用户名: 密码: 验证码:
营运货车动力传动系统仿真及优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
营运货车在促进国民经济和社会发展的同时,也给人类所面临的能源危机和环境污染问题带来严重的威胁。动力传动系统是车辆正常行驶的动力源,其性能的优劣直接影响汽车的动力输出、燃油消耗和污染物排放。动力传动系统的仿真、匹配优化是提高动力传动系统全局效率、改善经济性及排放性的重要技术措施。
     针对行驶工况下货车动力传动系统参数匹配不佳及瞬态工况下柴油机性能恶化等问题,本文建立动力传动系统工作过程仿真模型,开展了稳态、瞬态工况下涡轮增压柴油机性能预测、动力传动系统动态过程仿真、标准行驶工况下整车性能仿真及优化等研究工作。
     建立基于Matlab/Simulink的涡轮增压柴油机系统工作过程实时仿真模型,对稳态工况下发动机动力性、经济性、碳烟排放、热NO与瞬发NO排放等进行预测。对进气流量计算平均值模型进行比较分析,在充分考虑EGR率、残余废气系数及充量系数影响的基础上,对原始进气流量模型进行修正,通过仿真分析并结合试验数据进行验证,确定了最佳的进气流量计算模型。
     通过详细分析传动系统各部件间的动力学关系,建立动力传动系统转矩平衡方程,采用逆向推理法制定了自动变速器动态三参数最佳动力性和最佳经济性换档规律,利用有限状态机Stateflow对自动变速器换档逻辑控制进行设计,仿真分析了货车载重变化对换档规律的影响及车辆加速与制动过程的动态响应特性。
     建立涡轮增压柴油机系统瞬态过程及整车动态性能仿真平台,对柴油机瞬态响应及瞬态工况下的燃烧、NO排放特性进行预测,仿真分析了发动机稳态、瞬态工况下摩擦转矩变化规律。对整车空载原地起步连续换档加、减速过程进行仿真,分析了动态过程发动机转矩、转速、曲轴角加速度、汽车加速度、车速及档位随油门开度变化的情况。
     在标准行驶工况下对样本车辆循环百公里燃油消耗、PM及NO排放进行仿真,通过分析车辆主要设计参数对车辆性能的相对敏感性,提出一种基于敏感性系数确定优化指标权重系数的方法,以标准行驶工况下车辆循环百公里燃油消耗、PM及NO排放为优化目标,对传动系统的传动比进行优化设计。优化后车辆经济性、NO排放有所改善,PM排放有较大幅度降低。
For a long time, commercial trucks have greatly promoted economic and social development, but meanwhile, they have caused serious environmental pollution and exacerbated energy crises. Powertrain system is the lifeline for the vehicles normal traveling. Therefore, the performance of powertrain has a direct impact on the power output, fuel economy and pollutant emissions of vehicles. In recent years, the simulation, matching and optimization of powertrain system has become the researching focus since it's an essential solution to improve the global efficiency of powertrain and reduce the fuel consumption and pollutants.
     To predict the performance and pollutant emissions of vehicular turbocharged DI diesel engines during both steady-state and transient process, firstly, a zero-dimensional thermodynamic real time simulation model which based on the filling and emptying method was developed to describe the working process in cylinder. The thermodynamic model takes into account all the engine subsystems viz. turbocharger, intercooler, fuel pump and speed governor. In order to estimate the transient performance more accurately, the Two-Vibe curve model was adopted to simulate the actual heat release rate and fuel burning speed. In addition, the incomplete combustion was taken into consideration. Furthermore, the convective heat transfer rate to the combustion chamber walls was simulated through the heat-transfer coefficient with transient correction. Subsequently, both thermal and prompt NO mechanism were applied to predict NO emissions, and the extended-Zeldovich mechanism and overall reaction rate theory were adopted to simulate the net formation rate of NO. What's more, the optimal mean value model of air mass flow calculation was determined via comparison various mathematical models of air mass flow and comprehensive optimization.
     Secondly, the torque balance equation that takes into account all the drag force was established based on the detailed analysis of dynamic relationship between the components of powertrain system. Then gear shifting strategies was optimized for fuel economy and maximum power, and the automatic transmission shift logic was controlled by using finite state machine of Stateflow. Study focused on the evaluation of vehicle performance, and particular attention was given to the engine behaviors under transient conditions, dynamic response characteristics of vehicle acceleration and braking process.
