械手。该柔性机械手外形尺寸与人手相近,具有5个手指,每个手指由三个柔性关节组成。除大拇指外的其余四指基关节采用多向弯曲关节,近关节和远关节采用单向弯曲关节,可以实现手指的正屈、反弯和侧摆。大拇指基关节和近关节采用多向弯曲关节,远关节采用单向弯曲关节,可以实现大拇指多个方向的弯曲和摆动,可以实现类似人手的抓握、夹取、推拨、搓揉、捏拿、拎按,旋拧等功能。通过手指夹持力理论研究分析了机械手的抓取能力,采用测力仪进行了手指夹持力实验对建立的理论模型进行了验证,获得了手指各关节内气压对夹持力的影响。
     本文研究了具有大变形非线性特征的柔性关节机械手运动学和动力学性能。采用齐次坐标变换,建立了机械手的运动方程并进行了机械手运动学仿真,分析了机械手的工作空间,模拟了机械手的运动姿态和机械手对不同形状物体的抓取,验证了机械手的灵活性和功能性。根据建立的人工肌肉、柔性关节和机械手手指的动力学模型,分析了人工肌肉、柔性关节和手指振动的固有频率。采用高速摄像机等实验装置进行了气动复合弹性体柔性关节动力学实验,研究了人工肌肉、柔性关节和机械手手指的动力学性能,为机械手的控制模型提供了依据。制定了气动仿人柔性五指机械手的抓取策略和控制方案,利用机械手气动控制平台,完成了机械手对不同形状物体的抓取实验,验证了机械手的功能性。
     论文的研究工作对于实现仿生柔性机械手提供了一种解决方案,为其应用打下了理论和实验基础。
With the social development and scientific technology progresses,numerous flexible robot hands are required for the loading or unloading as well as theassembling the industrial products, military robots, agricultural robots, service robotsor the disabled persons who lost their hands. Thus, the humanoid robot hand with highflexibility has attracted increasing attention; research and development of humanoidrobot hand have important academic value and application prospect.
     The robot hand completes the grasp operation by controlling the air pressure ofthe joint to achieve the deformation of the finger. The humanoid robot hand imitatesthe both shape and function of human hand as much as possible. To improve theflexibility and compliance of the robot hand, we develop a new type of pneumaticartificial muscles with elongation and torsion, furthermore, we develop themuti-directional bending flexible joint which noumenon as well as driving systemcombined into one and single bending joint with good transversal stability. Weestablished the mechanics model on pneumatic artificial muscle and two types offlexible joints get the mechanical properties of them, then the statics experiments weredone to verify the theoretical model.
     We design the structure of the humanoid robot hand based on bionic principles,the humanoid robot hand has five fingers and each finger is composed by threeflexible joints. The base joint of index finger and other fingers except for the thumbemploy muti-directional bending flexible joint, both the proximal joint and the distaljoint employ single bending joint. The Series connection of the joints leads to theflexion, extension, abduction and adduction. The base joint and proximal joint employthe muti-directional bending flexible joint and the distal joint employ single bendingjoint which achieve the bending and swinging in any direction. The humanoid robothand can complete grasp, grip, push and dial and screw with the cooperation of all thefingers. We analyse on the grasp force of the robot hand by means of studying theclamping force of the fingers. The clamping force experiments have been done using dynamometer to verify the theoretical model.
     The flexible joints are pneumatic composite elastomer, resulting the complicatedkinematics and dynamics performance of the humanoid robot hand. We establish thekinematic equations of the robot hand using homogeneous transformation, then wehave the kinematics simulation on the robot hand and analyze the workspace of therobot hand, moreover, the grasp operation to different shapes of objects was simulatedwhich verify the flexibility and function of the robot hand. We study the naturalfrequency of the artificial muscle, flexible joints and the finger according to to theirdynamic models. The dynamic experiments have been done on the kineticexperimental apparatus, which provides a basis for the control model of the robothand. At the same time, we propose the grasp strategy and the corresponding controlscheme, the grasp experiments to different shape objects were done on the pneumaticcontrol platform of the robot hand to verify the function of the robot hand.
