用户名: 密码: 验证码:
流动注射化学发光体系测定化学需氧量和有机磷农药残留的分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文分为两部分:综述和研究报告。综述部分对化学需氧量(COD)测定方法作了简要综述,内容涉及标准法、光度法、电化学法、火焰原子吸收法和其它测定方法的研究进展,最后对化学需氧量快速测定作了展望。研究报告包括三个方面:一、流动注射化学发光法快速测定化学需氧量(重铬酸钾法);二、流动注射化学发光法快速测定化学需氧量(高锰酸钾法);三、流动注射化学发光法测定有机磷农药残留。
    
    第二部分研究报告
    一、流动注射化学发光法快速测定化学需氧量—重铬酸钾法
     基于酸性从cr20:在消解水体中的有机污染物时被还原为cr(m),而Cr(m)
    可以催化Luminol一HZO:体系产生强的化学发光,建立了一种测定COD的流动
    注射化学发光法。本方法不需要催化剂,不需要长的消解时间,可以采用较低
    的酸度,适合于在线连续检测水体COD。本方法检测COD的线性范围为
    20一l000omg/L,检测限为10mg/L,对20mg/L COD的11次平行测定的RsD小
    于5%,己成功应用于地表水样COD的测定。
    二、流动注射化学发光法快速测定化学需氧量—高锰酸钾法
     基于酸性KMno4被水体中的还原性物质还原为Mn(H),而Mn(n)可以催
    化Luminof一HZO:体系产生强的化学发光,建立了一种快速测定COD的流动注
    射化学发光新方法。在本体系中,为了将KMnO;和Mn( 11)分开,采用了一个
    强酸性阳离子微交换柱将Mn(ll)富集起来,待KMn04通过比微交换柱流走后,
    再用洗脱剂将Mn(n)洗脱下来。该法测定COD的线性范围为4~4 00Omg/L,检测
    限Zmg/L,整个过程(包括洗脱和采样)为1 .smin,每小时可测4。个样。对
    10 mg/L的CoDll次平行测定的RSD为4.4%。该法不需要催化剂,不需要长
    的消解时间,可以采用较低的酸度,而且快速、自动化程度高,适于在线连续
    测定水体COD值,己成功用于水样COD的测定。
    三、流动注射化学发光法测定有机磷农药残留
     基于过硫酸钾在紫外光催化下可将有机磷消解为正磷酸盐,而正磷酸盐在
    酸性条件下可与铝酸盐、钒酸盐形成具有氧化性的磷铝钒杂多酸,其可直接氧
    化碱性鲁米诺产生强的化学发光,本文结合流动注射技术,提出了一种测定有机
    磷农药残留的化学发光新方法,其线性范围为1.0x10’9一1.oxlo一sg/mL,检出限
    为8.0xl0’1。岁mL。对2.ox10-v创mL的磷进行11次平行测定,其RsD为4.8%。
This thesis includes two parts. In part one, the recent development of the analytical methods of chemical oxygen demand is reviewed. The review involves the development of the spectrometry, the electrochemistry, the flame atomic absorption spectrometry and other analysis means. The research reports are focused on: (1)Chemiluminescence rapid determination of aquatic COD with flow injection analysis (the K2Cr2O7 method); (2) Chemiluminescence system for automatic determination of chemical oxygen demand using flow injection analysis (the KMnO4 method); (3) Chemiluminescence rapid determination of Organophosphorous pesticides with flow injection analysis.
    Part One Summary The development of the analysis of chemical oxygen demand
    In all kinds of contaminates, the organic contaminate is the fastest increasing and most serious one, Chemical Oxygen Demand (COD) is just the comprehensive index to valuate the degree of organic pollution. It's also the important parameter in supervising the water quality. COD is defined as the amount of oxygen equivalents consumed in the oxidation of organic compounds by strong oxidants (such as dichromate, permanganate), represents the total pollutants load of most wastewater discharges (it should be converted into oxygen's mass concentration (mg/L)). And it will be rather meaningful for water pollution preventing and supervising to grasping and controlling the amount of COD of water in time. This review introduces different methods of the determination of COD value, especially by spectrometry, electrochemistry, flame atomic absorption spectrometry and other analysis means. The procedures of the evaluation COD methods are complicated, and not suitable for analyzing the batch samples and monitoring on line
    .
