用户名: 密码: 验证码:
大牛地气田上古生界流体特征与天然气运移规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大牛地气田是鄂尔多斯盆地上古生界六大天然气田之一,属于岩性地层气藏,具有低孔、低渗、低压、非均质性强等特征。随着气田勘探开发程度的不断提高,尤其是随着气田勘探开发资料的丰富和对气田成藏成岩规律认识的不断提高,进一步深入研究气田压力特征、流体地球化学特征、天然气运移规律等成藏研究的关键问题,对于促进天然气的勘探开发有着重要的意义。
     本文在总结前人对研究区成藏、成岩研究的基础上,通过对泥岩欠压实压力、生烃压力、天然气散失量的计算,并建立封闭孔隙系统气水两相流体压力方程,研究不平衡压实作用、生烃增压作用、天然气散失作用、地层抬升卸载-温度下降-岩石回弹综合作用对大牛地气田低压、常压形成的影响,阐明气田压力成因;通过分析地层水离子间的富集与亏损关系,解释气田地层水成因;通过对天然气地球化学特征的分析,揭示气田天然气运移特征;在上述研究的基础上,通过建立天然气运移方式的力学条件,分析生烃作用、储层物性及裂缝对天然气运移的控制作用,并结合气田气水分布特征,进一步认识天然气运移规律,建立天然气运移模式。
     根据本次研究,主要取得了以下成果和认识:
     1.晚三叠世至早白垩世,大牛地气田上古生界储层在持续埋深的过程中,先后由不均衡压实作用和生烃作用产生了超压;早白垩世末期,地层发生整体抬升,卸载、温度下降、岩石回弹的综合作用导致了现今储层低压、常压形成,天然气散失主要起限制超压进一步加大的作用。
     2.大牛地气田砂岩储层成岩演化过程中,地层水介质的酸碱度与煤系环境及煤系烃源岩的热演化密切相关,并直接控制了储层砂岩的成岩作用。
     3.地层水和天然气地球化学特征均表明地质流体发生过跨层流动。
     4.大牛地气田储层物性、裂缝、生烃强度等因素控制了天然气的运移。天然气以垂向运移为主,运移通道主要为垂直裂缝;侧向上的运移主要通过物性好的砂体进行,除太2段天然气长距离侧向运移较为容易外,其他层段天然气长距离侧向运移能力微弱。
     5.通过综合分析地质流体压力、地球化学特征、气水分布、天然气运移方式及运移控制因素等研究成果建立了天然气运移模式,认为研究区天然气的运移主要存在两个阶段:中侏罗世至早白垩世末期,受生气强度和砂体排泄能力控制,区域上剩余压力差值较大,天然气以活塞式运移为主,但运移距离有限;早白垩世末,地层抬升,生烃能力下降,流体压力从不平衡状态逐渐向平衡状态转化,运移方式由活塞式运移逐渐变为置换式运移,直到达到平衡。
Daniudi gas field is one of the six abundant natural gas fields of Upper Paleozoic in Ordos Basin which belongs to lithostratigraphic gas reservoirs and it shows the characteristics of low porosity, low permeability , subnormal formation pressure, complex reservoir heterogeneity. Along with the increasing degree of the exploration and exploitation, especially the increasing of exploration and exploitation data and cognition for gas accumulation and reservoir diagenesis of Gas Field, it is very important for accelerating gas exploration and exploitation to enough research on pressure character, fluid geochemistry character and gas migration.
     Base on summarizing research production of former scholar on gas accumulation and reservoir diagenesis, by calculating fluid pressure, gas diffusivity and establishing liquid pressure equation of the gas-water phase in the closed porosity system, researches disequilibrium compaction effect, hydrocarbon generation effect, gas diffusivity effect and the effects of uplift unload, temperature drop and rock rebounding during the formation of low pressure and normal pressure in Daniudi gas field, and illuminates the mechanisms of generating abnormal pressure. By analyzing the enrichment and deficit of ion in the formation water, explains the mechanisms of generating formation water. By analyzing the gas geochemistry character, illuminates gas migration character. Based on the researches, by establishing the condition of gas migration mode, analyses hydrocarbon generation effect, the petrophysical properties of the reservoir and fracture during gas migration, and combines the gas-water distribution character, farther knows gas migration rule, and establishes gas migration mode.