     Thirdly, according to crankshaft torque balance based on the conservation of angular momentum principle, the instantaneous values of engine speed and angular acceleration were simulated. Specifically, the engine indicated torque that includes the contribution of gas and reciprocating inertia forces of all cylinders was calculated according to the instantaneous cylinder pressure and engine dynamics. The friction torque of diesel engine was calculated through a detailed analytical model, which includes the contribution of piston rings assembly, loaded bearings, valve train and auxiliaries, and describes the non-steady profile of friction torque during each cycle. Moreover, the load torque was determined via the torque balance of powertrain system.
     Finally, all above models were integrated and a simulation platform of the entire vehicle system was established based on the Matlab/Simulink. Using a step input signal as the step throttle (fuel pump rack position) change, and then run the model to mimic vehicle real transient process under various (vehicle) speeds and gear. The validation of the model was done through comparison of the simulation results with measured values. Fortunately, the simulation results are quite in line with the actual situation, it's showed that the design of model is reasonable and accurate.
     To estimate the engine fuel consumption and pollutant emission under real driving conditions, the vhehicle model was simulated based on the standard driving cycle. The simulation results show that the acceleration transient events and the related turbocharger lag phenomena significantly contribute to the cycle cumulative emissions and fuel consumption. Through the sensitivity analysis of fuel consumption and pollutant emissions, estimating the overall impact of design parameters on the fuel consumption and emission performance. The main factors include the vehicle weight, tire rolling resistance, aerodynamic drag and driveline configuration. Studies also indicate that it is difficult to change each of these parameters to reduce the fuel consumption, NO and PM emission simultaneously. Eventually, optimizing the transmission ratio for fuel economy and emissions based on the the sensitivity coefficients. Consequently, the results of this study will be greatly helpful to predict and analysis the economy performance and pollutant emissions of commercial trucks and provide a useful reference basis for the design and optimization of powertrain system.
引文
[1]Baglione M, Duty M, Pannone G. Vehicle System Energy Analysis Methodology and Tool for Determining Vehicle Subsystem Energy Supply and Demand[J]. SAE Technical Paper 0398,2007.
    [2]GB 18352.5-2013,轻型汽车污染物排放限值及测量方法[S].
    [3]李世武,蒋彬,初秀民等.驾驶行为对车辆燃料消耗和污染物排放的影响研究综述[J].公路交通科技术,2003,2(1):155-158.
    [4]Ahmed Elsayed Ahmed Hassan Aboud. Vehicle Power System Simulation in Steady and Transient Operation[D]. Beijing:Beijing Institute of Technology,2013:1-8.
    [5]Bernd Heilβing, Metin Ersoy. Chassis Handbook:Fundamentals, Driving Dynamics, Components, Mechatronics, Perspectives[M]. Berlin:Vieweg Teubner Verlag,2011:35-46.
    [6]陈家瑞.汽车构造(第五版下册)[M].北京:人民交通出版社,2005:3-10.
    [7]李素华,姚层林,方群波.汽车传动系参数优化设计的研究发展[J].机械研究与应用,2006,19(3):5-6.
    [8]David Crolla, Behrooz Mashadi. Vehicle Powertrain Systems:Integration and Optimization[M]. New Jersey:Wiley-Blackwell,2012:3 -18.
    [9]孙宏图.基于循环工况的城市公交客车动力传动系统参数研究[D].大连:大连理工大学,2009:2-8.
    [10]John J. Moskwa, Scott.A, Munns, et al.The Development of Vehicular Powertrain System Modeling Methodologies:Philosphy and Implementation[J]. SAE Technical Paper 971089,1997.
    [11]安晓辉.涡轮增压柴油机EGR系统瞬态控制研究[D].北京:北京理工大学,2013:1-19.
    [12]N A Abdel-Halim. Use of Vehicle Power-Train Simulation with AMT for Fuel Economy and Performance[J]. Modern Mechanical Engineering,2013,3 (3):127-135.
    [13]黄粉莲,纪威,周炜等.车用涡轮增压柴油机加速工况瞬态特性仿真[J].农业工程学报,2014,30(3):63-69.
