用户名: 密码: 验证码:
萘、甲基萘在Ni_2P/SiO_2及Pd-Pt/SiO_2-Al_2O_3催化剂上的加氢研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界优质原油储量的日渐枯竭,原油供应已有明显重质化、劣质化的趋势。另一方面,为缓解原油供应紧张的局面,煤焦油、页岩油、油砂沥青等非常规能源被认为是很有潜力的石油补充能源。然而不论是重质劣质原油还是煤焦油、页岩油、油砂沥青,都含有大量芳烃,过多的芳烃会降低燃料的燃烧性能并造成环境污染,深度脱芳烃已经成为清洁燃料生产的一个重要课题。在现有的脱芳烃技术中,加氢脱芳烃是最有效的。目前工业上加氢脱芳烃多采用传统的过渡金属硫化物催化剂,此类催化剂活性较低,已不能适应深度脱除大量稠环芳烃的需要。贵金属催化剂的加氢脱芳烃性能好,但对硫敏感,极易中毒失活。因此,需要开发活性更高的加氢脱芳烃催化剂,或改善贵金属的抗硫性。另外,目前关于含硫物质对加氢过程影响的研究很多,而关于含氮物质对加氢脱芳烃反应及催化剂影响的研究较少。针对这些问题,本论文选取油品中较有代表性的芳烃:萘及α、β-甲基萘作为模型化合物,尝试将新型催化材料磷化镍应用于上述芳烃的加氢反应,考察了其加氢脱芳烃性能,探讨了其加氢机理及含氮化合物(喹啉)在反应中对其造成的影响,并用XRD、TEM、N2吸附、CO化学吸附、Py-IR和XPS等表征手段对催化剂进行了表征。还按不同Pd/Pt摩尔比制备了一系列Pd-Pt贵金属催化剂,将Pd/Pt摩尔比与催化剂抗硫性能进行了关联。研究内容和主要结果包括:
     用原位还原法制备了Si02负载的Ni2P催化剂,考察了不同Ni/P摩尔比和负载量对催化剂芳烃加氢活性的影响。结果表明,当Ni/P摩尔比为1.25、负载量为30 wt%时催化剂活性最高。在该催化剂上,萘的转化率最高可达100%,十氢萘选择性最高可达92.1%;α、p-甲基萘的转化率最高可达96.0%和99.0%,1-甲基十氢萘和2-甲基十氢萘选择性最高可达27.0%和82.6%,各项指标均高于相同质量的硫化态Ni-W催化剂。通过计算得到,温度为340℃时,萘加氢生成四氢萘的反应速率常数k1为0.80 min-1,四氢萘加氢生成十氢萘的反应速率常数k2为0.84 min-1,两步加氢的反应速率常数之比kR(=k1/k2)为0.95。Ni2P/SiO2催化剂的活性位具有使顺式十氢萘异构生成反式十氢萘的活性。
     α、β-甲基萘对活性位的吸附能力要远高于萘,α-甲基萘的吸附能力又略高于p-甲基萘。喹啉及其加氢中间产物对活性位强烈的竞争吸附会强烈抑制萘的加氢,萘则会阻碍四氢喹啉加氢生成十氢喹啉。二苯并噻吩的加入会导致萘转化率降低,这要归因于S在催化剂表面上的不可逆吸附。
     用浸渍法制备了Si02-Al203负载的Pd-Pt (Pd:Pt=1:1; 1:4; 4:1)双金属催化剂,比较了其芳烃加氢性能及抗硫性。结果表明,Pd-Pt (Pd:Pt=4:1)催化剂上的芳烃转化率和完全加氢产物生成率最高。在该催化剂上,萘转化率最高可达98.2%,十氢萘选择性最高可达93.6%,α、β-甲基萘转化率最高可达97.5%和98.2%,1-甲基十氢萘和2-甲基十氢萘选择性最高可达18.5%和73.0%。萘在单金属Pd、Pt及Pd-Pt (Pd:Pt=4:1)三种催化剂上的加氢速率顺序为υpd-Pt(4:1)>υpd>υpt。反应物中加入二苯并噻吩后,Pd-Pt (Pd:Pt=4:1)仍有最高的芳烃加氢活性。
With world high-quality crude oil reserves being depleted, the crude oil reserves have a trend of becoming heavier and degraded. On the other hand, in order to alleviate oil shortages, the coal tars, shale oils and oil sand asphalts are considered as potential supplements of crude oils. However, the coal tars, shale oils and oil sand asphalts contain large amounts of aromatics. Excessive aromatics not only lower the combustibility of fuels, but also produce hazardous particulates and cause environmental pollution. Hence, deeply removing aromatics has become increasingly important. Hydrodearomatization (HDA) is the most effective way to remove aromatics. Petroleum industry today mostly uses the transition metal sulfide catalysts, but the activity of this type of catalyst is too low to adapt for deeply removing large quantities of polynuclear aromatics. Noble metal catalysts have high HDA activities, but they are liable to be poisoned by sulfides in liquid fuels. As a result, the new catalyst which has higher HDA activity must be developed; also, the sulfur resistance of noble metal must be improved. On the other hand, although there are a lot of research works about the effects of S-containing compounds on hydrogenation and HDA, the research works about the effects of N-containing compounds on HDA and catalyst are rare. In order to solve these problems, naphthalene andα/β-methylnaphthalene were chosen as the model compounds of liquid fuels. The new catalytic material nickel phosphide was applied in hydrogenation of the aromatics which were mentioned previously, the HDA activity of nickel phosphide was studied; the reaction mechanism and the effects of N-containing compound (quinoline) on catalyst were investigated, too. The catalysts were characterized by XRD, TEM, N2 adsorption, CO chemisorption, Py-IR, and XPS. A series of Pd-Pt bimetallic catalysts with different Pd/Pt molar ratios were prepared, and the relationship between Pd/Pt molar ratio and catalyst's sulfur resistance was studied. The main contents and results are as follows:
     A series of Ni2P/SiO2 catalysts with different Ni/P molar ratio and loading in the oxidic precursors were prepared by an in-situ reduction method. Their catalytic performances were evaluated in aromatics hydrogenation. The optimal initial Ni/P ratio is 1.25 and the optimal loading of NiO and P2O5 is 30 wt%. On this catalyst, the naphthalene conversion is up to 100%, the selectivity to decalin is up to 92.1%; theα/β-methylnaphthalene conversions are up to 96.0% and 99.0%, the selectivity to 1-methyldecalin and 2-methyldecalin are up to 27.0% and 82.6%. These values are all higher than those on sulfided Ni-W catalyst. The reaction rate constant of naphthalene yield tetralin k1 is 0.80 min-1, the reaction rate constant of tetralin yield decalin k2 is 0.84 min-1, the ratio of k1/k2 is 0.95. Cis-decalin can be isomerized to trans-decalin on active sites of Ni2P/SiO2.