     The research of thesis presents the ideal solution for the bionic flexible robothand, and lays a theoretical and experimental basis for the application of the robothand.
引文
[1]蔡自兴.机器人学[M].北京:清华大学出版社,2000.
    [2]姜力,蔡鹤皋,刘宏.新型集成化仿人手指及其动力学分析[J].机械工程学报,2004,40(4):139-143.
    [3] Dechev N, Cleghorn W L, Naumann S. Multiple finger passive adaptive grasp prosthetichand[J]. Mechanism and Machine Theory,2001,36(10):1157-1173.
    [4] Zhang Libin,Wang Zhiheng,Yang Qinghua,et al. Development and simulation of ZJUTHand based on flexible pneumatic actuator FPA[C]. Proceedings of IEEE InternationalConference on Mechatronics and Automation,2009:1634-1639.
    [5] Tao Geng,Mark Lee, Martin Hülse. Transferring human grasping synergies to a robot [J].Mechatronics,2011,21:272-284.
    [6] A. Caffaz, G. Casalino, G. Cannata, G. Panin, and E.Massucco. The DIST-Hand, AnAnthropomorphic, Fully Sensorized Dexterous Gripper[C]. IEEE Humanoids2000,2000.
    [7] Ambrose R O, Aldridge H, Askew R S, et al. NASA’s space humanoid [J]. IEEEIntelligent Systems,2000,15:57-63.
    [8] Tondu B, Ippolito S, Guiochet J, Daidie A. A seven-degrees-of-freedom robot-armdriven by pneumatic artificial muscles for humanoid robots [J]. The InternationalJournal of Robotics Research,2005,24:257-273.
    [9] Bicchi A, Tonietti G. Design, realization and control of soft robot arms for intrinsicallysafe interaction with humans[C]. Proceedings of IARP/RAS Workshop on TechnicalChallenges for Dependable Robots in Human Environments,2002:79-87.
    [10]周明镇,孙艾玲.动物的发展与人类起源[M].北京:科学出版社,1978.
    [11] Lim Mee-Seub,Oh Sang-Rok,Son Jaebum.A Human-Like Real-Time Grasp SynthesisMethod for Humanoid Robot Hands[J]. Robotics and Autonomous Systems,2000,30:261-271.
    [12] Ilhwan Kim, Nobuaki Nakazawa, Hikaru Inooka. Control of A Robot Hand EmulatingHuman’s Hand-over Motion [J]. Mechatronics,2002,12:55-69.
    [13] Popov B. The bio-electrically controlled prosthesis [J]. Journal of Bone&Surgery,1965,47(3):421-424.
    [14] Tomovic R, Boni G M. An adaptive artificial hand [J]. IRE Transactions on AutomaticControl,1962,7(3):3-10.
    [15] Okada T. Computer control of multijointed finger system for precise object–handing[J].Transactions on Systems,Man and Cybernetics,1982,12(3):289-299.
    [16] Hanafusa H, Asada H. Stable prehension by a robot hand with elastic fingers [M]. MITPress,1982.
    [17] Mark E. Posheim. Robot Evolution-the Development of Anth–robotics [M].Cambridge: The MIT Press,1987.
    [18] Salisbury J K, Graig J J. Articulated hands: Force control and kinematic issues [J].International Journal of Robotic Research,1982,1(1):4-17.
    [19] Jacobsen S C, Wood J E, Knutti E F, et al. The UTAH/MITDextrous Hand:Work inProgress[J]. The International Journal of Robotics Research,1984,3(4):21-50.
    [20] Jingzhou Yang, Esteban Pena Pitarch, Karim Abdel-Malek, Amos Patrick, LarsLindkvist.A multi-fingered hand prosthesis[J]. Mechanism and Machine Theory,2004,39:555-581.
    [21] F. Lotti, P. Tiezzi, G. Vassura. Development of UB Hand3: Early Results[C].Proceedings of the2005IEEE International Conference on Robotics and Automation,2005:4499-4504.