     Though this research, the conclusion are gained in this thesis:
     1.From late Triassic to early Cretaceous, because of disequilibrium compaction effect and hydrocarbon generation effect, the Upper Paleozoic formation of Daniudi gas field generated abnormal overpressure, and the end of early Cretaceous, the effects of Uplift unload, temperature drop and rock rebounding made reservoir generate low pressure and normal pressure, gas diffusivity effect limited the increase of abnormal overpressure.
     2.During reservoir diagenesis, acidity and alkalescence of formation water related to coal layer environment and thermal evolution characteristics of source rocks, and controlled reservoir diagenesis.
     3.Geochemistry character of formation water and gas show that formation fliud occurred crossing formation flow.
     4 . The petrophysical properties of the reservoir, fracture and degree of hydrocarbon generation controlled gas migration. Gas migration was mostly vertical migration by vertical fracture. Gas lateral migration occurred commonly in sandstone with better petrophysical properties. Gas lateral migration of long distance in tai2 formation sandstone was relatively easy, but was feebleness in other formations.
     5.By analyzing fluid pressure, geochemistry character, gas-water distribution, the condition of gas migration mode and migration control factor, establishes gas migration mode, and consider that gas migration period could be compartmentalized two phases: from middle Jurassic to end of early Cretaceous, because of control of gas generation and sand discharge capability, excess differential pressure was biggish in the area, so gas migrated as piston, but migration distance was short. End of early Cretaceous, stratum uplift and gas generation capacity fall, so fluid pressure transformed from disequilibrium to equilibrium, and gas migration mode transformed from migration of piston to replacement migration, till equilibrium.
引文
[1]郝芳等.超压盆地生烃作用动力学与油气成藏机理[M].北京:科学出版社,2005.
    [2]陈义才,沈忠民,罗小平.石油与天然气有机地球化学[M].北京:科学出版社,2007.
    [3]李贤庆等.鄂尔多斯盆地中部气田地层流体特征与天然气成藏[M].北京:地质出版社,2005.
    [4]张同伟,王先彬,陈践发等.天然气运移的气体组分的地球化学示踪[J].沉积学报,1999,17(4):627-632.
    [5] Dickinson G. Geological aspects of reservoir pressure in Gulf Coast Louisiana[J]. AAPG Bulletin,1953,37: 410-432.
    [6] Rubey W W, Hubbert M K. Role of fluid pressure in mechanics of overthrust faulting:Ⅱ.overthrust belt in geosynclinal area of western Wyoming in light of fluid-pressure hypothesis[J]. Geological Society of America Bulletin,1959,70:167-206.
    [7] Ole Valdemar Vejb(?)k. Disequilibrium compaction as the cause for Cretaceous–Paleogene overpressures in the Danish North Sea[J]. AAPG Bulletin,2008,92(2):165-180.
    [8] Meissner F F. Petroleum geology of the Bakken Foemation, Williston Basin, North Dakata and Montana[J]. AAPG Memoir(1984),35:159-179.
    [9] Ungerer P,Behar E, Discamps D. Tentative calculation of the overall volume expansion of organic matter during hydrocarbon genesis from geochemistry data: implications for primary migration[J]. Proceedings of the International Meeting on Organic Geochemistry, 1983, 10:129-135.
    [10] Momper J A. Oil migration limitations suggested by geological and geochemical considerations[J]. AAPG Continuing Education Course Note Series,1978,( 8):B1-B60.
    [11]徐国盛,刘中平.川西地区上三叠统地层古压力形成与演化的数值模拟[J].石油实验地质,1996,18(1):117-126.
    [12] Fisher A T, Zwart G. Relation between permeability and effective stress along a plate-boundary fault , Barbados accretionary complex[J]. Geology,1996, 24:307-310.
    [13] Hao Fang,Sun Yongchuan,Li Sitian,et al. Overpressure retardation of organic-matter maturation and petroleum generation: a case study from the Yinggehai and Qiongdongnan basins,South China Sea. AAPG Bulletin[J],1995,79(4):551-562.
    [14] Hao Fang,Li Sitian,Dong Weiliang. Abnormal organic matter maturation in the Yinggehai Basin,South China Sea:Implications for hydrocarbon expulsion and fluid migration from overpressured systems. Journal of Petroleum Geology[J],1998,21(4):427-444.
    [15] Leach W G. Fluid migration,HC concentration in south Louisiana Tertiary sands[J].Oil and Gas Journal. 1993:71-74.