    Flow-injection Chemiluminescence (CL) is known to be a powerful analytical technique that promises high sensitivity, wide linear range, simple instrumentation, and rapid, reproducible means of detection, and has been applied successfully to the determination of many environmental pollutants. In this paper, tow simple CL system
    
    
    for on-line determination of COD using flow injection analysis is proposed.
    Part Two Research Reports 1% Chemiluminescence Rapid Determination of Aquatic COD With Flow Injection
    Analysis
    A novel chemiluminescence (CL) combined with flow injection system for rapid determination of chemical oxygen demand (COD) of aquatic system is described in this paper. It is based on that the acidic K2Cr2O7 can be reduced into Cr(III)by reducible matter in the water, and the generated Cr(III)can catalyze the luminol- H2O2 system to produce the strong CL emission. In this method, the reduction reaction does not need other catalyzer and analysis can be completed on-line. The linear range is 20-10000 mg/L with the detection limit of 10mg/L. The system has been applied to determine the COD of the water sample with satisfactory results.
    2 , Chemiluminescence System for Automatic Determination of Chemical Oxygen Demand Using Flow Injection Analysis
    A novel chemiluminescence (CL) system for automatic determination of chemical oxygen demand (COD) combined with flow injection analysis is proposed in this paper. In this system, potassium permanganate is reduced to Mn2+ which is first adsorbed on a strongly acid cation-exchange resin mini-column to be concentrated during chemical oxidation of the organic compounds at room temperature, while the excessive MnO4- passes through the mini-column to be waste, then the concentrated Mn2+ is eluted reversely and measured by the luminol-H2O2 CL system. The calibration graph is linear in the range of 4-4000 mg /Land the detection limit is 2 mg/L. A complete analysis could be performed in 1.5 min including washing and sampling, giving a throughout of about 40/h. The relative standard deviation was 4A% for 10 mg/L COD (n=11), This CL flow system for determination of COD is very simple, rapid and suitable for automatic and continuous analysis. The presented system has been applied successfully to the determination of COD of water samples.
引文
[1] 张炎胜,略谈化学需氧量测定方法研究之现状,环境监测管理与技术,1994,4,11-13
    [2] 姚秀芹,万维纲,化学需氧量(COD)测定法存在问题探讨,环境污染与防治,1994,2,43-45
    [3] 剑英明,水分析化学[M],第1版,北京,冶金工业出版社,1993,245-248
    [4] W. Fresenius, K. E. Quentin, W. Shneider,水质分析[M],张曼平译,第1版,北京,北京大学出版社,1991,271-275
    [5] 奚旦立等,环境监测,第2版,北京,高等教育出版社,1995,81-82
    [6] 胡国强等,废水中COD的无汞盐法测定,上海环境科学,1991,10(8),27-29
    [7] 赵钦勋等,无汞快速法测定化学含氧量,环境保护,1994,11,23
    [8] 邓浩,快速测定钻探废水中的COD值,江汉石油学报,1997,19(2),63-66
    [9] 孙乃有,工业废水COD加压溶弹性测定,石油天然气化工,1995,3,212
    [10] 孙乃有,生活污水的化学需氧量测定——小体积加压溶弹法,环境科学与技术,1995,2,21-24
    [11] M. Timothy, E. Lames, P. Alleman, G.. Pope, Miniaturized closed reflux colorimetric method for the determination of chemical oxygen demand, Waste Management, 2000, 20, 295-298
    [12] 陈立波等,COD快速开管测定法研究,环境工程,1994,12(1),40-42
    [13] D. M. Valle, M. Pach, J. Alonso, Evaluation of microwave digestion for Chemical oxygen demand determination, Environ. Technol., 1990, 11(2), 1087-1092