     The competitive adsorptions ofα-andβ-methylnaphthalene hinder naphthalene hydrogenation, and naphthalene has negligible effects onα/β-methylnaphthalene hydrogenation. The adsorptive capacities ofα-andβ-methylnaphthalene are far higher than that of naphthalene, and the adsorptive capacity ofα-methylnaphthalene is a little higher than that ofβ-methylnaphthalene. Quinoline and its hydrogenation intermediate products hinder naphthalene hydrogenation, while naphthalene hinders tetrahydroquinoline yielding decahydroquinoline. The addition of dibenzothiophene leads to a decline of naphthalene conversion, which may be attributed to irreversible adsorption of S on catalyst surface.
     Bimetallic Pd-Pt (Pd:Pt=1:1;1:4;4:1) catalysts supported on SiO2-Al2O3 were prepared by immersion method. Their hydrogenation activities and sulfur resistances were analyzed and compared. Results showed that, the Pd-Pt (Pd:Pt=4:1) catalyst showed the highest activity and selectivity to full hydrogenation products. On this catalyst, the naphthalene conversion and selectivity to decalin are up to 98.2% and 93.6%, respectively,α-andβ-methylnaphthalene conversions are up to 97.5% and 98.2%, the selectivity to 1-methyldecalin and 2-methyldecalin are up to 18.5% and 73.0%. The order of naphthalene hydrogenation rate on Pd, Pt and Pd-Pt (Pd:Pt=4:1) follow the sequence:υPd-Pt(4:1)>υPd>υPt. The hydrogenation activity of Pd-Pt (Pd:Pt=4:1) catalyst is still the highest in the presence of dibenzothiophene.
引文
[1]SIDHPURIA K B, PATEL H A, PARIKH P A, et al. Rhodium nanoparticles intercalated into montmorillonite for hydrogenation of aromatic compounds in the presence of thiophene [J]. Applied Clay Science,2009,42:386-390.
    [2]COOPER B H, DONNIS B B L. Aromatic saturation of distillates:an overview [J]. Applied Catalysis A:General,1996,137:203-223.
    [3]SOCHET I, GILLARD P. Flammability of kerosene in civil and military aviation [J]. Journal of Loss Prevention in the Process Industries,2002,15:335-345.
    [4]SIGERU T, TSUTOMU I, TETSUO Y. Functionalization of trans-decalin [J]. Bulletin of the Chemical Society of Japan,1979,52(9):2640-2645.
    [5]朱红英,张晔,邱泽刚,等.反应条件对萘饱和加氢的影响[J].精细化工,2009,26:512-516.
    [6]SHINYA H, HIROSHI A, SHIGEKI T. Catalytic decalin dehydrogenation/naphthalene hydrogenation pair as a hydrogen source for fuel-cellvehicle [J]. International Journal of Hydrogen Energy,2003,28(11):1255-1262.
    [7]KENT L, CHASEY T A. Polycyclic aromatic structure distributions by high resolution mass spectrometry [J]. Energy & Fuels,1991,5:386-394.
    [8]WILSON M F, FISHER I P, KRIZ J F. Hydrogenation of aromatic compounds in synthetic crude distillates catalyzed by sulfided Ni-W/gamma-Al2O3 [J]. Journal of Catalysis,1985, 95:155-166.
    [9]IJAM M J, AL-QATAMI S Y, ARIF S F. Bicyclic aromatic hydrocarbons of Kuwait gas oil [J]. ACS Preprints division petroleum chemistry,1990,35:821-826.
    [10]马宝岐,任沛建,杨占彪,等.煤焦油制燃料油品[M].北京:化学工业出版社,2010.
    [11]SAYAN S, PAUL J. Hydrogenation of naphthalenes and methylnaphthalene:modeling and spectroscopy [J]. Journal of Molecular Catalysis,2002,185:211-222.
    [12]LLANO J J, ROSAL R, SASTRE H, et al. Catalytic hydrogenation of aromatic hydrocarbons in a trickle bed reactor [J]. Journal of Chemical Technology and Biotechnology,1998, 72:74-84.
    [13]LEMBERTON J L, TOUZEYIDIO M, GUISNET M. Catalytic hydroprocessing of simulated coal tars (I):activity of a sulphided Ni-Mo/Al2O3 catalyst for the hydroconversion of model compounds [J]. Applied Catalysis,1989,54(1):91-100.
    [14]WEITKAMP A W. Stereochemistry and mechanism of hydrogenation of naphthalenes on transition metal catalysts and comformational analysis of the products [J]. Advances in Catalysis,1968,18:1-110.
    [15]LAI W C, SONG C. Conformational isomerization of cis-decahydronaphthalene over zeolite catalysts [J]. Catalysis Today,1996,31:171-181.
    [16]KUMATA F, HIRASAWA Y. Method for producing decalin from naphthalene by two stage hydrogeneration reaction:Japan, JP2003160515 [P/OL].2003,06,3.
    [17]SCHMITZ A D, BOWERS G, SONG C. Shape-selective hydrogenation of naphthalene over zeolite-supported Pt and Pd catalysts [J]. Catalysis Today,1996,31(1-2):45-56.
    [18]GUILLY A, BALLARD W P. Advances in Petroleum Chemistry and Refinery [J/OL]. Interscience,1963,7:241-282.
    [19]STANISLAUS S A, COOPER B H. Aromatic hydrogenation catalysis:a review [J]. Catalysis Reviews, Science and Engineering,1994,36(1):75-123.
    [20]JAFFE S B. Kinetics of heat release in petroleum hydrogenation [J]. Industrial & Engineering Chemistry Process Design and Development,1974,13:34-39.
    [21]DUTTA R P, SCHOBERT H H. Hydrogention/dehydrogention of polycyclic aromatic hydrocarbons using ammoium tetrathiomolybdate as catalyst precursor [J]. Catalysis Today, 1996,31:65-77.
    [22]KIRUMAKKI S R, SHPEIZER B G, SAGAR G V, et al. Hydrogenation of Naphthalene over NiO/SiO3-Al2O3 catalysts:Structure-activity correlation [J]. Journal of Catalysis,2006, 242:319-331.
    [23]LE PAGE J F. Applied heterogeneous catalysis [M]. Houston:Gulf Publishing Company, 1987.
    [24]DUFRESNE P, BIGEARD P H, BILLON A. New developments in hydrocracking:Low pressure high-conversion hydrocracking [J]. Catalysis Today,1987,1:367-384.
    [25]GIRGIS M J, GATES B C. Reactivities, reaction networks, and kinetics in high pressure catalytic hydroprocessing [J]. Industrial and Engineering Chemistry Research,1991, 30(9):2021-2058.
    [26]MARCHAL N, MIGNARD S, KASZTELAN S. Aromatic's saturation by sulfided Nickel-Molybdenum hydrotreating catalysts [J]. Catalysis Today,1996,29:203-207.