    [14]黄粉莲,纪威,周炜等.车用涡轮增压柴油机加速瞬态过程仿真研究[Z].中国内燃机学会2013年学术年会暨油品与清洁燃料分会,太原,2013.
    [15]Rakopoulos C D, Giakoumis E G. Diesel Engine Transient Operation:Principles of Operation and Simulation Analysis[M]. Berlin:Springer-Verlag,2009:218-220.
    [16]Hagena J R, Filipi Z S, Assanis D N. Transient diesel emissions:Analysis of engine operation during a tip-in[J]. SAE Paper 2006-01-1151,2006.
    [17]Cui Y, Deng K, Wu J. A modeling and experimental study of transient NOx emissions in turbocharged direct injection diesel engines[J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering,2004,218(5):535-541.
    [18]黎苏,黎晓鹰,黎志勤.汽车发动机动态过程及其控制[M].北京:人民交通出版社,2000:12-32.
    [19]Rakopoulos C D, Dimaratos A M, Giakoumis E G, et al. Exhaust emissions estimation during transient turbocharged diesel engine operation using a two-zone combustion model [J]. International Journal of Vehicle Design,2009,49(1/2/3):125-149.
    [20]Rakopoulos C D, Giakoumis E G. Diesel Engine Transient Operation:Principles of Operation and Simulation Analysis[M]. Berlin:Springer-Verlag,2009:218-220.
    [21]郭江华,梁述海,王英辉.舰用柴油机建模方法综述[J].船舶工程,2005,27(2):58-60.
    [22]Magnus Pettersson. Driveline Modeling and Principles for Speed Control and Gear-Shift Control[D]. Sweden:LinkAoping University,1996:3-25.
    [23]Xi Zhang, Chris Mi. Vehicle Power Management Modeling, Control and Optimization[M]. London:Springer-Verlag London Limited,2011:49-90.
    [24]百川.我国自动变速器发展现状及未来趋势[J].现代零部件,2010,10(67):67-72.
    [25]Naunheimer H., Bertsche B., Ryborz J. et al. Automotive Transmissions:Fundamentals, Selection, Design and Application[M]. Berlin:Springer-Verlag,2011:29-50.
    [26]Uwe Kiencke, Lars Nielsen. Automotive Control Systems For Engine, Driveline, and Vehicle[M]. New York:Springer Berlin Heidelberg,2005:193 - 197.
    [27]李忠剑,张俊智,卢青春等.运用特征参数对汽车驾驶循环的研究[J].设计·计算·研究,2001,7:13-15.
    [28]Zub R, Colello R. Effect of Vehicle Design Variables on Top Speed, Performance, and Fuel Economy [J] SAE Technical Paper 800215,1980.
    [29]Diana Yanakiev. Engine and Transmission Modeling for Heavy-Duty Vehicles[D]. Los Angeles: UCLA Electrical Engineering,1995:5-10.
    [30]Shakouri P, Ordys A, M Askari. Longitudinal vehicle dynamics using Simulink/Matlab[C]. Control, UKACC International Conference,2010:2-4.
    [31]董金松,许洪国,张荣辉.车辆动力传动系建模与整车性能仿真[J].交通信息与安全,2009,27(2):32-34.
    [32]Gullett B K, Touati A, Oudejans L, et al. Real-time emission characterization of organic air toxic pollutants during steady state and transient operation of a medium duty diesel engine[J]. Atmospheric Environment,2006,40(22):4037-4047.
    [33]Peckham M S, Campbell B W, Finch A. Measurement of the effects of the exhaust gas recirculation delay on the nitrogen oxide emissions within a turbocharged passenger car diesel engine[J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering,2011,225(9): 1156-1166.
    [34]D.E. Winterbone, R.S. Benson, A.G. Mortimer. Transient response of turbocharged diesel engines. SAE paper 770122,1977.
    [35]C. Ericson, B.Westerberg, R. Egnell. Transient Emission Predictions With Quasi Stationary Models. SAE Paper 2005-01-3852,2005.
    [36]Kang H, Farrell P. Experimental investigation of transient emissions (HC and NOx) in a high speed direct injection (HSDI) diesel engine[J]. SAE Paper 2005-01-3883,2005.
    [37]Rakopoulos C D, Dimaratos A M, Giakoumis E G. Experimental study of transient nitric oxide, smoke, and combustion noise emissions during acceleration of an automotive turbocharged diesel engine[J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering,2011,225(2):260-279.