    [14] 高向阳,微波加热快速测定环境中的COD_(Mn),环境科学,1992,13(1),79-82
    [15] 李德豪,通过在混酸介质中微波消解快速测定炼油废水中的COD值,环境工程,1990,17(5),52-54
    [16] 李德豪,Ag_2SO_4—CuSO_4催化微波消解快速测定炼油污水中的COD值,分析实验室,2000,19(3),34-37
    
    
    [17] Chenshiow Ching, Rapid determination of COD focused microwave Digestion followed by a titrimetric method, Anal. Sci., 2001, 17(4), 551-553
    [18] Ramon Ramon, Francisco Valero, Mamcel del Valle, Rapid determination of chemical oxygen demand using a focused microwave heating system featuring temperature control, Anal. Chim. Acta., 2003, 491, 99-109
    [19] Fu Dafang, Zhou Luyi, et al, New microwave digestion method for the COD_(Cr) analysis, Zhong guo huan jing ke xue, 1998, 18 (2), 154-157
    [20] 陈宏,彭伟堂,微波密封消解法快速测定COD_(Cr),环境保护,1996,19(9),19-22
    [21] D. Rodreva, Z. Areva, Determination of Chemical oxygen demand of waste water from refinery and petrochemical industry by microwave heating, Anal. Lab., 1994, 3(3), 183-187
    [22] P. Selvapathy, J. J. Starlet, A new catalyst for COD determination, India Environ Health, 1991, 33 (1), 96-102
    [23] 王军,用CuSO_4—KAl(SO_4)_2—Na_2MoSO_4作催化剂快速测定COD,环境科学,1992,13(2),66-69
    [24] Sun Jianhui, et al, Rapid determination of waster water COD using Mn(H_2PO_4)_2 as catalyst, Environ. Sci. (China), 1996, 8 (2), 212-217
    [25] M. Pettine, S. Capri, et al, Interference of chlorides in COD determination, Melodi. Anal. Acque., 1992, 12(4), 35-40
    [26] G. D. Simone, G. Ummarino, et al, COD determination in tannery waste water in presence of high chloride concentration, Mater Concianti, 1993, 69(5), 221-228
    [27] B. vaidye, S. W. Watson, et al, Reduction of chloride ion interference in chemical oxygen demand determination using bismuth-based adsorbents, Anal. Chim. Acta., 1997, 357(1-2), 176-175
    [28] D. Lienert, M. Koch, A. Kettrup, et al, Comparison of methods for COD determination in waster water streams, Melliand Textiberichte International Textile Reports, 2000, 81(6), 523-525
    [29] 于令等,李绍英,含海水的废水COD的测定方法试验,环境保护,1990,
    
    13(4),20-22
    [30] 崔丽,钱丽珠,快速测定COD_(Cr)的研究,理化检验,化学分册,1997,33(4),491-493
    [31] 周军,金奇庭,关于化学需氧量测定中化学反应的研究,中国环境监测,2000,16(3),4-8
    [32] 肖林如,低消耗和无汞污染的COD_(Cr),环境保护,1991,14(8),21
    [33] J. Font, L. Busquest, Simplified determination of the COD, AGEIC BOL TEC, 1998, 49(1), 40-44
    [34] Chen Jun Ming, et al, A modified sealed oven-UV method of COD determination, Toxicol Environ Health, 1994, 40(4), 338-343
    [35] Graner Lelso Augusto Fessel, et al, Determination of the COD in waters by simultaneous spectrophoto metry of Cr(Ⅲ) and Cr(Ⅵ) ion, Edetica Quim, 1998, 23, 31-44
    [36] J. Hejzlar, et al, Colorimetric determination of low COD values in water by the dichromate semi-micro-method, Analyst, 1990, 115(11), 1463-1467
    [37] S. B. Halling, N. D. Jensen, Simplified method of COD analysis, Waste Treast, 1991, 6(3), 305-316
    [38] L. Brunini, et al, Wlorimetric determination of COD of waste water utilizing diphenylcarbazine, Ecletica Quim, 1991, 16, 1-8
    [39] 方宇翘,密封恒温-分光光度法测定废水中COD_(Cr),上海环境科学,1993,12(5),18-20
    [40] 黄功浩,谢少雄,林文惠,消解光度法测定化学需氧量,大连铁道学院学报,1998,19(2),71-73
    [41] 程京林,也谈分光光度法测定水中的COD_(Cr),环境保护,1993,16(2),25-26