    [22] Zhang W, Che D, Chen Q, et al. Development of Gesture-Changeable under-actuatedHumanoid Robotic Finger [J]. Chinese Journal of Mechanical Engineering,2010,23(2):142-148.
    [23]张文增,马献德,黄源文.末端强力抓取的欠驱动拟人机器人手[J].清华大学学报(自然科学版),2009,49(2):194-197.
    [24]兰天.多指仿人机器人灵巧手的同步控制研究[D].哈尔滨工业大学,2010.
    [25]兰天,刘伊威,金明河,姜力,樊绍巍,刘宏. DLR/HIT II灵巧手控制系统及基关节同步控制[J].电机与控制学报,2009,13(4):608-614.
    [26]张立彬,王志恒,杨庆华,鲍官军.气动柔性五自由度手指运动分析及控制[J].中国机械工程,2008,19(22):2661-2665.
    [27] Wang Zhiheng, Bao Guanjun, Zhang Libin, Yang Qinghua. Development and ControlofFlexible Pneumatic Wall-climbing Robot [J]. Journal of Central South University ofTechnology,2009,16(6):961-970.
    [28]王志恒,钱少明,杨庆华,等.气动机器人多指灵巧手——ZJUT Hand[J].机器人,2012,34(2):223-230.
    [29]鲍官军,王志恒,杨庆华,邵铁锋,高峰,张立彬.气动柔性扭转关节动态特性研究[J].农业机械学报,2010,41(6):204-207.
    [30] Dexu Geng, Ji Zhao,Lei Zhang, Yunwei Zhao. Structural Design and Position andPosture Analysis of Five-fingered Robot Hand based on Pneumatic Flexible Joint[J].Applied Mechanics and Materials,2011,46:2877-2882.
    [31] Y. Zhang, Z. Han, H. Zhang, X. Shang, T. Wang, W. Guo. Design and Control of theBUAA Four-Fingered Hand[C]. Proceedings of the2001IEEE International Conferenceon Robotics&Automation,2001:2517-2522.
    [32] J. Butterfass, M. Grebenstein, H. Liu, G. Hirzinger. DLR-Hand II: Next Generation of aDextrous Robot Hand[C]. Proceedings of the2001IEEE International Conference onRobotics&Automation,2001:109-114.
    [33] I. Yamano, K. Takemura, T. Maeno. Development of a Robot Finger for Five-fingeredHand Using Ultrasonic Motors [C]. Proceedings of IEEE International Conference onIntelligent Robots and System,2003:2648–2653.
    [34] http://www.shadow.org.uk/products/newhand.shtml.
    [35] A. Kargov. Development of an Anthropomorphic Hand for a Mobile Assistive Robot[C]. IEEE9th International Conference on Rehabilitation Robotics: Frontiers of theHuman-Machine Interface,2005.
    [36] M. T. Mason, J. K. Salisbury. Robot Hands and the Mechanics of Manipulation [M].Cambridge:The MIT Press,1985.
    [37] http://www.roboticfan.com/article/html/841.shtml
    [38] Mitsuru Higashimori, Hieyong Jeong, Idaku Ishii, et al. A New Four-Fingered RobotHand with Dual Turning Mechanism[C]. Proceedings of the2005IEEE InternationalConference on Robotics and Automation,2005.
    [39] J. Ueda, Y. Ishida, M. Kondo, T. Ogasawara, Development of the NAIST-Hand withvision-based tactile fingertip sensor[C]. IEEE Int. Conf. on Robotics and Automation,ICRA2005,2005:2343–2348.
    [40] Masahiro Kondo,Jun Ueda,Tsukasa Ogasawara. Recognition of in-hand manipulationusing contact state transition for multifingered robot hand control [J]. Robotics andAutonomous Systems,2008,56:66–81.
    [41] Kenji KANEKO, Kensuke HARADA, and Fumio KANEHIRO, Development ofMulti-fingered Hand for Life-size Humanoid Robots[C].2007IEEE InternationalConference on Robotics and Automation,2007,913-920.