    [27]TOPPINEN S, RANTAKYLA T K, SALMI T, et al. Kinetics of the liquid phase hydrogenation of Di-and Trisubstituted alkylbenzenes over a nickel catalyst [J]. Industrial and Engineering Chemistry Research,1996,35:4424-4433.
    [28]KEANE M A, PATTERSON P M. The role of hydrogen partial pressure in the gas-phase hydrogenation of aromatics over supported nickel [J]. Industrial and Engineering Chemistry Research,1999,38:1295-1305.
    [29]KIPERMAN S L. Some problems of chemical kinetics in heterogeneous hydrogenation catalysis [J]. Studies in Surface Science and Catalysis,1986,27:1-52.
    [30]SAPRE A V, GATE B C. Hydrogenation of aromatic hydrocarbons catalyzed by sulfided CoO-MoO3/Y-AI2O3. Reactivities and reaction networks [J]. Industrial& Engineering Chemistry Process Design and Development,1981,20(1):68-73.
    [31]HUANG T C, KANG B C. Kinetic study of naphthalene hydrogenation over Pt/Al2O3 catalyst [J]. Industrial and Engineering Chemistry Research,1995,34(4):1140-1148.
    [32]KOKAYEFF P. Catalytic hydroprocessing of petroleum and distillates [M]. New York: Marcel Dekker,1994.
    [33]BOUCHY M, DUFRESNE P, KASZTELAN S. Hydrogenation and hydrocracking of a model light cycle oil feed.1. Properties of a sulfided nickel-molybdenum hydrotreating catalyst [J]. Industrial and Engineering Chemistry Research,1992,31:2661-2669.
    [34]BOUCHY M, PEUREUX-DENYS S, DUFRESNE P, et al. Hydrogenation and hydrocracking of a model light cycle oil feed.2. Properties of a sulfided nickel-molybdenum hydrocracking catalyst [J]. Industrial and Engineering Chemistry Research,1993,32:1592-1602.
    [35]CORMA A, MARTINEZ A, SORIAY V M. Hydrogenation of aromatics in diesel fuels on Pt/MCM-41 catalysts [J]. Journal of Catalysis,1997,169:480-489.
    [36]JONGPATIWUT S, LI Z R, RESASCO D E, et al. Competitive hydrogenation of poly-aromatic hydrocarbons on sulfur-resistant bimetallic Pt-Pd catalysts [J]. Applied Catalysis A: General,2004,262:241-253.
    [37]ITO K, KOGASAKA Y, KUROKAWA H, et al. Preliminary study on mechanism of naphthalene hydrogenation to form decalins via tetralin over Pt/TiO2 [J]. Fuel Processing Technology, 2002,79:77-80.
    [38]LYLYKANGAS M S, RAUTANEN P A, I KRAUSE A 0. Liquid-phase hydrogenation kinetics of multicomponent aromatic mixtures, on Ni/Al2O3 [J]. Industrial and Engineering Chemistry Research,2002,41:5632-6539.
    [39]HO T C. Hydrodenitrogenation catalysis [J]. Catalysis Reviews, Science and Engineering, 1988,30(1):117-160.
    [40]TOPSOE H, CLAUSEN B S, MASSOTH F E. Hydrotreating catalysis, science and technology [M]. Berlin:Springer-Verlag,1996.
    [41]PRINS R, DE BEER V H J, SOMORJAI G A. Structure and function of the catalyst and the promoter in Co-Mo hydrodesulfurization catalysts [J]. Catalysis Reviews, Science and Engineering,1989,31(1,2):1-41.
    [42]CHUNG K S, MASSOTH F E. Studies on molybdena-alumina catalysts:VII. Effect of cobalt on catalyst states and reducibility [J]. Journal of Catalysis,1980,64(2):320-331.
    [43]安高军,柳云骐,柴永明,等.柴油加氢精制催化剂制备技术[J].化学进展,2007,19:243-249.
    [44]TOPS E H, CLAUSEN B S, CANDIA R, et al. In situ Mosbauer emission spectroscopy studies of unsupported and supported sulfided Co-Mo hydrodesulfurization catalysts:Evidence for and nature of a Co-Mo-S phase [J]. Journal of Catalysis,1981,68(2):433-452.
    [45]KISHAN G, COULIER L, DE BEER V H J, et al. Sulfidation and thiophene hydrodesulfurization activity of nickeltungsten sulfide model catalysts, prepared without and with chelating agents [J]. Journal of Catalysis,2000,196(1):180-189.
    [46]KISHAN G, COULIER L, VAN VEEN JAR, et al. Promoting synergy in CoW sulfide hydrotreating catalysts by chelating agents [J]. Journal of Catalysis,2001, 200(1):194-196.
    [47]殷长龙,赵会吉,徐永强,等.柴油深度加氢脱硫过程中硫化物转化规律的研究[J].中国石油大学学报(自然科学版),2007,31(04):134-138.
    [48]PEDRAZA F, FUENTES S. Ni-Mo and Ni-W sulfide catalysts prepared by decomposition of binary thiometallates [J]. Catalysis Letters,2000,65(1-3):107-113.
    [49]MAITRA A M, CANT N W, TRIMM D L. Novel hydrotreating catalysts prepared from heteropolyanion complexes impregnated on alumina [J]. Applied Catalysis,1989, 48(1):187-197.
    [50]CLAUSEN B S, TOPSOE H, CANDIA R, et al. An EXAFS study of the structure of cobalt-molybdenum hydrodesulfurization catalysts [M]. Lyngby:Haldor Topsoee A/S,1981.
    [51]DAAGE M, CHIANELLI R R. Structure-function relations in molybdenum sulfide catalysts: The "rim-edge" model [J]. Journal of Catalysis,1994,149(2):414-427.
    [52]SCHUIT G C A, GATES B C. Chemistry and engineering of catalystic hydrodesulfurization [J]. AICHE Journal,1973,19:417-423.
    [53]VOORHOEVE R J H. Electron spin resonance study of active centers in nickel-tungsten sulfide hydrogenation catalysts [J]. Journal of Catalysis,1971,23(2):236-242.
    [54]VOORHOEVE R J H, STUIVER J C M. Kinetics of hydrogenation on supported and bulk nickel-tungsten sulfide catalysts [J]. Journal of Catalysis,1971,23(2):228-235.
    [55]TOPSOE N Y, TOPSOE H. Characterization of the structures and active sites in sulfided Co-Mo/Al2O3 and Ni-Mo/Al2O3 catalysts by NO chemisorption [J]. Journal of Catalysis,1983, 84(2):386-401.
    [56]GRIMBLOT J. Genesis, architecture and nature of sites of Co(Ni)-MoS2 supported hydroprocessing catalysts [J]. Catalysis Today,1998,41(1):111-128.