    [38]Chan S H, He Y, Sun J H. Prediction of transient nitric oxide in diesel exhaust[J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering,1999,213(4):327-339.
    [39]Finesso R, Spessa E. Real-time predictive modeling of combustion and NOx formation in diesel engines under transient conditions[J]. SAE Paper 2012-01-0899,2012.
    [40]孙鹏文,左正兴,廖日东等.动力传动系统仿真模型库的分析与设计[J].系统仿真学报,2004,16(8):1689-1691.
    [41]颜伏伍,胡峰.基于多目标遗传算法的汽车动力传动系统参数优化设计[J].汽车技术,2009,12:20-22.
    [42]秦洪武,刘军.基于改进遗传算法汽车车动力传动系统性能仿真软件开发[J].机械设计与制造,2006,10:47-49.
    [43]刘涛,郭源科.基于复合形法的汽车动力传动系参数优化匹配分析[J].机械设计与制造,2008,7:201-203.
    [44]吴其伟,吕林,锁国涛.货车动力传动系统与道路交通特征合理匹配的研究[J].内燃机,2006,3:23-26.
    [45]周长城,周金宝.农用运输车动力传动系统系列化最佳匹配的研究[J].农业机械学报,1995, 27(2):24-28.
    [46]葛安林,吴锦秋,林明芳.汽车动力传动系统参数的最佳匹配[J].汽车工程,1991,1:35-42.
    [47]刘惟信,戈平,李伟.汽车发动机与传动系参数最优匹配的研究[J].汽车工程,1991,2:65-72.
    [48]何仁,刘星荣,何泽民.汽车动力传动系统最优匹配的研究和发展[J].江苏理工大学学报.1997,1:37-41.
    [49]何仁,王建峰.汽车动力传动系统合理匹配的实用方法[J].中国公路学报.2000,13(1):100-103.
    [50]岳惊涛,廖苓平,彭莫.汽车动力系统的合理匹配评价[J].汽车工程,2004,26(1):102-106.
    [51]C. Scott Sluder, Robert M. Wagner. An Estimate of Diesel High-Efficiency Clean Combustion Impacts on FTP-75 Aftertreatment Requirements[J]. SAE Technical Paper 3311,2006.
    [52]Birckett A, Tomazic D, Bowyer S. Transient Drive Cycle Modeling of Supercharged Powertrains for Medium and Heavy Duty On-Highway Diesel Applications[J]. SAE Technical Paper 1962,2012.
    [53]Kulkarni N, Jadhav N, Nandkeolyar K. Drive Cycle for Commercial Vehicles for Selection of Power Train to Get Optimum Fuel Efficiency[J]. SAE Technical Paper 2886,2009.
    [54]Kwon J, Kim J, Fallas E. et al. Impact of Drive Cycles on PHEV Component Requirements[J]. SAE Technical Paper 1337,2008.
    [55]M L Baglione, M J Duty. Reverse Dynamic Optimization of Variable Displacement Engine Operation and System Integration[C]. ASME 2008 Dynamic Systems and Control Conference,2008.
    [56]Huajie D, Xiumin Y, Junjie L. et al. Study on Effects of Driving Style on Vehicle Performance for Econopower Competition[J]. SAE Technical Paper 2008-01-1781,2008.
    [57]高继东,秦孔建,梁荣亮.北京道路工况下公交车PM和NOx排放特性试验研究[J].汽车工程,2001,33(9):757-760.
    [58]黄文伟,张欣,孙龙林等.道路工况对汽车排放性能影响的试验研究[J].公路交通科技,2002,2:223-226.
    [59]陈晓明,宁智,宋云超.重型柴油车道路循环工况下排放特性的仿真分析[J].环境科学学报,2012,32(1):109-115.
    [60]李捷辉,唐敏.NEDC循环工况法轻型汽车排放特性模拟计算[J].小型内燃机与摩托车,2010,39(4):49-52.
    [61]刘永长.内燃机热力过程模拟[M].北京:机械工业出版社,2000:21-70.
    [62]林杰伦.内燃机工作过程数值计算[M].陕西:西安交通大学出版社,1986:29-58.
    [63]黄粉莲,纪威,张禄.基于OPTIMUS的柴油机配气正时及喷油提前角的优化[J].农业工程学报,2012,28(15):27-32.