    [42] T. Lan, Y.W. Liu, M.H. Jin, S.W. Fan, Z.P. Chen, H. Liu. Study of ultra-miniature giantmagneto resistance sensor system based on3D static magnetic analysis technique [J].Measurement,2009,42(7):1011-1016.
    [43] T. Lan, Y.W. Liu, M.H. Jin, S.W. Fan, H.G. Fang, J.J. Xia, H. Liu.DSP&FPGA-basedjoint impedance controller for DLR/HIT II dexterous robot hand[C].2009IEEE/ASMEInternational Conference on Advanced Intelligent Mechatronics (AIM2009),2009:1594-1599.
    [44] C. Lovchik, H. Aldridge, M. Diftler. Design of the NASA Robonaut Hand[C].Proc.ASME Dynamics and Control Division, Soc. of Mechanical Engineers,1999:813-830.
    [45] Olga van der niet otr, Heleen A.Reinders-messelink, The i-limb hand and the DMC plushand compared: A case report[J]. prosthetics and orthotics international infoma,2010,34(2):216-220.
    [46] Said Ghani Khan, Jamaludin Jalani, Guido Herrmann, etc al.Task Space Integral SlidingMode Controller Implementation for4DOF of a Humanoid BERT II Arm with PostureControl [J]. Lecture Notes in Computer Science.2011,68:299-310.
    [47] http://baike.baidu.com/view/6770033.htm
    [48] Wenzeng Zhang, Demeng Che, Qiang Chen, Dong Du. A Dexterous and Self-adaptiveHumanoid Robot Hand: Gesture-Changeable Under-Actuated Hand[C]. ICIRA,2009,515-525.
    [49] Da-peng Yang, Jing-dong Zhao, Yi-kun Gu. An Anthropomorphic Robot HandDeveloped Based on Underactuated Mechanism and Controlled by EMG Signals[J].Journal of Bionic Engineering,2009,6:255-263.
    [50] Yuichi Kurita, Yasuhiro Ono, Atsutoshi Ikeda, Tsukasa Ogasawara. Human-sizedanthropomorphic robot hand with detachable mechanism at the wrist [J]. Mechanismand Machine Theory,2011,46:53-66.
    [51] Jingzhou Yang, Esteban Pena Pitarch, Karim Abdel-Malek. A multi-fingered handprosthesis [J]. Mechanism and Machine Theory,2004,39:555-581.
    [52] Jason Potratz,Jingzhou Yang,Karim Abdel-Malek. A Light Weight Compliant HandMechanism with High Degrees of Freedom [J]. ASME,2005,127(11):934-945.
    [53] A. Schulz, C. Pylatiuk, A. Kargov, R. Oberle, and G. Bretthauer.Progress in thedevelopment of anthropomorphic fluidic hands and their applications[C]. Mechatronics&Robotics2004,2004:936-941.
    [54] Http://www.eng.vt.edu/news/virginia-techs-romela-develops-low-cost-dexterous-robotic-hand-operated-compressed-air.
    [55] Wang Zhiheng, Bao Guanjun, Zhang Libin, Yang Qinghua, Qian Shaoming. Design andControl of Integrated Pneumatic Dexterous Robot Finger [J]. Journal of Central SouthUniversity of Technology,2011,18(3):1105-1114.
    [56]王志恒.基于FPA的新型气动机器人多指灵巧手研究[D].浙江工业大学,2011.
    [57]耿德旭.双向主动弯曲气动柔性关节及其在机械手中的应用[D].吉林大学,2011.
    [58] T. Maeno. Non-linear analysis and control of power ultrasonic motors [J]. Next-Generation Actuator Leading Breakthroughs,2007,4:109-112.
    [59] M. Shahinpoor, K.J. Kim.The effect of surface-electrode resistance on the performanceof ion polymer–metal composite (IPMC) artificial muscles[J]. Smart Materials andStructures,2000,9:543-551.
    [60] H. Meier, L. Oelschlaeger. Numerical thermomechanical modelling of shape memoryalloy wires[J]. Materials Science and Engineering A,2004,378:484-489.
    [61] Nakano Y, Fujie M, Hosad A Y. Hitachi’s robot hand [J]. Robotics Age,1984,6(7):18-20.