    [57]HAGENBACH G, COURTY P H, DELMON B. Physicochemical investigations and catalystic activity measurements on crystallized molybdenum sulfided-cobalt sulfided mixed catalysts [J]. Journal of Catalysis,1973,31(2):264-273.
    [58]DELMON B, GRANGE P. IN PORTELA M F (ED.). Proceeding of 2nd conference on industrial catalysis [C], Grecat Lisbon,1988.
    [59]KARROUA M, CENTENO A, MATRALIS H K, et al. Synergy in hydrodesulfurization and hydrogenation on mechanical mixture of cobalt sulphide on carbon and MoS-on alumina [J]. Applied Catalysis,1989,51(1):21-26.
    [60]TOPSOE H, CLAUSEN B S. Active sites and support effects on hydrodesulfurization catalyst [J]. Applied Catalysis,1986,25(2):273-293.
    [61]韩崇仁.加氢裂化工艺与工程[M].北京:中国石化出版社,2001.
    [62]CLAUSEN B S, TOPSON H, CINDIA R, et al. Extended X-ray absorption fine structure study of the cobalt-molybdenum hydrodesulfurization catalysts [J]. Journal of Chemical Physics, 1981,85 (25):3868-3872.
    [63]RAYBAUD P, HAFNER J, KRESSE G, et al. Structure, energetics, and electronic properties of the surface of a promoted MoS2 catalyst:an ab initio local density functional study [J]. Journal of Catalysis,2000,190(1):128-143.
    [64]RAYBAUD P. Understanding and predicting improved sulfido catalysts insights from first principles modeling [J]. Applied Catalysis,2007,322(1):76-91.
    [65]LAURITSEN J V, HELVEG S, LOSGAARD E, et al. Atomic-scale structure of Co-Mo-S nanoclusters in hydrotreating catalysts [J]. Journal of Catalysis,2001,197(1):1-5.
    [66]ROONEY J J. The exchange with deuterium of two cycloalkanes on palladium films.π-bonded intermediates in heterogeneous catalysis [J]. Journal of Catalysis,1963,2:53-57.
    [67]NAVARRO R M, PAWELEC B, TREJO J M, et al. Hydrogenation of aromatics on sulfur-resistant PtPd bimetallic catalysts [J]. Journal of Catalysis,2000,189:184-194.
    [68]HEGEDUS L, MCCABE R. A field ionization kinetics and metastable ion study of the fragmentation of some pentenols [J]. Catalysis Reviews, Science and Engineering,1981, 23:337-384.
    [69]BONZEL HP, KU R J. On the kinetics of oxygen adsorption on a Pt(111) surface [J]. Journal of Chemical Physics,1973,58:4617-4623.
    [70]BONZEL HP, KU R J. A technique for investigating the catalytic activity of alloy systems [J]. Journal of Chemical Physics,1973,59:1641-1648.
    [71]GLOWSKI G E, MADIX R J. The effect of sulfur on CO adsorption/desorption on Pt(S)-[9(111)×(100)] [J]. Surface Science,1982,115:524-533.
    [72]KELEMEN S R, FISHER T E, SHWARZ. The binding energy of CO on clean and sulfur covered platinum surfaces [J]. Surface Science,1979,81:440-448.
    [73]KOVACH S M, WILSON G D. [P/OL]:US, US3943053,1974.
    [74]MINDERHOUD, KORNELLS J, LUCLEN, et al. Process for the hydrogenation of hydrocarbon oils [P/OL]:EP0303332 Al,1988,08,11.
    [75]DALLA BETTA R A, BOUDART M, GALLEZOT P, et al. Net charge on platinum cluster incorporated in Y zeolite [J]. Journal of Catalysis,1981,69:514-515.
    [76]HOMEYER S T, KARPINSKI Z, SACHTLER W M H. Effect of zeolite protons on palladium-catalyzed hydrocarbon reactions [J]. Journal of Catalysis,1990,123:60-73.
    [77]SACHTLER W M H, STAKHEEV A Y. Electron-deficient palladium clusters and bifunctional sites in zeolites [J]. Catalysis Today,1992,12:283-295.
    [78]宋盘龙,卞俊杰,孟祥春,等.改性MCM-41沸石负载的Pd-Pt催化剂上萘的加氢活性及耐硫性研究[J].石油学报,2004,20:40-45.
    [79]DALLA BETTA R A, BOUDART M. Reply to the comments of P. H. Lewis "net charge on platinum cluster incorporated in Y zeolite" [C]. Proceeding of 5th International Congress on Catalysis (eds.Hightower H), North Holland, Amsterdam,1973.
    [80]扈林杰,李大东,曲良龙,等.负载贵金属芳烃饱和催化剂抗硫性能的研究载体酸性的影响[J].石油学报,1999,15(3):41-45.
    [81]GUILLON E, LYNCH J, UZIO D, et al. Characterisation of bimetallic platinum system: application to the reduction of aromatics in presence of sulfur [J]. Catalysis Today,2001, 65:201-208.
    [82]侯朝鹏,李永丹,赵地顺.芳烃加氢金属催化剂抗硫性研究的进展[J].化工进展,2003,22(4):366-371.
    [83]LIN S D, SONG C. Noble metal catalysts for low-temperature naphthalene hydrogenation in the presence of benzothiphene [J]. Catalysis Today,1996,31:93-104.
    [84]HU L J, XIA G F, QU L L, et al. Strong effect of transitional metals on the sulfur resistance of Pd/HY-Al2O3 catalysts for aromatic hydrogenation [J]. Journal of molecular catalysis A:Chemistry,2001,171:169-179.
    [85]VENEZIA A M, PAROLA V L, PAWELEC B, et al. Hydrogenation of aromatics over Au-Pd/SiO2-Al2O3 catalysts; support acidity effect [J]. Applied Catalysis A:General,2004, 264:43-51.
    [86]白庭芳,周峻岭,安立敦,等.铁助剂对Pd/Al2O3催化剂抗硫性的影响[J].分子催化,1996,10:281-288.
    [87]BARRIO V L, ARIAS P L, CAMBRA J F, et al. Hydrodesulfurization and hydrogenation of model compounds on silica-alumina supported bimetallic systems [J]. Fuel,2003,82:501-509.
    [88]FUJIKAWA T, IDEI K, EBIHARA T, et al. Aromatic hydrogenation of distillates over Si02-Al2O3-supported noble metal catalysts [J]. Applied Catalysis A:General,2000, 192:253-261.
    [89]YASUDA H, YOSHIURA Y. Hydrogenation of tetralin over zeolite-supported Pd-Pt catalysts in the presence of dibenzothipene [J]. Catalysis Letters,1997,46:43-48.
    [90]YASUDA H, KAMEOKA T, SATO T, et al. Sulfur-tolerant Pd-Pt/Al2O3-B2O3 catalyst for aromatic hydrogenation [J]. Applied Catalysis A:General,1999,185:199-201.