    [42] 张国勋,分光光度法测定高浓度的COD,环境污染与防治,1996,18(6),24-26
    [43] 赵钦勋,高玉俊,程晓云,无汞盐分光光度法快速测定地表水中的COD_(Cr),环境保护,1998,21(3),30-32
    [44] 陈文春,紫外分光光度在纯水COD测定中的应用,水处理技术,1998,24(6),333-335
    [45] 张国锋,分光光度法快速测定化纤废水COD,环境保护,1995,15(5),35-36
    
    
    [46] 鲍春阳,杨铢,王美萍,COD测试剂及其应用方面的研究,化学与粘合,2001,2,86-87
    [47] Y. Nimura, et al, Colorimetric determination of COD mangnanese using H_2O_2, Nippon Suisan Gakkaishi, 1992, 58(6), 1129-1137
    [48] Konno Noboru, et al, Electron analysis of COD with alkaline reagents and potassium permanganate and the apparatus of the measarement, Kokai Tokkyo Koho JP 08, 145, 994[96, 145, 944]
    [49] K. Veda, M. Hara, Development of simple COD measurement, Kagaku to Kyoiku, 1998, 46(10), 656-659
    [50] M. Czane, et al, COD based on spectrophoto metric measurement of permanganate, Jkoream. Chem. Soc., 1994, 38(12), 880-884
    [51] Brunini, Jairo, et al, Lolorimetric determination of chemical oxygen demand of waste water utilizing diphenylacarbazide, Edtica Quim, 1991, 16, 1-8
    [52] Matsche Norbert Stumwoehrer Karl, COD determination by UV Absorption Gas-Wasserfach, Wasser Abwaster, 1996, 137(13), 525-530
    [53] I. Papaefstathiou, Luque de Castro M D, Simultaneous determination of COD inorganic carbon by Flow-Injection-Pervaporation, Anal. Chem., 1997, 66(2), 107
    [54] N. A. Kuzmenko, et al, Determination of COD in demestic sewage by a fluorescence mehod, Khim Tekhnol Vody, 1995, 17(5), 505-508
    [55] Tanaka Hideji, et al, Cobalt(Ⅲ) oxidation of organic compounds and its application to a determination of COD at room temperature, Anal. Sci., 1997, 13(4), 607-612
    [56] Naga Takashi, Keda Sanae, Determination of COD in river water or industrial waste waters using cerium sulfate, Kokai Tokkyo Koho JP 09, 311, 130197, 311, 1301]
    [57] B. Vallejo, A. Lzquierdo, M. D. Luguede, Flow injection determination of chemical oxygen demand in leaching liguid, Analyst, 1999, 124, 1261-1264
    [58] M. L. Balconi, M. Borgarello, R. Ferraroli, Chemical oxygen demand determination in well and river wasters by flow-injection, Anal. Chim. Acta., 1992, 261, 295-299
    [59] T. Korenaga, xiao jing zhou, Kimiko Okako, Tosio Moriwake, Determi-
    
    nation of chemical oxgen demand by a flow-injection method using cerium(Ⅳ) sulphate as oxidinzing agent, Anal. Chim. Acta., 1993, 272, 237-144
    [60] 范世华,方肇伦,环境水中化学需氧量的F1分光光度法自动在线检测,分析科学学报,1996,12(2),103-106
    [61] 陈慧,安太成,房彦军,全晓塞,环境水中化学需氧量的反向流动注射分析法研究,岩矿测试,1999,18(3),185
    [62] 陈慧,全晓塞,房彦军,停留—反向流动注射分析法测定环境水样中的化学需氧量,西北师范大学学报(自然科学版),1998,34(4),107-108
    [63] Li-qing Tian, Sao-ming Wu, Determination of chemical oxygen demand in aqueous environmental samples by segmented flow-injection analysis, Anal. Chim. Acta., 1992, 261, 301-305
    [64] 吴绍铭,田笠卿,空气整端连续流动注射法快速环境水样中COD,分析试验室,1993,12(4),78-80
    [65] A. A. Beliustin, A. M. Pisarevsky, et al, Glass electrodes a new generation, Sense Actuators B, 1992, 10, 61-66
    [66] Kyong-Hoon bee, TomoIshikawa, Scott McNiven, Yoko Noimura, Satoshi Sasaki, Yoshiko Arikawa, Isao Kayube, Chemical Oxygen Demand sensor employing a thin layer electrochemical cell, Anal. Chim. Acta., 1999, 386, 211-289