    [62] Akihiro Yamaguchi, Kenjiro Takemur, Shinichi Yokot, Kazuya Edamura. A robot handusing electro-conjugate fluid [J]. Sensors and Actuators A: Physica,2011,170:139-146.
    [63] Akihiro Yamaguchi, Kenjiro Takemura, Shinichi Yokota, Kazuya Edamura.A robot handusing electro-conjugate fluid: Grasping experiment with balloon actuators inducing apalm motion of robot hand [J]. Sensors and Actuators A,2012,174:181-188.
    [64] David J. Montana.The Kinematics of Multi-Fingered Manipulation[C]. IEEETransactions on Robotics and Automation,1995:491-503.
    [65] Emily. Design of an Anthropomorphic Robotic Hand for Space Operation [J].Department of Aerospace Engineering,2007.
    [66] S. Parasuraman, Ler Shiaw Pei. Bio-mechanical Analysis of Human Joints andExtension of the Study to Robot[C]. Proceedings of World Academy of Science,Engineering and Technology,2008:1-6.
    [67] S. Parasuraman. Kinematics and Control System Design of Manipulators for aHumanoid Robot[C]. Proceedings of World Academy of Science, Engineering andTechnology,2008:7-13.
    [68] Valentin Grecu, Nicolae Dumitru, and Luminita Grecu. Analysis of Human Arm Jointsand Extension of the Study to Robot Manipulator[C]. Proceedings of the InternationalMultiConference of Engineers and Computer Scientists,2009.
    [69] Kelvin and Thurson. Kinematic Analysis of6-DOF Parallel Manipulator[C]. Proceedingof IEEE International Conference on Robotic and Automation,1993:708-713.
    [70] Mina Terauchi, Kouta Zenba and Akira Shimada. The cooperative control system of therobot finger using Shape Memory Alloys and Electrical Motors[C]. IEEE InternationalWorkshop on Advance Motion Control.2008:733-737.
    [71] W.J. Book. Lagrangian dynamics of flexible manipulator arms [J]. International Journalof Robotics Research,1984,3(3):87-101.
    [72] M. Osinski, A. Maczynski, S. Wojciech. The influence of ship motion in regular waveson the dynamics of an offshore crane [J]. Arch. Mech. Eng,2004,2:131-163.
    [73] L.M. Sweet, M.C. Good. Re-definition of the robot motion control problem: effects ofplant dynamics drive systems, constraints and user requirement[C]. Proceedings of the23rd IEEE Conference on Decision and Control,1984:724-731.
    [74] Y.J. Lin, S.D. Gogate. Modelling and motion simulation of an n-link flexible robot withelastic joints[C]. Proceedings of the International Symposium on Robotics andManufacturing,1989:39-43.
    [75] G.B. Yang, M. Donath. Dynamic model of a two-link robot manipulator with bothstructural and joint flexibility[C]. Proceedings of the ASME,1988:37-44.
    [76] B. Subudhi, A.S. Morris. Dynamic modeling smulation and control of a manipulatorwith flexible links and joints [J]. Robotics and Autonomous Systems,2002,41:257-270.
    [77] Chao-Chieh Lan, Kok-Meng Lee, Jian-Hao Liou. Dynamics of highly elasticmechanisms using the generalized multiple shooting method: Simulations andexperiments [J]. Mechanism and Machine Theory,2009,44:2164-2178.
    [78] Li Z, Sastry S. Task oriented optimal grasping by multifingered robot hands[C]. Proc ofIEEE Int Conf on Robotics and Automation,1987:389-394.
    [79] Cutkosky MR. On grasp choice, grasp models, and the design of hands formanufacturing tasks [J]. Trans Robot Autom,19895(3):269-79.
    [80] Jacopo Aleotti, Stefano Caselli. Interactive teaching of task-oriented robot grasps[J].Robotics and Autonomous Systems,2010,58:539-550.
    [81] Aaron M. Dollar, Leif P. Jentoft, Jason H. Gao. Contact sensing and graspingperformance of comliant hands [J]. Auton Robot,2010,28:65-75.