    [91]YASUDA H, SATO T, YOSHIMURA Y. Influence of the acidity of USY zeolite on the sulfur tolerance of Pd-Pt catalysts for aromatic hydrogenation [J]. Catalysis Today,1999, 50:63-71.
    [92]YOSHIMURA Y, YASUDA H, SATO T, et al. Sulfur-tolerant Pd-Pt/Yb-USY zeolite catalysts used to reformulate diesel oils [J]. Applied Catalysis A:General,2001,207:303-307.
    [93]JACQUIN M, JONES D J, ROZIERE J, et al. Cetane improvement of diesel with a novel bimetallic catalyst [J]. Journal of Catalysis,2004,228:447-459.
    [94]MATSUBAYASHI N, YASUDA H, IMAURA M, et al. EXATFS study on Pd-Pt catalysts supported on USY zeolite [J]. Catalysis Today,1998,45:375-380.
    [95]YASUDA H, MATSUBAYASHI N, SATO T, et al. Confirmation of sulfur tolerance of bimetallic Pd-Pt supported on highly acidic USY zeolite by EXAFS [J]. Catalysis Letters,1998, 54:23-27.
    [96]CHARLES W B H, NEMEC M S, DERMOT M B, et al. A catalyst composition comprising one or more group VIII noble metal [P/OL]:EP0519573,1992,12,23.
    [97]GALLEZOT P. The state and catalytic properties of platinum and palladium in faujasite-type zeolites [J]. Catalysis Reviews, Science and Engineering,1979,20:121-154.
    [98]SONG C, MA X L. New design approaches to ultra-clean diesel fuels by deep desulfurization and deep dearomatization [J]. Applied Catalysis,2003,41:207-238.
    [99]SONG C. Designing sulfur-resistant, noble-metal hydrotreating catalysts [J]. Chemtech, 1999,29:26-30.
    [100]OKAMOTO Y, NITTA Y, IMANAKA T, et al. Surface state, catalytic activity and selectivity of nickel catalysts in hydrogenation reactions.2. Surface characterization of Raney-nickel and Urushibara nickel catalysts by X-ray photoelectron spectroscopy [J]. Journal of Chemical Society,1980,76:998-1007.
    [101]FUJIKAWA T, IDEI K, OHKI K, et al. Kinetic behavior of hydrogenation of aromatics in diesel fuel over silica-alumina-supported bimetallic Pt-Pd catalyst [J]. Applied Catalysis A:General,2001,205:71-77.
    [102]ALBERTAZZI S, GANZERLA R, GOBBI C, et al. Hydrogenation of naphthalene on noble-metal-containing mesoprorous MCM-41 aluminosilicates [J]. Journal of molecular catalysis A:Chemistry,2003,200:261-270.
    [103]JONPATIWUT S, LI Z, RESASCO D E, et al. Competitive hydrogenation of ploy-aromatic hydrocarbons on sulfur-resistant bimetallic Pt-Pd catalysts [J]. Applied Catalysis A: General,2004,262:241-253.
    [104]TAILLEUR R G, RAVIGLI J, QUENZA S, et al. Catalyst for ultra-low sulfur and aromatic diesel [J]. Applied Catalysis A:General,2005,282:227-235.
    [105]MATSUI T, HARADA M, BANDO K K, et al. EXAFS study on the sulfidation behavior of Pd, Pt and Pd-Pt catalysts supported on amorphous silica and high-silica USY zeolite [J]. Applied Catalysis A:General,2005,290:73-80.
    [106]CORMA A, MARTINEZ A, MARTINEZ-SORIA V. Catalytic performance of the new delaminated ITQ-2 zeolite for mild hydrocracking and aromatic hydrogenation processes [J]. Journal of catalysis,2001,200:259-269.
    [107]GALLEZOT P, DAKTA I, MASSARDIER J, et al. Proceeding of 6th International Congress on Catalysis (Eds. Hightower H) [C]. London,1976,389-396.
    [108]GUENIN M, DA SILVA P N, FRETY R. Influence of chlorine towards metal-support and metal-sulphur support interactions [J]. Applied Catalysis,1986,27:313-318.
    [109]MATSUI T, HARADA M, ICHIHASHI Y, et al. Effect of noble metal particle size on the sulfur tolerance of monometallic Pd and Pt catalysts supported on high-silica USY zeolite [J]. Applied Catalysis A:General,2005,286:249-257.
    [110]ROJAS S, TERREROS P, PENA M A, et al. Hydrogenation of aromatics over supported noble metal catalysts exorganometallic complexes [J]. Journal of molecular catalysis A:Chemistry, 2003,206:299-311.
    [111]PAWELEC B, VENEZIA A M, PAROLA V L, et al. AuPd alloy formation in Au-Pd/Al2O3 catalysts and its role on aromatics hydrogenation [J]. Applied Surface Science,2005,242:380-391.
    [112]LEVY R L, BOUDART M. Platinium-like behavior of tungsten carbide in surface catalysis [J]. Science,1973,181:547-549.
    [113]OYAMA S T. Preparation and catalytic properties of transition metal carbides and nitrides [J]. Catalysis Today,1992,15(2):179-200.
    [114]CHEN J G G. Carbide and nitride overlayers on early transition metal surfaces: preparation, characterization and reactivities [J]. Chemical Reviews,1996, 96(4):1477-1498.
    [115]WATSON R E, WEINERT M, HENRY E, et al. Transition-metals and their alloys [M]. Solid State Physics. Academic Press,2001.
    [116]JOHANSSON L I. Electronic and structural properties of transition-metal carbide and nitride surface [J]. Surface Science Reports,1995,21(2):177-255.
    [117]DEMCZYK B G, CHOI J G, THOMPSON L T. Surface structure and composition of high surface area molybdenum nitride [J]. Applied Surface Science,1994,78(1):63-69.
    [118]VOLPE L, BOUDART M. Compounds of molybdenum and tungsten with high specific surface area:Ⅰ. Nitrides [J]. Journal of Solid State Chemistry,1985,59(2):332-347.
    [119]VOLPE L, BOUDART M. Compounds of molybdenum and tungsten with high specific surface area:Ⅱ. Carbides [J]. Journal of Solid State Chemistry,1985,59(2):348-356.
    [120]WISE R S, MARKEL E J. Synthesis of high surface area molybedenum nitrde in mixure of nitrogen and hydrogen [J]. Journal of catalysis,1994,145(2):344-347.
    [121]刘维桥,刘杰,赵琳,等.Mo2N催化剂的研究进展[J].抚顺石油学院学报,2003,23(3):18-30.
    [122]MIYAO T, SHISHIKURA I, MATSUOKA M, et al. CVD synthesis of alumina-supported molybdenum carbide catalyst [J]. Chemistry Letters,1996(7):561-562.