    [64]Yu D. Characterizing Combustion in Diesel Engines:using parameterized finite stage cylinder process models[D]. Delft:Technische Universiteit Delft,2011:11 -12.
    [65]解茂昭.内燃机计算燃烧学[M].辽宁:大连理工大学出版社,2005:151-168.
    [66]Watson N, Pilley A, Marzouk M. A Combustion Correlation for Diesel Engine Simulation[J]. SAE Paper 800029,1980.
    [67]周龙保.内燃机学[M].北京:机械工业出版社,2005:168-172.
    [68]Abdalla Agrira. Internal Combustion Engine Heat Transfer-Transient Thermal Analysis[D]. Toowoomba:University of Southern Queensland,2012:14-44.
    [69]朱访君.内燃机工作过程数值计算及其优化[M].北京:国防工业出版社,1997:90-124.
    [70]朱大鑫.涡轮增压与涡轮增压器[M].北京:机械工业出版社,1992:321-328.
    [71]陆家祥.柴油机涡轮增压技术[M].北京:机械工业出版社,1999:114-117.
    [72]苏展望,庞志伟,郭军良.涡轮增压器与燃气发动机的匹配及主要增压参数的计算[J].内燃机与动力装置,2008(6):15-17.
    [73]梁磊,杜家益.基于Matlab/simulink的增压柴油机瞬态过程仿真[J].拖拉机与农用运输车,2009,36(2):35-37.
    [74]陆家祥.车用内燃机增压[M].北京:机械工业出版社,1993:29-33.
    [75]李环.WD615柴油机增压系统匹配分析及试验研究[D].青岛:青岛理工大学,2010:15-16.
    [76]Ove F Storset, Anna G Stefanopoulou, Roy Smith. Adaptive air charge estimation for turbocharged diesel engines without exhaust gas recirculation[J]. International Journal of Robust and Nonlinear Control,2004,14(6):543-560.
    [77]Yeongseop Park, Hyunjun Lee, Junsoo Kim, et al. Cylinder Air Charge Estimation for a Diesel Engine Equipped with VGT, EGR, and SCV[J]. SAE paper,2011,01-1148.
    [78]Ihab S Soliman, Jerry Dean Robichaux, Tobias John Pallett. Cylinder Air Charge Estimation Using Observer-Based Adaptive Control[P].US:6363316B1,2002,26.
    [79]Ilya V Kolmanovsky, Mrdjan J Jankovic, Michiel J Van Nieuwstadt. Method of Estimating Mass Air Flow in Turbocharged Engines Having Exhaust Gas Recirculation[P]. US:6035639,2000,14.
    [80]Johan Wahlstrom. Control of EGR and VGT for Emission Control and Pumping Work Minimization in Diesel Engines[D]. Sweden:Linkoping University,2009:22-70.
    [81]黄粉莲,纪威,张禄.涡轮增压柴油机进气流量的计算[J].农业工程学报,2013,29(3):62-68.
    [82]顾宏中.涡轮增压柴油机性能研究[M].上海:上海交通大学出版社,1998:7-11.
    [83]陆家祥.对四冲程柴油机涡轮增压系统基本参数确定方法的浅析[J].山东大学学报:工学版,1981(2):22-36.
    [84]陆家祥,陆辰,姜博渊.柴油机增压系统热力参数分析及其图解法[J].山东工业大学学报,1985(1):68-79.
    [85]刘秋颖,石磊,李胜达,等.柴油机涡轮增压器匹配程序中排气温度预测模型的研究[J].内燃机与动力装置,2011(2):29-34.
    [86]段树林,欧阳明高,刘峥.涡轮增压柴油机动态仿真的研究[J].大连海事大学学报,1999,25(2):77-80.
    [87]朱惠莲,陆艳红.车用柴油机特点及其技术发展趋势[J].内燃机,2006,(6):1-3.
    [88]许洪军,曹会智,刘伍权,等.柴油机尾气氮氧化物的机外净化技术研究[J].内燃机,2004(6):36-38.
    [89]郭鹏江,高希彦,王浩.柴油机EGR和微粒过滤器的试验研究[J].现代车用动力,2008(2):26-30.