    [82] Olac Fuentes, Randal C. Nelsn. Learning Dextrous Manipulation Skills forMultifingered Robot Hands Using the Evolution Strategy [J]. Autonomous Robots,1998,5:395-405.
    [83] O. Kroemer, R. Detry, J. Piater, J. Peters. Combining active learning and reactive controlfor robot grasping [J]. Robotics and Autonomous Systems,2010,58(9):1105-1116.
    [84] Ch. Borst, M. Fischer and G. Hirzinger. Calculating hand configurations for precisionand pinch grasps[C]. Proceedings of the2002IEEE/RSJ international conference onintelligent robots and systems,2002:1553-1559.
    [85] Aaron M. Dollar. The Highly Adaptive SDM Hand: Design and PerformanceEvaluation[J].The International Journal of Robotics Research,2010,29(5):585-597.
    [86] Tondu B, Lopez P. Modeling and control of Mckibben artificial muscle robotactuators[J]. IEEE Control systems magazine.2000,20(2):15-38.
    [87] Davis S, Caldwell DG. Braid effects on contractile range and friction modeling inpneumatic muscle actuators [J]. International Journal Of Robotics Research,2006,25(4):359-69.
    [88] Brown G, Haggard R, Benney R, Rosato N. A new pneumatic actuator and its use inairdrop applications[C]. Proceedings of the15th Aerodynamic Decelerator SystemsTechnology Conference,1999.
    [89] Boblan.I, Bannasch.R, Schwenk.H, Prietzel.F, Miertseh. L, Schulz.A.A Human-LikeRobot Hand and Arm with Fluidic Muscles: Biologically Inspired Construction andFunctionality[J]. Embodied Artificial Intelligence,2004,3139:160-179.
    [90] http://www.shadow.org.uk
    [91] M. Ozkan, k. Inoue, k, Negishi, T. YumanalKa, Defining A Neural Network.ControllerStructure for a Rubbertuator Robot [J]. Neural Networks,2000,13:533-544.
    [92] Keith E. Gordon, Gregory S. Sawicki, Daniel P. Ferris. Mechanical performance ofartificial pneumatic muscles to power an ankle–foot orthosis [J].Journal ofBiomechanics,2006,39:1832-1841.
    [93]刘明春.McKibben气动人工肌肉的静动态特性及控制策略研究[D].兰州理工大学,2009.
    [94] Berns K, Kepplin V, Muller R, et al. Six-legged robot actuated by fluidic muscles[C].Proceedings of the CLAWAR2000-Climbing and Walking Robots and the SupportTechnologies for Mobile Machines,2000:545-550.
    [95] T. Kerscher, J. Albiez, J.M. Zlner, R. Dillmann, Evaluation of the dynamic model offluidic muscles using quick-release[C]. Proceedings of the First IEEE/RAS-EMBSInternational Conference on Biomedical Robotics and Biomechatronics,2006:637-642.
    [96] Kerscher T, Albiez J, Berns K. Joint control of the six-legged robot air bug driven byfluidic muscles[C]. Proceedings of the Third International Workshop on Robot Motionand Control,2002:27-32.
    [97] Kerscher T, Zullner J.M, Dillmann R, et al. Model and control of compliant joints drivenby fluidic muscles[C]. Proceedings of ACODUASIS one step further in the automaticcontrol design workshop,2005.
    [98]臧克江.编织型气动人工肌肉工作机理及设计理论研究[D].东北林业大学,2012.
    [99] T. Kerscher, J. Albiez, J.M. Zlner, R. Dillmann, Evaluation of the dynamic model offluidic muscles using quick-release[C]. Proceedings of the First IEEE/RAS-EMBSInternational Conference on Biomedical Robotics and Biomechatronics,2006:637-642.
    [100] Kanchana Crishan Wickramatunge, Thananchai Leephakpreeda. Study on mechanicalbehaviors of pneumatic artificial muscle [J]. International Journal of EngineeringScience,2010,48:188–198.