    [67] Kyong-Hoon bee, TomoIshikawa, Scott McNiven, Yoko Noimura, Satoshi Sasaki, Yoshiko Arikawa, Isao Kayube, Chemical Oxygen Demand sensor employing a thin layer electrochemical cell, Anal. Chim. Acta., 1999, 398, 161-171
    [68] P. Westbroek, E. Temmerman, In line measurement of chemical oxygen demand by means of multipulse amperometry at a rotating Pering Pt/PtO_2 disc electrode, Anal. Chim. Acta., 2001, 437, 95-105
    [69] G. V. Dugin, I. P. Polozova, et al, Cerium oxidizability of different types of waters, Fiz. Khim., 1992, 1, 47-52
    [70] Dezhong Dan, et al, Chemical oxgen demand determination in environmental waters by mixed-acid digestion and single sweep polarography, Anal. Chim. Acta., 2000, 420, 39-44
    
    
    [71] 袁洪志,COD的极谱法研究,环境科学与技术,1994,64(2),26-28
    [72] 朱俊杰等,示波电位滴定法测定COD的研究,分析科学学报,1994,10(3),44-46
    [73] Pilz Urich, Rapid electrochemical determination of COD, Wasser Abwasser Abfall, 1992, 8, 525
    [74] Pilz, Ulrich, On line COD analysis experience from application of an electrochemical measuring procedure, Chem. Anlagen. Verfahren., 1993,26(8), 14-15
    [75] L. H. kyong, et al, COD sensor using as topped flow thin layer electrochemical cell, Electroanalysis, 1999, 11(16), 1172-1179
    [76] Yoon-chang Kim, et al, Photocatalytic sensor for chemical oxgen demand determination based on oxgen electrode, Anal. Chem., 2000, 72, 3379-3382
    [77] Yoon-chang Kim, Satoshi Sasaki, Kazuyoshi Yano, kazunori Ikebukuro, kazuhito Hashimoto Isao karube, Photocatalytic sensor for the determination of COD using FIA, Anal. Chim. Acta., 2001, 432, 59-66
    [78] A. Cuesta, J. L. Todoli, A. Canals, Flow injection method for the rapid determination of chemical oxygen demand based on microwave digestien and chromium speciation in flame atomic absorption spectrometry, Spectrochimca Acta Part B, 1996, 51, 1791-1800
    [79] A. Cuesta, J. L. Todoli, A. Canals, Rapid determination of chemical oxygen demand by a semi-automated method based on microwave sample digestion chiromium(Ⅵ) organic solvent extraction and flame atomic absorption spectrometry, Anal. Chim. Acta., 1998, 72, 399-409
    [80] A. Cuesta, J. L. Todoli, A. Canals, Rapid determination of chemical oxygen demand by a semi-automated method based on microwave sample digestion chiromium(Ⅵ) organic solvent extraction and flame atomic absorption spectrometry, Spectrochimca Acta Part B, 1996, 51, 1791
    [81] 肖开提,阿布力孜等,原子吸收法测定环境水样中的化学需氧量,分析实验室,1999,18(3),90-91
    [82] Antonio Canals, Angel Cuesta, Luis Gras, Remedios Hemandez, New ultrasound assist chemical oxygen demand determination, Ultrasonics Sonochemistry, 2002, 9, 143-149
    
    
    [83] 李桂华,悬浮物SS和化学需氧量COD_(Cr)的相关性研究,环境科学与技术,1997(1),37-40
    [84] P. K. Dasgupta, K. Petersen, Kinetic approach to the measurement of chemical oxygen demand with an automated micro bath analyze, Anal. Chem., 1990, 62, 395-402
    [85] Kalte Peter, Waste water in ozone test continuou rapid COD measurement, Chem. Anagon. Verfahren., 1991, 23(5), 52
    [86] Mamais Daniel, et al, A rapid physical-chemical method for the determination of readily biodegradable soluble COD in municipal wastewater, Water Res., 1993, 27, 195-197
    [87] To yo hara keichiro, On line analyzer COD automatic measurement device, Petrotech(Tokyo), 1998, 21(7), 741-749
