用户名: 密码: 验证码:
履带式滩涂运输车行驶性能分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
履带行走装置是履带式滩涂运输车的重要组成部分,是运输车承重与行驶的底盘。与轮式车辆相比,履带式车辆具有接地比压小,牵引附着力大及软土通过性强的特点。
     首先,本文对履带式车辆的行驶原理、履带行走装置的运动学进行了理论研究,并对滩涂区域土壤力学性能进行了分析,在此基础上对履带式滩涂运输车的接地比压进行了分析,对履带行走装置的行驶阻力与牵引力进行了理论计算,为履带行走装置的仿真提供了外部载荷,为虚拟样机的验证提供了理论数据。本文还对履带式车辆的转向理论进行了研究,并在此基础上计算出履带式滩涂运输车的转向速度和驱动力等,为履带式滩涂运输车的转向仿真提供了外部载荷,并对影响履带式滩涂运输车转向性能的结构因素进行了分析。
     然后,本文对多体动力学软件RecurDyn进行了简单介绍,并对多体动力学的递归理论进行了分析研究。接着对履带式滩涂运输车履带行走装置的主要参数的确定和关键零部件的结构设计进行了研究,并通过RecurDyn软件的低速履带模块建立了台车架、驱动轮、支重轮、导向轮、托带轮、履带模型,进而建立了整个履带式滩涂运输车的虚拟样机。
     最后,本文对履带式滩涂运输车的行驶性能进行了分析,通过履带式滩涂运输车的平地前进恒转速直线行驶,对履带式滩涂运输车虚拟样机正确性进行了验证,并对履带式滩涂运输车平地前进恒转速、恒转矩直线行驶仿真进行了对比分析。进行了履带式滩涂运输车三种爬坡工况的仿真分析,着重对履带板与驱动轮、地面的接触力进行了分析研究。对履带式滩涂运输车平地转向进行了仿真分析,着重对转弯半径、横摆角速度和角加速度等进行了分析研究。
     通过对履带式滩涂运输车的行驶性能的分析,验证了虚拟样机技术的可行性,并得出了履带式滩涂运输车不同工况下的一些规律,为履带式滩涂运输车的设计提供了技术依据,减小了产品开发过程物理样机的制造成本,缩短了开发周期,同时也为其他履带式车辆的行驶性能的研究提供了方法。
The crawler track walking device is an important section of the tracked tideland vehicle, which is the chassis walking and bearing the weight of the vehicle. As compared with wheel vehicle, the tracked vehicle has the characteristic of minishing grounding pressure, increasing tractive and appendiculate performance, and strengthening traffic ability on soft ground.
     Firstly, this paper introduces the drive principle of tracked vehicle, kinematics of crawler track walking device, and analyzes the force performance of tideland soil. Furthermore, on this theory, the grounding pressure, sinkage of the tracked tideland vehicle, the running resistance and driving force are analyzed and calculated. As a result, this data can be input of the simulation of tracked tideland vehicle, and validate virtual prototype model of the tracked tideland vehicle. Furthermore, this paper study the theory of steering of tracked vehicle, and calculate steering resistance and steering velocity in order to provide input for steering simulation of the tracked tideland vehicle.
     Secondly, this paper makes an introduction on RecurDyn which is multi-body dynamics simulation software, and studies the generalized recursive formulation of multi-body dynamics. In the RecurDyn/Track-LM, the all virtual prototype model of tracked tideland vehicle can be established, which include trolley, driving wheel, track roller, oriented roller, holding roller and track chain.
     Lastly, this paper studies and analyzes driving performance of the crawler track walking device of tracked tideland vehicle. By the simulation of fore driving straightly of tracked tideland vehicle in constant velocity, this paper proves that it is possible to study the tracked vehicle by virtual prototype. The contact force between the track and driving wheel or soft ground is contrasted and studied in three gradient road, and the steering radius, transverse angle velocity and acceleration is analyzed in 20m steering process of tracked tideland vehicle.
     The study on the driving performance of the crawler track walking device of tracked tideland vehicle in this paper, provides proof for the feasibility of virtual prototype technology, and attains a lot of rules in different work condition, and the virtual prototype model is useful to the design of tracked tideland vehicle, which decrease the cost of physics model in research, and shorten the period of exploitation in new product, is also a method for the study of other tracked vehicle.