    [123]靳广洲,赵如松,罗运强,等.制备条件对碳化铝催化剂加氢脱硫性能的影响[J].分子催化,2008,22(06):481-486.
    [124]NAGAI M, SUDA T, OSHIKAWA K, et al. CVD preparation of alumina-supported tungsten nitride and its activity for thiophene hydrodesulfurization [J]. Catalysis Today,1999, 50(1):29-37.
    [125]MORDENTI D, BRODZKI D, DJEGA-MARIADASSOU G. New synthesis of Mo2C 14 nm in average size supported on a high specific surface area carbon material [J]. Journal of Solid State Chemistry,1998,141 (1):114-120.
    [126]KIM J H, KIM K L. A study of preparation of tungsten nitride catalysts with high surface area [J]. Applied Catalysis A:General,1999,181 (1):103-111.
    [127]郑明远,程瑞华,陈小伟,等.程序升温反应法由纳米氧化铁制备纳米氮化铁[J].高等学校化学学报,2005,26:623-627.
    [128]CHOI J G, CURL R L, THOMPSON L T. Molybdenum nitride catalysts:I. Influence of the synthesis factors on structural properties [J]. Journal of Catalysis,1994,146(5):218-227.
    [129]MIGA K, STANCZYK K, SAYAGA, et al. Bifunctional behavior of bulk MoOxNy and nitrided supported NiMo catalyst in hydrodenitrogenation of indole [J]. Journal of Catalysis,1999, 183(1):63-68.
    [130]JACOBSEN C J H. Novel class of ammonia synthesis catalysts [J]. Chemical Communications,2000:1057-1058.
    [131]KOJIMA R, AIKA K I. Cobalt molybdenum bimetallic nitride catalysts for ammonia synthesis [J]. Chemistry Letters,2000(12):514-515.
    [132]KOJIMA R, AIKA K I. Cobalt molybdenum bimetallic nitride catalysts for ammonia synthesis.1. Preparation and characterization [J]. Applied Catalysis A:General,2001, 215(1-2):149-160.
    [133]ZHENG M, CHEN X, CHENG R, et al. Catalytic decomposition of hydrazine on iron nitride catalysts [J]. Catalysis Communications,2006,7(3):187-191.
    [134]SUN J, WANG X T, WANG X D, et al. Hydrazine decomposition and CO adsorption microcalorimetry oil tungsten carbide catalysts with different phases [J]. Chinese Journal of Catalysis,2008,29(8):710-714.
    [135]CHEN X, ZHANG T, ZHENG M, et al. The reaction route and active site of catalytic decomposition of hydrazine over molybdenum nitride catalyst [J]. Journal of Catalysis,2004, 224(2):473-478.
    [136]MANSKER L D, JIN Y, BUKUR D B, et al. Characterization of slurry phase iron catalysts for Fischer-Tropsch synthesis [J]. Applied Catalysis A:General,1999,186(1-2):277-296.
    [137]DATYE A K, SHROFF M D, HARRINGTON M S, et al. The role of catalyst activation on the activity and attrition of precipitated iron Fischer-Tropsch catalysts [J]. Studies in Surface Science and Catalysis,1997,107:169-174.
    [138]HERRANZ T, ROJAS S, POEZ-ALONSO F J, et al. Genesis of iron carbides and their role in the synthesis of hydrocarbons from synthesis gas [J]. Journal of Catalysis,2006, 243(1):199-211.
    [139]YORK A P E, CLARIDGE J B, MOQUEZ-ALVAREZ C, et al. Synthesis of early transition metal carbides and their application for the reforming of methane to synthesis gas [J]. Studies in Surface Science and Catalysis,1997,110:711-720.
    [140]CHOI J G, BRENNER J R, COLLING C W, et al. Synthesis and characterization of molybdenum nitride hydrodenitrogenation catalysts [J]. Catalysis Today,1992,15 (2):201-222.
    [141]SCHLATTER J C,OYAMA S T, METCALFE J E. Catalytic behavior of selected transition metal carbides, nitrides and borides in the hydrodenitrogenation of quinoline [J]. Industrial & Engineering Chemistry Process Design and Development,1998,27(9):1648-1653.
    [142]DHANDAPANI B, RAMANATHAN S, YU C C, et al. Synthesis, characterization and reactivity studies of supported Mo2C with phosphorus additive [J]. Journal of Catalysis,1998, 176(1):61-68.
    [143]RAMANTHAN S, YU C C,OYAMA S T. New catalysts for hydroprocessing:bimetallic oxynitrides Ⅱ. Reactivity studies [J]. Journal of Catalysis,1998,173(1):10-16.
    [144]AEGERTER P A, QUIGLEY W W C, SIMPSON G J, et al. Thiophene hydrodesulfurization over alumina-supported molybdenum carbide and nitride catalysts:adsorption sites, catalytic activities and nature of the active surface [J]. Journal of Catalysis,1996,164(1):109-121.
    [145]MCCREA K R, LOGAN J W, TARBUCK T L, et al. Thiophene hydrodesulfurization over alumina-supported molybdenum carbide and nitride catalysts:effect of Mo loading and phase [J]. Journal of Catalysis,1997,171 (1):255-267.
    [146]GOPALAKRISHNAN J, PANDEY S, RANGAN K K. Convenient route for the synthesis of transition-metal pnictides by direct reduction of phosphate, arsenate and antimonate precursors [J]. Chemistry of Materials,1997,9(2):2113-2116.
    [147]LI W, DHANDAPANI B,OYAMA S T. Molybdenum phosphide:a novel catalyst for hydrodenitrogenation [J]. Chemistry Letters,1998,3:207-208.
    [148]沈俭一,石国军.燃料油深度加氢脱硫催化剂的研究进展[J].石油化工,2008,37(1):1111-1120.
    [149]李凤艳,孙桂大,赵天波,等.含磷加氢处理催化剂[J].石油化工高等学校学报,2002,15(3):1-9.
    [150]孙福伙,李灿.过渡金属磷化物的加氢精制催化性能研究进展[J].石油学报(石油加工),2005,21(2):1-11.
    [151]CORBRIDGE D E C. Phosphorus:Studies in Inorganic Chemistry [M].1999.
    [152]OYAMA S T, GOTT T, ZHAO H, et al. Transition metal phosphide hydroprocessing catalysts: a review [J]. Catalysis Today,2009,143(2):94-107.
    [153]OYAMA S T. Novel catalysts for advanced hydroprocessing:transition metal phosphides [J]. Journal of Catalysis,2003,216(1-2):343-352.
    [154]RODRIGUEZ J A, KIM J Y, HANSON J C, et al. Physical and chemical properties of MoP, Ni2P and MoNiP hydrodesulfurization catalysts:time-resolved X-ray diffraction, density functional and hydrodesulfurization activity studies [J]. Journal of Physical Chemistry B,2003,107(2):6276-6285.