    [16]夏新宇,宋岩.沉降及抬升过程中温度对流体压力的影响[J].石油勘探与开发, 2001,28(3):8-11.
    [17] Smith JE. The dynamics of shale compaction and evolution of pore-fluid pressure[J].Mathematical Geology,1971,3(3):239-262.
    [18] Audet DM, McConnell JDC. Forward modeling of porosity and pore pressure evolution in sedimentary basine[J].Basin Research,1992,4(2):147-161.
    [19] Luo XR, Vasseur G. Contributions of compaction and aquathermal pressuring to geopressure and the influence of environmental conditions[J].AAPG Bulletin,1992,76(10):1550-1559.
    [20]陶一川,宗纲,姜鹏等.异常地层压力数学模型分析与应用[J].地球科学-中国地质大学学报,1992,17(5):571-579.
    [21] Shi GR. Basin modeling in the kuqa depression of the tarim basin(western china):a fully temperature-dependent model of overpressure history[J].Math Geosci,2008,40:47-62.
    [22] Worden R H, Matray J M. Cross formation flow in the Paris Basin[J]. Basin Research,1995,7:53-66.
    [23]徐国盛,刘树根等.四川盆地天然气成藏动力学[M].北京:地质出版社,2005.
    [24] Mearns E W, McBride J J. Hydrocarbon filling history and reservoir continuity of oil fields evaluated using 87Sr/86Sr isotope ratio variations in formation water, with examples from the North Sea[J].1999,5:17-27.
    [25]蔡春芳,王国安,何宏.库车前陆盆地流体化学、成因与流动[J].地质地球化学,2000,28(1):58-62.
    [26]张文忠,林文姬,赵广民.苏里格气田石盒子组地层水特征与天然气聚集[J].新疆石油天然气,2008,4(3):1-8.
    [27]沈忠民,宫亚军,刘四兵.川西坳陷新场地区上三叠统须家河组地层水成因探讨[J].地质论评,2010,56(1):82-88.
    [28]王运所,许化政,王传刚等。鄂尔多斯盆地上古生界地层水分布与矿化度特征[J].石油学报,2010,31(5):748-753.
    [29] Wayne A. Van Voast. Geochemical signature of formation waters associated with coalbed methane[J]. AAPG Bulletin, 2003,87(4):667-676.
    [30]陈安定,李剑锋.天然气运移的地球化学指标研究[J].天然气地球科学,1994,5:38-67.
    [31]陈践发,李春园,沈平等.煤型气烃类组分的稳定碳、氢同位素组成研究[J].沉积学报,1995,13(2):59-69.
    [32]李良,袁志祥,惠宽洋等.鄂尔多斯盆地北部上古生界天然气聚集规律[J].石油与天然气地质,2000,21(3):268-271.
    [33]袁志祥.鄂北塔巴庙、杭锦旗地区古生界天然气勘探前景分析[J].天然气工业,2001,21(增刊):5-9.
    [34]柳广弟,李剑,李景明等.天然气成藏过程有效性的主控因素与评价方法[J].天然气地球科学,2005,16(1):1-6.
    [35]袁际华,柳广弟.鄂尔多斯盆地上古生界异常低压分布特征及形成过程[J].石油与天然气地质,2005,26(6):792-799.
    [36]李仲东,过敏,李良等.鄂尔多斯盆地北部塔巴庙地区上古生界低压力异常及其与产气性的关系[J].矿物岩石,2006,26(4):48-53.
    [37]王震亮,陈荷立.神木-榆林地区上古生界流体压力分布演化及对天然气成藏的影响[J].中国科学D辑, 2007, 37 (增刊Ⅰ): 49-61.
    [38]冯乔,耿安松,徐小蓉等.鄂尔多斯盆地上古生界低压气藏成因[J].石油学报,2007,28(1):33-37.
    [39]李仲东,郝蜀民,李良等.鄂尔多斯盆地上古生界压力封存箱与天然气的富集规律[J].石油与天然气地质,2007,28(4):466-472.
    [40]郝蜀民,惠宽洋,李良.鄂尔多斯盆地大牛地大型低渗气田成藏特征及其勘探开发技术[J].石油与天然气地质,2006,27(6):762-768.
    [41]戴世立,杨智,李弘等.鄂尔多斯盆地塔巴庙地区上古生界源岩热演化特征[J].海洋石油,2009,29(1):15-20.