    [101] K. Balasubramanian, K.S. Rattan. Trajectory tracking control of a pneumatic musclesystem using fuzzy logic[C]. Annual Conference of the NorthAmerican FuzzyInformation Processing Society-NAFIPS,2005:472-477.
    [102] C.P. Chou, B. Hannaford. Measurement and modeling of McKibben pneumatic artificialmuscles[C]. IEEE Trans. Rob. Autom,1996,12:90-102.
    [103] TU Diep Cong Thanh, Kyoung Kwan Ahn. Nonlinear PID control to improve thecontrol performance of2axes pneumatic artificial muscle manipulator using neuralnetwork [J]. Mechatronics,2006,16:577-587.
    [104] K. C Wickramatunge, T. Leephakpreeda. Study on mechanical behaviors of pneumaticartificial muscle [J]. International Journal of Engineering Science,2010,48:188-198.
    [105]刘荣,宗光华.人工肌肉驱动特性研究[J].高技术通讯,1998,(6):34-38
    [106]李宝仁,刘军,杨钢.气动人工肌肉系统建模与仿真[J].机械工程学报,2003,39:23-28.
    [107]杨钢,李宝仁.气动人工肌肉位置控制策略[J].华中科技大学学报,2006,34(8):71-73.
    [108]傅晓云,刘军,杨钢.气动人工肌肉执行系统动态特性的实验研究[J].液压气动与密封,2003,6:6-9.
    [109]杨钢,李宝仁,刘军.一种新型气动执行元件-气动人工肌肉[J].中国机械工程,2003,8(15):1347-1349.
    [110]杨钢,李宝仁,刘军.气动人工肌肉特性分析的新方法[J].液压与气动,2002,10:22-25.
    [111]杜经民,朱端阳,杨钢.气动人工肌肉静态特性实验研究[J].液压与气动,2005.:(5):21-23.
    [112]王阶,金英子,李昳.基于气动肌肉的多自由度关节的实验研究[J].液压与气动,2009,1:74-76.
    [113]隋立明,王祖温,包钢.气动肌肉与生物肌肉的力学特性对比研究[J].机床与液压,2004,6:22-24.
    [114]隋立明,王祖温,包钢.气动肌肉的刚度特性分析[J].中国机械工程,2004,15(3):242-244.
    [115]王祖温,包钢,隋立明.气动肌肉结构参数的分析与设计[J].液压与气动.2003,10:12-14.
    [116]隋立明,包钢,王祖温.一种由气动肌肉驱动的关节模型研究[J].机床与液压,2002,6:55-56.
    [117]隋立明,包钢,王祖温.气动人工肌肉改进模型研究[J].液压气动与密封,2002,2:1-4.
    [118]包钢,王祖温,隋立明.气动肌肉驱动人工关节的建模研究[J].机械科学与技术,2003,22:77-79.
    [119]叶骞,王祖温.气动人工肌肉[J].液压气动与密封,2000,2:12-14.
    [120]田社平,林良民.人工肌肉静态特性及其测量[J].实用测试技术,1998,6:12-14.
    [121]颜国正,林良民,田社平.基于神经网络的人工肌肉非线性控制[J].上海交通大学学报,2001,35(5):713-716.
    [122]田社平,丁国清,颜德田.人工肌肉系统神经网络建模与控制[J].中国生物医学工程学报,2003,22(4):300-308.
    [123]沈伟,施光林,周爱国.气动肌肉主动悬架系统的仿真模型与分析[J].计算机仿真,2004,21(6):162-166.
    [124]林良民,田社平.医疗机器人用空气压人工肌线性控制的研究[J].中国医疗器械杂志,2002,26(l):7-13.
    [125] T Noritsugu, M Kubota, S Yoshimatsu. Development of Pneumatic Rotary Sotf ActuatorMade of Silicone Rubber [J]. Journal of Robotics and Mechatronics,2001,13(l):17-22.
    [126] S.schulz, C.pylatiuk, G..Bretthauer, A New Ultralight Anthropomorphic Hand[C].Proceedings of the2001IEEE International Conference on Robotics&Automation,2001:2337-2441.