    [90]潘德永.关于降低柴油机有害排放的研究与探讨[D].大连:大连交通大学,2007:3-4.
    [91]高英宗,朱剑明.柴油机燃料供给与调节究[M].北京:机械工业出版社,2009:29-32.
    [92]G De Nicolao, R Scattolini, C Siviero. Modeling the volumetric efficiency of IC engines: parametric, non-parametric and neural techniques[J]. Control Engineering Practice,1996,4(10):1405-1415.
    [93]John B Heywood. Internal Combustion Engine Fundamentals[M]. US:McGraw-Hill,1988:209-220.
    [94]Hakan Bengtsson. Modeling of Volumetric Efficiency on a Diesel Engine with Variable Geometry Turbine[D]. Sweden:Linkopings University,2002:28-57.
    [95]Qianfan Xin. Diesel engine system design. London:Woodhead Publishing,2011:910-914
    [96]Richard C. Flagan, John H. Seinfeld. Fundamentals of Air Pollution Engineering[M]. Englewood Cliffs, NJ:Prentice Hall, Inc.,1988:8-178.
    [97]JM Desantes, M Lapuerta, JM Salavert. Study on independent effects of diesel engine operating conditions on nitric oxide formation and emissions through schematical combustion simulation. [J]. Journal of Automobile Engineering, Proceedings of the IMechE Part D.1996,210(1):71-80.
    [98]J. Warnatz, U. Maas, R.W. Dibble. Combustion:Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation[M]. Berlin:Springer-Verlag,2006:260-264.
    [99]Irvin Glassman, Richard A. Yetter. Combustion[M]. US:Academic Press,2008:417-425.
    [100]Junfeng Yang, Valeri I.Golovitchev, Pau Red6n Lurbe, et al. Chemical Kinetic Study of Nitrogen Oxides Formation Trends in Biodiesel Combustion[J]. International Journal of Chemical Engineering, 2012-898742,2012.
    [101]Jeffrey A. Sutton, Bradley A. Williams, James W. Fleming. Investigation of NCN and prompt NO formation in low pressure C1-C4 alkane flames[J]. Combustion and Flame,2012,159:562-576.
    [102]Elke Goos, Christina Sickfeld, Fabian Mauβ, et al. Prompt NO formation in flames:The influence of NCN thermochemistry[J]. Proceedings of the Combustion Institute,2013,30:657-666.
    [103]A. A. Konnov. Implementation of the NCN pathway of prompt-NO formation in the detailed reaction mechanism[J]. Combustion and Flame,2009,156:2093-2105.
    [104]T J Foster, C W Wilson. Measurement and Prediction of NO and NO2 Emissions from Aero Engines[C]//Gas Turbine Engine Combustion, Emissions and Alternative Fuels-RTO AVT Symposium. Lisbon:RTO MP-14,1998:191-199.
    [105]Williams A, Woolley R, Lawes M. The formation of NOx in surface burners[J]. Combustion and Flame,1992,89(2):157-166.
    [106]H Hiroyasu, T Kadota, M Arai. Development and Use of a Spray Combustion Modeling to Predict Diesel Engine Efficiency and Pollutant Emissions[J].Bulletin of JSME,1983,26(214):569-575.
    [107]M A Patterson, S C Kong, G J Hampson, et al. Modeling the Effects of Fuel Injection Characteristics on Diesel Engine Soot and NOX Emissions[J]. SAE Paper 940523,1994.
    [108]袁东,肖广兵.详解MATLAB快速入门与应用[M].北京:电子工业出版社,2011:25-80.
    [109]GB/T 18297-2001,汽车发动机性能试验方法[S].
    [110]郑伟,胡大志,文良起,等.运行在不同海拔下增压柴油机的EGR试验研究[J].小型内燃机与摩托车,2006,35(1):9-12.
    [111]Alain M, Xavier T, Jean F H. Experimental study of various effects of exhaust gas recirculation (EGR) on combustion and emissions of an automotive direct injection diesel engine[J]. Energy,33(1), 2008:22-34.
    [112]GJ Micklow. A multistage combustion model and soot formation model for direct-injection diesel engines[J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering,216 (6),2002:495-504.
    [113]Patterson M, Kong S, Hampson G. Modeling the Effects of Fuel Injection Characteristics on Diesel Engine Soot and NOx Emissions[J]. SAE Technical Paper 940523,1994.