    [42]郭振华,陈红汉,赵彦超等.利用储层流体包裹体确定鄂尔多斯盆地塔巴庙区块上古生界油气充注期次和时期[J].现代地质,2007,21(4):712-718.
    [43]周文,张哨楠,李良,等.鄂尔多斯塔巴庙地区上古气藏特征及成藏机理[J].成都理工大学学报(自然科学版),2004,31(6):606-610.
    [44]张先平,张树林,叶加仁.鄂尔多斯塔巴庙地区上古生界天然气成藏机理分析[J].石油天然气学报(江汉石油学院学报),2006,28(5):1-6.
    [45]李仲东,惠宽洋,李良等.鄂尔多斯盆地上古生界天然气运移特征及成藏过程分析[J].矿物岩石,2008,28(3):77-83.
    [46]杨智,何生,邹才能等.鄂尔多斯盆地北部大牛地气田成岩成藏耦合关系[J].石油学报,2010,31(3):373-378.
    [47]付金华,魏新善,任军峰.伊陕斜坡上古生界大面积岩性气藏分布与成因[J].石油勘探与开发,2008,35(6):664-667.
    [48]杨俊杰,裴锡古.中国天然气地质学(卷四)[M].北京:石油工业出版社,1996.
    [49]罗月明,刘伟新,谭学群等.鄂尔多斯大牛地气田上古生界储层成岩作用评价[J].石油实验地质,2007,29(4):384-390.
    [50]雷开强,孔繁征,张哨楠等.塔巴庙地区上古生界砂岩成岩作用特征及其储集性分析[J].矿物岩石,2003,23(3):92-96.
    [51]朱宏权,张哨楠.鄂尔多斯盆地北部上古生界储层成岩作用[J] .天然气工业,2004,24(2):29-32.
    [52]李仲东,张哨楠,周文等.大牛地气田上古生界压力封存箱与储层孔隙演化[J] .矿物岩石,2007,27(3):73-80.
    [53]翟云芳.渗流力学[M].北京:石油工业出版社,2003.
    [54]邢景宝.大牛地低压致密气藏储层改造理论与实践[M].北京:中国石化出版社,2009.
    [55]解习农,李思田,刘晓峰.异常压力盆地地质流体动力学[M].武汉:中国地质大学出版社,2006.
    [56]刘向君,刘堂晏,刘诗琼.测井原理及工程应用[M].北京:石油工业出版社,2006.
    [57]陈瑞银,罗晓容,陈占坤等.鄂尔多斯盆地中生代地层剥蚀量估算及其地质意义[J].地质学报,2006,80(5):685-693.
    [58]段春节,陈路原,吴汉宁.大牛地气田下二叠统叠合气藏开发地质特征[J].石油实验地质,2009,31(5):495-499.
    [59]黄志龙,郝石生.天然气扩散与浓度封闭作用的研究[J].石油学报,1996,17(4):36-41.
    [60]付广,杨勉,刘文龙.浓度对天然气发生扩散作用的影响[J].天然气地球科学,2000,11(1):22-27.
    [61]付晓泰,王振平,卢双舫.气体在水中的溶解机理及溶解度方程[J].中国科学(B辑),1996,26(2):124-130.
    [62]刘文彬,罗大恒,伏万军.陕甘宁盆地上古生界天然气泥质岩直接盖层的扩散系数研究[J].天然气地球科学,1996,7(1):30-33.
    [63]张晓东,秦勇,桑树勋.煤储层吸附特征研究现状及展望[J].中国煤田地质,2005,17(1):16-21.
    [64]张天军,许鸿杰,李树刚.温度对煤吸附性能的影响[J].煤炭学报,2009,34(6):802-805.
    [65]田永东,李宁.煤对甲烷吸附能力的影响因素[J].西安科技大学学报,2007,27(2):247-250.
    [66]王云鹏,彭平安,卢家烂.煤在降温和减压过程中天然气释放的模拟实验及在鄂尔多斯盆地的初步应用[J].科学通报,2004,49(增刊1):93-99.
    [67]陈元千,李璗.现代油藏工程[M].北京:石油工业出版社,2001:1-23.
    [68]姜振学,田丰华,夏淑华.砂岩回弹物理模拟实验[J].地质学报, 2007,81(2):244-249.
    [69]任战利.鄂尔多斯盆地热演化史与油气关系的研究[J].石油学报, 1996,17(1):17-23.