    [127] Dexu Geng, Ji Zhao, Lei Zhang, Yunwei Zhao. Study on Bidirectional ControllableFlexible Bending Joints based on Elongation Artificial Muscles [J]. Applied Mechanicsand Materials,2011,46:2883-2887.
    [128] Geng Dexu, Liu Xiaomin, Zhang Jintao, Zhao Yunwei and Zhang Guilan. Research onDual-Thumb Pneumatic Flexible Robot Hand[C]. Proceedings2011InternationalConference on Mechatronic Science,Electric Engineering and Computer,2011:502-506.
    [129] Zhang Jintao, Geng Dexu, Liu Xiaomin, Li Tianxu, Gao Xinghua, Wu Guangbin.Experimental Study on Control Strategy of Clamping Force of Pneumatic FlexibleFinger[C]. Proceedings2011International Conference on Transportation, Mechanical,and Electrical Engineering,2011:1661-1664.
    [130]钱少明,杨庆华,鲍官军,王志恒,张立彬.基于气动柔性驱动器的弯曲关节的基本特性研究[J].中国机械工程,2009,20(24):2903-2907.
    [131]李尚会,杨庆华,鲍官军,王志恒,张立彬.基于FPA的新型气动柔性球关节的研究[J].浙江工业大学学报,2009,37(6):662-666.
    [132]杨庆华,张立彬,阮健.气动弯曲关节的特性研究[J].工程设计学报,2002,9(3):159-161.
    [133]杨庆华,张立彬,鲍官军,等.气动柔性弯曲关节的特性及其神经PID控制算法研究[J].农业工程学报,2004,20(4):88-91.
    [134]黄鹏程,杨庆华,鲍官军,等.新型气动弯曲关节的静态特性分析[J].机器人,2013,35(1):67-72.
    [135]陈刚,张立彬,阮健,杨庆华.新型气动弯曲关节手指的运动学分析[J].机电工程.2002,19(3):41-44.
    [136]张英会,刘辉航,王德成.弹簧手册[M].北京:机械工业出版社,2008.
    [137] B.B. Edin, L. Ascari, L. Beccai, ect al.Bio-inspired sensorization of a biomechatronicrobot hand for the grasp-and-lift task [J]. Brain Research Bulletin,2008,75:785-795.
    [138] Jamie K. Paik, Bu Hyun Shin, Young-bong Bang, Young-Bo Shim. Development of anAnthropomorphic Robotic Arm and Hand for Interactive Humanoids [J]. Journal ofBionic Engineering,2012,9:133–142.
    [139]张义民.机械振动力学[M].长春:吉林科学技术出版社,2000.
    [140] Singiresu S. Rao著,李欣业,张明路译.机械振动(第四版)[M].北京:清华大学出版社,2009.
    [141] Jacopo Aleotti, Stefano Caselli. Interactive teaching of task-oriented robot grasps [J].Robotics and Autonomous Systems,2010,58:539-550.
    [142] Mee-Seub Lim, Sang-Rok Oh, Jaebum Son, etc al. A human-like real-time graspsynthesis method for humanoid robot hands [J]. Robotics and Autonomous Systems,2000,30:261-271.
    [143] Caihua Xiong, Youlun Xiong. Neural-network based force planning for multifingeredgrasp [J]. Robotics and Autonomous Systems,1997,21:365-375.
    [144]理查德·摩雷,李泽湘,夏恩卡·萨思特里,徐卫良,钱瑞明,译.机器人操作的数学导论[M].北京:机械工业出版社,1998.
    [145]左炳然,钱文翰.机器人多指抓取力封闭分析的非线性规划算法[J].机械工程学报,1994,35(2):19-22.
    [146] Ponce, Jean. On computing three-finger force-closure grasps of polygonal objects[J].IEEE Transactions on Robotics and Automation-IEEE TRANS ROBOTICS AUTOMAT,1995,11(6):868-881.
    [147]秦志强,赵锡芳,李泽湘.机器人多指抓取的力封闭判别[J].上海交通大学学报,1999,33(7):858-861.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700