    [114]A Serrarens. Simulation and Control of an Automotive Dry Clutch[C]. American Control Conference,2004,5:4078-4083.
    [115]A Crowther, N Zhang, D K Liu. Analysis and simulation of clutch engagement judder and stick-slip in automotive powertrain systems [J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering,2004,218:1427-1445.
    [116]M.H.M.Dassen. Modelling and control of automotive clutch systems[D]. Eindhoven:Eindhoven University of Technology,2003:15-20.
    [117]Harald Naunheimer, Bernd Bertsche,Joachim Ryborz.eltc. Automotive Transmissions: Fundamentals, Selection, Design, and Application. Springer-Verlag Berlin Heidelberg 1994,2011:73 -82.
    [118]Tony Sandberg. Heavy Truck Modeling for Fuel Consumption Simulations and Measurements[D]. Sweden:Link"oping University,2001:64-68.
    [119]JTG D20-2006,公路路线设计规范[S].
    [120]Friedrich Pfeiffer. Mechanical System Dynamics,2008 Springer-Verlag Berlin Heidelberg:216-222.
    [121]HAAsl, N L Azad, J McPhee. Modeling Torque Converter Characteristics in Automatic Drivelines:Lock-up Clutch and Engine Braking Simulation[C]. ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference.
    [122]肖启瑞,樊明明,黄学翾.车辆工程仿真与分析—基于MATLAB的实现[M].北京:机械工业出版社,2012:23-24.
    [123]葛安林,李焕松,武文治等.动态三参数最佳换档规律的研究[J].汽车工程,1992,14(4):239-247.
    [124]崔功杰,赵丁选.动态四参数工程车辆的自动换挡规律[J].西安交通大学学报,2008,42(9):1190-1191.
    [125]Viet Dac Ngo, Jose A. Colin Navarrete, Theo Hofman. Optimal gear shift strategies for fuel economy and driveability[J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering,2013,227(10):1398-1412.
    [126]周末.自动变速器换档规律的研究[D].武汉:武汉理工大学,2006:15-35.
    [127]余志生.汽车理论[M].北京:机械工业出版社,2009:3-30.
    [128]张威.STATEFLOW逻辑系统建模[M].西安:西安电子科技大学出版社,2007:35-213.
    [129]C.D. Rakopoulos, E.G Giakoumis. Review of Thermodynamic Diesel Engine Simulations under Transient Operating Conditions[J]. SAE Technical Paper 2006-01-0884,2006.
    [130]C.D. Rakopoulos, A.M. Dimaratos, E.G Giakoumis, et al. Exhaust emissions estimation during transient turbocharged diesel engine operation using a two-zone combustion model [J]. Int. J. of Vehicle Design,2009,49(1/2/3):125-149.
    [131]W.J.D. Annand. Heat transfer in the cylinders of reciprocating internal combustion engines[J]. Proc Inst Mech Eng 1970,185(71):976-987.
    [132]C.A. Finol, K. Robinson. Thermal modeling of modern engines:a review of empirical correlations to estimate the in-cylinder heat transfer coefficient[J]. Proc Inst Mech Eng 2006,220:1765-1781.
    [133]C. D. Rakopoulos, E. G. Giakoumis, D. T. Hountalas. Experimental and simulation analysis of the transient operation of a turbocharged multi-cylinder IDI diesel engine[J]. International Journal of Energy Research,1998,22(4):317-331.
    [134]Klaus Mollenhauer, Helmut Tschoke. Handbook of Diesel Engines[M]. Berlin:Springer-Verlag Berlin Heidelberg,2010:25-38.
    [135]Qianfan Xin. Diesel engine system design[M]. Cambridge:Woodhead Publishing Limited,2011: 203-239
    [136]C D Rakopoulos, E G Giakoumis. Sensitivity analysis of transient diesel engine simulation[J]. Proceedings of the Institution of Mechanical Engineers Part D Journal of Automobile Engineering,2006, 220(1):89-101.
    [137]Rezeka S, Henein N. A new approach to evaluate instantaneous friction and its components in internal combustion engines[J]. SAE Paper 840179,1984.
    [138]C.D. Rakopoulos, E.G Giakoumis. Prediction of friction development during transient diesel engine operation using a detailed model[J]. Int. J. of Vehicle Design,2007,44(1/2):143-166.