    [155]孙桂大,李翠清,李凤艳,等.磷化钨催化剂的表征和加氢精制性能[J].石油学报(石油加工),2005,21(2):54-60.
    [156]黄晓凡,季生福,吴平易,等.Ni2P/SBA-15催化剂的结构及加氢脱硫性能[J].物理化学学报,2008,24(1):1773-1779.
    [157]WANG X Q, CLARK P, OYAMA S T. Synthesis, characterization, and hydrotreating activity of several iron group transition metal phosphides [J]. Journal of Catalysis,2002, 208(2):321-331.
    [158]STINNER C, PRINS R, WEBER T. Binary and ternary transition-metal phosphides as HDN catalysts [J]. Journal of Catalysis,2001,202(1):187-194.
    [159]CHENG R H, SHU Y Y, LI L, et al. Synthesis and characterization of high surface area molybdenum phosphide [J]. Applied Catalysis A:General,2007,316(2):160-168.
    [160]BERHAULT G, AFANASIEV P, LOBOUE H, et al. In situ XRD, XAS and magnetic susceptibility study of the reduction of ammonium nickel phosphate NiNH4PO4H2O into nickel phosphide [J]. Inorganic Chemistry,2009,48(2):2985-2992.
    [161]INFANTES-MOLINA A, CECILIA J A, PAWELEC B, et al. Ni2P and CoP catalysts prepared from phosphite-type precursors for HDS-HDN competitive reactions [J]. Applied Catalysis A:General,2010,390(1-2):253-263.
    [162]YANG S, LIANG C, PRINS R. A novel approach to synthesizing highly active Ni2P/SiO2 hydrotreating catalysts [J]. Journal of Catalysis,2006,237(1):118-130.
    [163]OYAMA S T, WANG X, LEE Y K, et al. Effect of phosphorus content in nickel phosphide catalysts studied by XAFS and other techniques [J]. Journal of Catalysis,2002, 210(1):207-217.
    [164]OYAMA S T, WANG X, LEE Y K, et al. Active phase of Ni2P/SiO2 in hydroprocessing reactions [J]. Journal of Catalysis,2004,221 (2):263-273.
    [165]SAWHILL S J, LAYMAN K A, VAN WYK D R, et al. Thiophene hydrodesulfurization over nickel phosphide catalysts:effect of the precursor composition and support [J]. Journal of Catalysis,2005,231(2):300-313.
    [166]STINNER C, TANG Z, HAOUAS M, et al. Preparation andP 31NMR characterization of nickel phosphides on silica [J]. Journal of Catalysis,2002,208(2):456-466.
    [167]SAWHILL S J, PHILLIPS D C, BUSSELL M E. Thiophene hydrodesulfurization over supported nickel phosphide catalysts [J]. Journal of Catalysis,2003,215(2):208-219.
    [168]CLARK P, WANG X, OYAMA S T. Characterization of silica-supported solybdenum and tungsten phosphide hydroprocessing catalysts by 31P nuclear magnetic resonance spectroscopy [J]. Journal of Catalysis,2002,207(1):256-265.
    [169]STINNER C, PRINS R, WEBER T. Formation, structure and HDN activity of unsupported molybdenum phosphide [J]. Journal of Catalysis,2000,191(2):438-444.
    [170]WANG A, QIN M, GUAN J, et al. The synthesis of metal phosphides:reduction of oxide precursors in a hydrogen plasma [J]. Angewandte Chemie, International Edition,2008, 47(32):6052-6054.
    [171]GUAN J, WANG Y, QIN M, et al. Synthesis of transition-metal phosphides from oxidic precursors by reduction in hydrogen plasma [J]. Journal of Solid State Chemistry,2009, 182 (2):1550-1555.
    [172]LUKEHART C M, MILNE S B, STOCK S R. Formation of crystalline nanoclusters of Fe2P, RuP, Co2P, Rh2P, Ni2P, Pd5Pz or PtP2 in a silica xerogel matrix from single-source molecular precursors [J]. Chemistry of Materials,1998,10(1):903-908.
    [173]QIAN X F, XIE Y, QIAN Y T, et al. Organo-thermal preparation of nanocrystalline cobalt phosphides [J]. Materials Science & Engineering, B Solid-State Materials for Advanced Technology,1997,49(1):135-137.
    [174]GU Y, FAN G, QIAN Y, et al. A solvothermal synthesis of ultra-fine iron phosphide [J]. Materials Research Bulletin,2002,37(1):1101-1105.
    [175]PERERA S C, FODOR P S, TSOI G M, et al. Application of de-silylation strategies to the preparation of transition metal pnictide nanocrystals:the case of FeP [J]. Chemistry of Materials,2003,15(1):4034-4038.
    [176]PERERA S C, TSOI G, WENGER L E, et al. Synthesis of MnP nanocrystals by treatment of metal carbonyl complexes with phosphines:a new, versatile route to nanoscale transition metal phosphides [J]. Journal of the American Chemical Society,2003,125(2):13960-13961.
    [177]STAMM KIMBER L, GARNO JAYNE C, LIU G Y, et al. A general methodology for the synthesis of transition metal pnictide nanoparticles from pnictate precursors and its application to iron-phosphorus phases [J]. Journal of the American Chemical Society,2003, 125(3):4038-4039.
    [178]NOZAKI T, TOKUMI M. Hydrogenation activity of metal phosphides and promoting effect of oxygen [J]. Journal of Catalysis,1983,79(1):207-210.
    [179]WANG W J, QIAO M H, LI H, et al. Amorphous NiP/SiO2 aerogel its preparation, its high thermal stability and its activity during the selective hydrogenation of cyclopentadiene to cyclopentene [J]. Applied Catalysis A:General,1998,166(1):243-247.
    [180]MUETTERTIES E L, SAUER J C. Catalytic properties of metal phosphides. Qualitative assay of catalytic properties [J]. Journal of the American Chemical Society,1974, 96(2):3410-3415.
    [181]曲本连,柴永明,相春娥,等.磷化镍和磷化钼催化剂的原位XRD研究[J].石油学报(石油加工),2009,25(2):496-502.
    [182]OYAMA S T, LEE Y K. The active site of nickel phosphide catalysts for the hydrodesulfurization of 4,6-DMDBT [J]. Journal of Catalysis,2008,258:393-400.
    [183]YANG S, PRINS R. New synthesis method for nickel phosphide hydrotreating catlsysts [J]. Chemistry Communications,2005,39:4178-4180.
    [184]YANG S, LIANG C, PRINS R. Preparation and hydrotreating activity of unsupported nickel phosphide with high surface area [J]. Journal of Catalysis,2006,241(2):465-469.