    [88] A. Schmitz, et al, On line monitoring of COD by FIA, Dechena Biotechnol Conf, 1992, 5, 1117-1120
    [89] 国家环保局编委会,水和废水检测分析方法,北京,中国环境出版社,1989,354
    [90] 章竹君,吕九如,水中铬(Ⅲ)和铬(Ⅵ)的化学发光测定,分析测试通报,1983,12,25
    [91] Li B, Zhang Z, Wu M, Flow-injection chemiluminescence determination of sulfite using on-line electrogenerated silver(Ⅱ) as the oxidant, Anal. Chim. Acta., 2001, 432, 311
    [92] D. Xi, Y. Song, X. Liu, Environmental Monitoring, Advanced Education Press, Beijing, 1996, 8
    [93] Y. Kim, K. Lee, S. Sasaki, K. Hashimoto, K. Ikebukuro, I. Karube, Photo catalytic Sensor for Chemical Oxygen Demand Determination Based on Oxygen Electrode, Anal. Chem., 2000, 72, 3379
    [94] B. M. Jones, R. H. Sakaji, C. G. Daughton, Comparison of the microcolorimetric and macrotitrimetric methods for chemical oxygen demand of oil shale wastewaters, Anal. Chem., 1985, 57, 2334-2337
    [95] P. K. Dasgupta, K. Petersen, Kinetic approach to the measurement of chemical oxygen demand with an automated micro batch analyzer, Anal. Chem., 1990, 62, 395
    
    
    [96] A. M. Jirka, M. J. Smith, Micro semiautomated analysis of surface and waste waters for chemical oxygen demand, Anal. Chem., 1975, 47, 1397-1402
    [97] A. R. Bowi, E. P. Achterberg, P. N. Sedwich, S. Ussher, P. J. Worsfold, Real-Time Monitoring of Picomolar Concentrations of Iron(Ⅱ) in Marine Waters Using Automated Flow Injection-Chemiluminescence Instrumentation, Environ Science Technol, 2002, 36, 4600-4607
    [98] W. Qin, Z. Zhang, H. Chen, Chemiluminescence flow sensor for the monitoring of hydrogen peroxide in rainwater, Intern. J. Environ. Anal. Chem., 1997, 66, 191-200
    [99] H. Y. Aboul-Enei, R. Stefan, J. F. Staden, X. Zhang, A. M. Garcia-Campana, W. R. G. Baeyens, Critical Reviews in Anal. Chem., 2000, 30, 271
    [100] J. Lin, X. Shan, S. Hanaoka, M. Yamada, Luminol Chemiluminescence in Unbuffered Solutions with a Cobalt(Ⅱ)-Ethanolamine Complex Immobilized on Resin as Catalyst and Its Application to Analysis, Anal. Chem., 2001, 73, 5043
    [101] K. Okamura, T. Gamo, H. Obata, E. Nakayama, H. Karatani, Y. Nozaki, Selective and sensitive determination of trace manganese in sea water by flow through technique using luminol-hydrogen peroxide chemiluminescence detection, Anal. Chim. Acta., 1998, 377, 125-131
    [102] W. A. Moore, R. C. Kroner, C. C. Ruchoft, Dichromate Reflux Method for Determination of Oxygen Consumed, Anal. Chem., 1949, 21, 953-957
    [103] E. Nakayama, K. Isshiki, Y. Sohrin, H. Karatani, Automated determination of manganese in seawater by electrolytic concentration and chemiluminescence detection, Anal. Chem., 1989, 61, 1392
    [104] 王一茹,谈农药残留分析工作重心的变化,农业环境保护,1987,6(3),7-10
    [105] 潘灿平译,农药分子中磷的功能(上),农药译丛,1997,19(5),36-40,53
    [106] 龙惠珍,陆贻通,世界农药急性中毒概况,农药译丛,1997,19(3),54-56
    [107] A. Garrido Frenich, F. J. Arrebola Lie'banas, M. Mateu-Sa'nchez, J. L. Marty'nez Vidal, Multicomponent determination of pesticides in
    
    vegetables by gas chromatography with mass spectrometric detection and multivariate calibration, Talanta, 2003, 60, 765-774
    [108] Darinka tajnbaher, Lucija Zupancic-Kralj, Multiresidue method for determination of 90 pesticides in fresh fruits and vegetables using solid-phase extraction and gas chromatography-mass spectrometry, Journal of Chromatography A, 2003, 1015, 185-198