    [139]Raffaele Tuccillo, Luigi Arnone, Fabio Bozza. Experimental Correlations for Heat Release and Mechanical Losses in Turbocharged Diesel Engines[J]. SAE Technical Paper 932459,1993.
    [140]R Potenza 1, J F Dunne 1, S Vulli 1. A model for simulating the instantaneous crank kinematics and total mechanical losses in a multi-cylinder in-line engine[J]. International Journal of Engine Research, 2007,8:379-397.
    [141]Richard Stanley, Dinu Taraza, Naeim Henein. A Simplified Friction Model of the Piston Ring Assembly[J]. SAE Technical Paper 1999-01-0974,1999.
    [142]D. A. Kouremenos, C. D. Rakopoulos, D. T. Hountalas. Development of a Detailed Friction Model to Predict Mechanical Losses at Elevated Maximum Combustion Pressures[J]. SAE Paper 2001-01-0333,2001.
    [143]Taraza D, Henein N, Bryzik W. Friction Losses in Multi-Cylinder Diesel Engines[J]. SAE Technical Paper 2000-01-0921,2000.
    [144]Y H Zweiri, J F Whidborne, L D Seneviratne. Instantaneous friction components model for transient engine operation[J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering,2000,214:809-822.
    [145]Heywood JB. Internal combustion engine fundamentals[M]. New York:McGraw-Hill,1988.
    [146]Watson N, Pilley A, Marzouk M. A Combustion Correlation for Diesel Engine Simulation[J]. SAE Technical Paper 800029,1980.
    [147]D. N. Assanis, Z. S. Filipi, S. B. Fiveland. A Predictive Ignition Delay Correlation Under Steady-State and Transient Operation of a Direct Injection Diesel Engine[J]. J. Eng. Gas Turbines Power, 2003,125(2):450-457.
    [148]M L Baglione, M J Duty. Development of Reverse Dynamic Optimization Methodology for Optimal Powertrain Integration and Control Design [J]. ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference,2008.
    [149]Maria Ivarsson. Fuel Optimal Powertrain Control for Heavy Trucks Utilizing Look Ahead[D]. Sweden:Linkopings University,2009:3-10.
    [150]GB 18352.5-2005《轻型汽车污染物排放限值及测量方法(中国Ⅲ、Ⅳ阶段)》.
    [151]高继东,秦孔建,梁荣亮.北京道路工况下公交车PM和NOx排放特性试验研究[J].汽车工程,2001,33(9):757-760.
    [152]陈晓明,宁智,宋云超.重型柴油车道路循环工况下排放特性的仿真分析[J].环境科学学报,2012,32(-1):109-115.
    [153]蒋艳,向学军,李宁.多目标决策中的权重敏感性分析[J].三峡大学学报(自然科学版),2004,26(5):447-449.
    [154]李冬萍,明世祥,张文哲等.基于敏感分析的评判指标权重确定方法及应用研究[J].金属矿山,2007,8:163-165.
    [155]邵陆寿.优化设计方法[M].北京:中国农业出版社,2007:182-190.
    [156]杨保安,张科静.多目标决策分析:理论、方法与应用研究[M].上海:东华大学出版社,2008:19-31.
    [157]王清.多属性评价的权重敏感性度量及分析[D].华中科技大学,2006:8-14.
    [158]安实,王健,赵泽斌.风险投资理论与方法[M].北京:科学出版社,2008:25-40.
    [159]蒋艳,陈荣秋.基于权重最小变化量的参数敏感性分析[J].武汉理工大学学报·信息与管理工程版,2005,27(1):165-167.
    [160]蒋根谋,刘荣自.基于敏感性分析的房地产风险投资多目标决策[J].商场现代化,2011,635:117-118.
    [161]龚纯,王正林.精通MATLAB最优化计算[M].北京:电子工业出版社,2012:94-206.
    [162]陈宝林.最优化理论与算法[M].北京:清华大学出版社,2005:315-320.
    [163]许力,邓超.基于城市道路工况的客车动力传动系统的合理匹配[J].拖拉机与农用运输车,2010,37(2):68-70.
    [164]张俊智,卢青春,王丽芳.驾驶循环对车辆能量经济性影响的研究[J].汽车工程,2000,22(5):320-324.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700