    [70]刘大锰,杨起,汤达祯。鄂尔多斯盆地煤的灰分和硫、磷、氯含量研究[J].地学前缘,1999,6(增刊):53-59.
    [71]田正隆,陈绍勇,龙爱民.以Ba为指标反演海洋古生产力的研究进展[J].热带海洋学报,2004,23(3):78-86.
    [72]刘方魁,颜婉荪.油气田水文地质学原理[M].北京:石油工业出版社,1991.
    [73]蔡春芳,梅博文,马亭等.塔里木盆地油田水的成因与演化[J].地质论评,1997,43(6):650-657.
    [74]周训,李慈君.海水蒸发轨迹线及其应用[J].地质科学,1995,20(2)410-414.
    [75]张正斌,刘莲生.海洋化学(上卷)[M].山东:山东教育出版社,2004.
    [76]陈静生.河流水质原理及中国河流水质[M].北京:科学出版社,2006.
    [77]王兵,李心清,袁洪林.中国中东部地区地表水环境锶元素地球化学特征研究[J].地球与环境,2009,37(1):42-49.
    [78]刘英俊,曹励明,李兆麟等.元素地球化学[M].北京:科学出版社,1984.
    [79]惠宽洋,张哨楠,李德敏等.鄂尔多斯盆地北部下石盒子组-山西组储层岩石学和成岩作用[J].成都理工学院学报,2002,29(3):272-278.
    [80]谢风猛,陈克勇,张哨楠等.塔巴庙上古生界砂岩储层成岩作用对孔隙结构的影响[J].物探化探计算技术,2007,29(3):223-227.
    [81]刘伟新,王延斌,张文涛等.鄂尔多斯大牛地气田上古生界储层成岩作用与产能关系研究[J].石油实验地质,2008,30(6):557-563.
    [82]王京,赵彦超,刘琨等.鄂尔多斯盆地塔巴庙地区上古生界砂岩储层“酸性+碱性”叠加溶蚀作用与储层质量主控因素[J].地质科学——中国地质大学学报,2006,31(2):221-228.
    [83]李向博,王建伟.煤系地层中砂岩火山尘填隙物的成岩作用特征——以鄂尔多斯盆地天然气储层为例[J].岩石矿物学杂志,2007,26(1):42-48.
    [84]姜在兴.沉积学[M].北京:石油工业出版社,2003.
    [85]刘家铎,田景春,张翔等.鄂尔多斯盆地北部塔巴庙地区山西组一段海相、过渡相沉积标志研究及环境演化分析[J].沉积学报,2006,24(1):38-42.
    [86]窦伟坦,侯明才,董桂玉.鄂尔多斯盆地北部山西组—下石盒子组物源分析[J].天然气工业,2009,29(3):25-28.
    [87]李文华,白向飞,杨金和等.烟煤镜质组平均最大反射率与煤种之间的关系[J].煤炭学报,2006,31(3):342-345.
    [88]李向博,王建伟.煤系地层中砂岩火山尘填隙物的成岩作用特征—以鄂尔多斯盆地天然气储层为例[J].岩石矿物学杂志,2007,26(1):42-48.
    [89]过敏.鄂尔多斯盆地北部上古生界天然气成藏特征研究[D].成都理工大学,2010.
    [90]李广之,吴向华.异构比φiC4/φnC4和φiC5/φnC5的石油地质意义[J].物探与化探,2002,26(2):135-139.
    [91]郜建军等.大牛地气田剩余资源潜力与勘探目标再评价[R].无锡石油地质研究所,内部报告,2010.
    [92]张金川,金之钧等.深盆气成藏机理及分布预测[M].北京:石油工业出版社,2005.
    [93]田宜灵,肖衍繁,朱红旭.高温高压下水与非极性流体间的界面张力[J].物理化学学报,1997,13(1):89-95.
    [94]郝蜀民,李良,尤欢增.大牛地气田石炭-二叠系海陆过渡沉积体系与近源成藏模式[J].中国地质,2007,34(4):606-611.
    [95]周新桂,张林炎.塔巴庙地区上古生界低渗透储层构造裂缝及其分布定量预测[J].天然气地球科学,2005,16(5):575-580.
    [96]周文,张哨楠,李良.鄂尔多斯盆地塔巴庙地区上古生界储层裂缝特征及分布评价[J].矿物岩石,2006,26(4):54-61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700