    [109] F. Hernandez, E. Pitarch, J. Beltran, F. J. Lopez, Headspace solidphase microextraction in combination with gas chromatography and tandem mass spectrometry for the determination of organochlorine and organophosphorus pesticides in whole human blood, Journal of Chromatography B, 2002, 769, 65-77
    [110] K. N. T. Norman, S. H. W. Panton, Supercritical fluid extraction and quantitative determination of organophosphorus pesticide residues in wheat and maize using gas chromatography with flame photometric and mass spectrometric detection, Journal of Chromatography A, 2001, 907, 247-255
    [111] E. Lacassie, M. F. Dreyfuss, J. M. Gaulier, P. Marquet, J. L. Daguet, G. Lachatre, Multiresidue determination method for organophosphorus pesticides in serum and whole blood by gas chromatography-mass-selective detection, Journal of Chromatography B, 2001, 759, 109-116
    [112] Tameo Okomura, Yoshinori Nishikawa, Determination of organophorus pesticides in environment samples by capillary GC-MS, Journal of Chronctography A, 1995, 709, 319-331
    [113] 许鹏翔,袁东星,邓永智,李权龙,水样中痕量有机磷农药的膜萃取-气相色谱法测定,分析化学 2002,03,321-323
    [114] 邓延慧,气相色谱-脉冲火焰光度检测器测定痕量有机磷农药,环境监测管理与技术,2003,3,24-26
    [115] Cristina Nern, Ramon Batlle, Juan Cacho, Determination of pesticides in high-water-content samples by off-line supercritical fluid extraction-gas chromatography-electron-capture detection, Journal of Chromatography A, 1998, 795, 117-124
    [116] J. J. Jimenez, J. L. Bernal, M. J. del Nozal, J. M. Rivera, Determination of
    
    pesticide residues in waters from small loughs by solid-phase extraction and combined use of gas chromatography with electron-capture and nitrogen-phosphorus detection and high-performance liquid chroma tography with dilde array detection, Journal of Chromatography A, 1997, 778, 289-300
    [117] C. Goncalves, M. F. Alpendurad, Multiresidue method for the simultaneous determination of four groups of pesticides in ground and drinking waters using solid-phase microextraction-gas chromatography with electron-capture and thermionic specific detection, Journal of Chromatography A, 2002, 968, 177-190
    [118] F. J. López, E. Pitarch, S. Egea, J. Beltran, F. Hernández, Gas chromat ographic determination of organochlorine and organophosphorus pesticides in human fluids using solid phase microextraction, Anal. Chim. Acta., 2001, 433, 217-226
    [119] Zhang Zulin, Hong Huasheng, Wang Xinhong, Lin Jianqing, Chen Weiqi, Xu Li, Determination and load of organophosphorus and organochlorine pesticides at water from Jiulong River Estuary, China Marine Pollution Bulletin, 2002, 45, 397-402
    [120] A. Balinova, Multiresidue determination of pesticides in plants by high performance liquid chromatography following gel permeation chromatographic clean-up, Journal of Chromatography A, 1998, 823, 11-16
    [121] Silvia Lavorte, Damia Barcelo, Improvements in the determination of organophosphorus pesticides in ground-nad wastewater samples from interlaboratory studies by auto mated on-line liquid-solid extraction followed by liquid chromatography-diode away detection, Journal of Chromatography A, 1996, 725, 85-92.