引文
1王正明,路正南.江苏风电产业发展战略分析及政策取向.科技管理研究.2008(8): 95~98
    2黄滢,彭俊龙.防城港市沿海风能资源分析.安徽农业科学. 2008,36(20):8763~8765
    3 Haiyang Zheng, Andrew Kusiak. Prediction of Wind Farm Power Ramp Rates. J. Sol. Energy Eng. 2009,131(3):1011~1019
    4陈立平,张云清.机械系统动力学分析及ADAMS应用教程.清华大学出版社. 2005:1~50
    5张克健.车辆地面力学.国防工业出版社. 2002:1~8
    6 Ferretti G., Girelli R. Modelling and simulation of an agricultural tracked vehicle. Journal of Terramechanics. 1999,36(3):139~158
    7 Corina Sandu, Jeffrey S.Freeman. Three-dimensional multi-body tracked vehicle modeling and simulation. 19th Biennial Conference on Mechanical Vibration and Noise. 2003(5): 519~527
    8 Toshikazu Nakanishi, Xuegang Yin, A. A. Shabana. Dynamics of multi-body tracked vehicles using experimentally identified modal parameters. Journal of dynamic systems, measurement, and control. 1996,118(3):499~508
    9 Dhir A, Sankar S. Analytical track models for ride dynamic simulation of tracked vehicles. Journal of Terramechanics. 1994(31): 107~138
    10 Wong J Y. Dynamics of tracked vehicles. Vehicle System Dynamic. 1997(28):197~219
    11吴大林,马吉胜,王兴贵.履带车辆地面力学仿真研究.计算机仿真. 2004(12):42~44
    12马伟标,王红岩,程军伟.履带车辆软土通过性能影响因素仿真.计算机辅助工程. 2006(15):257~259
    13董新建,文桂林,韩旭.履带车辆高速转向动力学仿真.计算机辅助工程. 2006(15):277~280
    14陈淑艳,陈文家.基于ADAMS的履带车辆二次开发建模研究.机械设计与制造. 2008(10):192~193
    15王水林,邹月伟,李海伟.基于ADAMS的仿真技术在履带行走装置的应用.机电产品开发与创新. 2008(3):44~45
    16巩青松,董阿忠.履带式车辆关键机构分析与设计.农业装备与车辆工程. 2008(4):10~14
    17姚怀新,陈波.工程机械底盘理论.人民交通出版社. 2002:1~35
    18汪明德,赵毓芹,祝嘉光.坦克行驶原理.国防工业出版社. 2002:1~35
    19孟为国,赵又群.田间土壤力学参数测定方法研究.农业开发研究. 2009:8~9
    20王文隆,王修斌.地面力学中土壤参数的选定及其测量方法和仪器.农业机械学报.1983:1~5
    21 Bekker M G.陆用车辆行驶原理.机械工业出版社. 1964:1~200
    22徐飞军,黄文倩.履带拖拉机软土地行走动力学仿真.农机化研究. 2009(12):204~207
    23常传真.水路两用履带式工程机械接地比压计算初探.设计计算. 2009(3):7~11
    24杨士敏.履带式车辆接地比压分布规律对附着力的影响.中国公路学报. 1995(2):85~89
    25孔德文,赵克利.液压挖掘机.化学工业出版社. 2006:5~100
    26刘景鹏.排土(岩)机履带行走装置驱动功率的确定及电机选型.机械研究与应用. 2005,18(5):73~74
    27 Bodin A. Study of the Influence of Vehicle Parameters on Tractive Performance in Deep Snow. Jounal of Terramechanics. 2001,38: 47~59
    28 CHEN Yong, GUI Wei-hua, WANG Sui-ping, CHEN Feng. Dynamic Model and Simulation of Tracked Collector for Deep Seabed Mining. Jounal of System Simulation. 2008,20(21): 5957~5962
    29孙海涛,王国强.软路面履带转向阻力的研究.建筑机械. 1995(9):23~26
    30迟媛,蒋恩臣.履带车辆转向时最大驱动力矩的计算.农业工程学报. 2009(3):74~78
    31陈军伟,高连华.履带车辆转向分析.兵工学报. 2007(9):1110~1115
    32 Function Bay. RecurDyn TM/Solver theoretical manual. 5th Revision, Function Bay Inc. 2005:3~50
    33 Kim, Chunghwan. Dynamic research of the track record paper. TSME. 2004(5): 175~181
    34 Cho, H.J. Ryu,H.S. Recursion method of dynamic research. TSME. 2001(3): 102~107
    35赵谷声.工程机械底盘.人民交通出版社. 1997:267~297
    36许纯新,张光裕.工程机械底盘设计.机械工业出版社. 1988:43~51
    37莫德志.路面冷铣刨机支重轮设计浅析.工程机械. 2007(38):48~62
    38赵振东.液压挖掘机支重轮硬化层设计初探.建筑机械. 1997(6):16~18
    39张铁.液压挖掘机结构、原理及使用.石油大学出版社. 2002:55~77
    40安东诺夫.履带行驶装置原理.国防工业出版社. 1957:1~181
    41卢进军,魏来生.基于RecurDyn的滑转对履带车辆加速性能影响研究.系统仿真技术. 2007(3):139~143
    42张亚欧,吴大林.履带车辆强化行驶实验的平顺性仿真.武器装备自动化. 2006(2):19~22
    43李军,张洪康.履带车辆行驶平顺性仿真分析研究.车辆与动力技术. 2003(4):4~7
    44 Wong J Y, CHIAG C F. A General Theory for Skid-steering of Tracked Vehicles of Firm Ground. Proc of Institution of Mechanical Engineers, Part D Journal of Automobile Engineer. 2001: 52~57
    45 Kitano, M. and Jyozaki H.A. theoretical analysis of steerability of tracked vehicles. Journal of Terramechanics. 1976,13(4):241~258
    46肖永开,李晓雷.高速履带车辆履带预紧张力对平顺性的影响.计算机仿真. 2006(7):253~259
    47 J Y Wong, Wei Huang. An investigation into the effects of initial track tension on soft ground mobility of tracked vehicles using an advanced computer simulation model. Automobile Engineering. 2006,220: 695~711

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700