    [122] S. Lacorte, D. Barcelo, Determination of organophosphorus pesticides and their transferamation products in river waters by auto mated on-line idid-phase exevaction followed by thermospray liquid chromatography-mass spectrometry, Joural of Chromatography A, 1995, 712, 103-112
    [123] F. Hernandez, J. V. Sancho, O. Pozo, A. Lara, E. Pitarch, Rapid
    
    direct determination of pesticides and metabolites in environmental water samples at sub-mg/L level by on-line solid-phase extraction-liquid chromatography-electrospray tandem mass spectrometry, Journal of Chromatography A, 2001, 939, 1-11
    [124] N. M. Brito, S. Navickiene, L. Polese, E. F. G. Jardim, R. B. Abakerli, M. L. Ribeiro, Determination of pesticide residues in coconut water by liquid-liquid extraction and gas chromatography with electron-capture plus thermionic specific detection and solid-phase extraction and high performance liquid chromatography with ultraviolet detection, Journal of Chromatography A, 2002, 957, 201-209
    [125] Hans G. J. Mol, Ruud C. J, Odile M. Steijger, Determination of polar organophosphorus pesticides in vegetables and fruits using liquid chromatography with tandem mass spectrometry selection of extraction solvent, Journal of Chromatography A, 2003, 1015, 119-127
    [126] 李元光等,有机磷农药现场快速检测仪的研制,医疗卫生装备,2001,22,2,19-20
    [127] 余孝颖等,胆碱酯酶场效应管传感器,分析化学,1996,24,5,521-524
    [128] E. Wilkins, M. Carter, J. Voss, D. Ivnitski, A quantitative determination of organophosphate pesticides in organic solvents, Electrochemistry Communications, 2000, 2, 786-790
    [129] M. J. Schoning, Arzdorf, P. Mulchandani, W. Chen, A. Mulchandani, A capacitive field-effect sensor for the direct determination of organophosphorus pesticides, Sensors and Actuators B, 2003, 91, 92-97
    [130] Lea Pogacnik, Mladen Franko, Determination of organophosphate and carbamate pesticides in spiked samples of tap water and fruit juices by a biosensor with photothermal detection, Biosensors & Bioelectronics, 1999, 14, 569-578
    [131] Daniel Martorell, Francisco Cespedes, Esteve Martinez-Fabregas, Salvador Alegret, Determination of organophosphorus and carbamate pesticides using a biosensor based on apolishable, 7, 7, 8, 8-tetracyanoquino-dimethane-modified, graphite-epoxy biocomposite, Anal. Chim. Aeta., 1997, 337, 305-313
    
    
    [132] 王刚垛等,甲基对硫磷人工抗原的合成及鉴定,卫生研究,2000,29(20),69-70
    [133] 张卫国等,甲基对氧磷人工抗原的合成及鉴定,免疫学杂志,2001,17(2),144-145
    [134] 邓安平等,酶联免疫吸附分析法测定水样中的阿特拉津,分析化学 1998,26(1),19-20
    [135] Jianning Wang, Chao Zhang, Haixia Wang, Fengzhen Yang, Xinrong Zhang, Development of a Iuminol-based chemiluminescence flow-injection method for the determination of dichlorvos pesticide, Talanta, 2001, 54, 1185-1193
    [136] 饶志明等,化学发光法直接测定水中1,3-二氯-5,5-二甲基海因的研究,光谱实验室,2001,3,373-377
    [137] Tomás Pérez-Ruiz, ec ta, Flow-injection spectrofluorimetric determination of dissolved inorganic and organic phosphorus in waters using on-line photo-oxidation, Anal. Chim. Acta., 2001, 442, 147-153

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700