    [185]SUN F, WU W, WU Z, et al. Dibenzothiophene hydrodesulfurization activity and surface sites of silica-supported MoP, Ni2P and NiMoP catalysts [J]. Journal of Catalysis,2004, 228(2):298-310.
    [186]ABU I I, SMITH K J. The effect of cobalt addition to bulk MoP and Ni2P catalysts for the hydrodesulfurization of 4,6-dimethyldibenzothiophene [J]. Journal of Catalysis,2006, 241(1):356-366.
    [187]ABU I I, SMITH K J. HDN and HDS of model compounds and light gas oil derived from Athabasca bitumen using supported metal phosphide catalysts [J]. Applied Catalysis A: General,2007,328(1):58-67.
    [188]WEI Z B, YAN W, ZHANG H, et al. Hydrodesulfurization activity of NiMo/TiO2Al2O3 catalysts [J]. Applied Catalysis A:General,1998,167(2):39-48.
    [189]SEGAWA K, TAKAHASHI K, SATOH S. Development of new catalysts for deep hydrodesulfurization of gas oil [J]. Catalysis Today,2000,63(2):123-131.
    [190]GRZECHOWIAK J R, WERESZCZAKO-ZIELINSKA I, RYNKOWSKI J, et al. Hydrodesulphurisation catalysts supported on alumina-titania [J]. Applied Catalysis A:General,2003, 250(2):95-103.
    [191]李冬燕,余夕志,陈长林,等.NizP/TiO2上噻吩加氢脱硫性能研究[J].高校化学工程学报,2006,20(1):825-830.
    [192]RAMIREZ J, MACIAS G, CEDENO L, et al. The role of titania in supported Mo, CoMo, NiMo and NiW hydrodesulfurization catalysts:analysis of past and new evidences [J]. Catalysis Today,2004,98 (2):19-30.
    [193]LECRENAY E, SAKANISHI K, NAGAMATSU T, et al. Hydrodesulfurization activity of CoMo and NiMo supported on Al2O3-TiO2 for some model compounds and gas oils [J]. Applied Catalysis B:Environmental,1998,18(1):325-330.
    [194]SCHEFFER B, ARNOLDY P, MOULIJN J A. Sulfidability and hydrodesulfurization activity of Mo catalysts supported on alumina, silica and carbon [J]. Journal of Catalysis,1988, 112(2):516-527.
    [195]ROBINSON W R A M, VAN GESTEL J N M, KORANYI T I, et al. Phosphorus promotion of Ni (Co)-containing Mo-free catalysts in quinoline hydrodenitrogenation [J]. Journal of Catalysis,1996,161(2):539-550.
    [196]SHU Y, OYAMA S T. A new type of nonsulfide hydrotreating catalyst:[J]. Chemistry Communications,2005,24:1143-1145.
    [197]SHU Y, OYAMA S T. Synthesis, characterization and hydrotreating activity of carbon-supported transition metal phosphides [J]. Carbon,2005,43(2):1517-1532.
    [198]CLARK P, OYAMA S T. Alumina-supported molybdenum phosphide hydroprocessing catalysts [J]. Journal of Catalysis,2003,218(1):78-87.
    [199]CHO K S, SEO H R, LEE Y K. A new synthesis of highly active Ni2P/Al2O3 catalyst by liquid phase phosphidation for deep hydrodesulfurization [J]. Catalysis Communications, 2011,12:470-474.
    [200]SHU Y, LEE Y K, OYAMA S T. Structure-sensitivity of hydrodesulfurization of 4,6-dimethyldibenzothiophene over silica-supported nickel phosphide catalysts [J]. Journal of Catalysis,2005,236(1):112-121.
    [201]WU Z, SUN F, WU W, et al. On the surface sites of MoP/SiO2 catalyst under sulfiding conditions:1R spectroscopy and catalytic reactivity studies [J]. Journal of Catalysis, 2004,222(1):41-52.
    [202]OYAMA S T, LEE Y K. Mechanism of hydrodenitrogenation on phosphides and sulfides [J]. Journal of Physical Chemistry B,2005,109(6):2109-2119.
    [203]LEE Y K, OYAMA S T. Bifunctional nature of a SiO2-supported Ni2P catalyst for hydrotreating:EXAFS and FTIR studies [J]. Journal of Catalysis,2006,239(2):376-389.
    [204]KORANYI T I. Phosphorus promotion of Ni (Co)-containing Mo-free catalysts in thiophene hydrodesulfurization [J]. Applied Catalysis A:General,2003,239(1):253-267.
    [205]LAYMAN K A, BUSSELL M E. Infrared spectroscopic investigation of CO adsorption on silica-supported nickel phosphide catalysts [J]. Journal of Physical Chemistry B,2004, 108(1):10930-10941.
    [206]DUAN X P, TENG Y, WANG A j, et al. Role of sulfur in hydrotreating catalysis over nickel phosphide [J]. Journal of Catalysis,2009,261 (2):232-240.
    [207]NELSON A E, SUN M, JUNAID A S M. On the structure and composition of the phosphosulf ide overlayer on Ni2P at hydrotreating conditions [J]. Journal of Catalysis,2006, 241(1):180-188.
    [208]ARDAKANI S J, LIU X B. Hydrogenation and ring opening of naphthalene on bulk and supported Mo2C catalysts [J]. Applied Catalysis A:General,2007,324:9-19.
    [209]李望良,柳云骐,刘春英,等.MCM-41负载Mo-Ni-P催化剂的加氢性能[J].石油学报,2004,20(2):69-74.
    [210]谭凤宜,谭念华,俞钟敏,等.固定床法氢化萘合成十氢萘工艺研究[J].化学工业与工程技术,2006,27(5):18-20.
    [211]FUJIKAWA T, TSUJI K, MIZUGUCHI H, et al. EXAFS characterization of bimetallic Pt-Pd/SiO2-Al2O3 catalysts for hydrogenation of aromatics in diesel fuel [J]. Catalysis Letters,1999,63:27-33.
    [212]刘大鹏,卞俊杰,李永丹.硫存在下Beta沸石负载钯催化剂上的芳烃加氢性能研究[J].燃料化学学报,2004,32(5):611-616.
    [213]ISHIHARA A, SUTRISNA I P, IFUKU M, et al. Elucidation of hydrogen mobility in coal using a fixed bed flow reactor-hydrogen transfer reaction between tritiated hydrogen, coal and tetralin [J]. Energy & Fuels,2002,16(6):1483-1489.
    [214]ZAKHARENKO V A, DELONE I 0, BYRANSKAYA E K. Deterination of the individual composition of gasoline fractions by capillary gas-liquid chromatography under isothermal conditions [J]. Neftyanoe Instant,1972,119:127-36.
    [215]SCHUCKER R C. Chemical equilibria in condensed-Ring systems [J]. Journal of Chemical & Engineering Data,1981,26:239-241.
    [216]BURNS A W, LAYMAN K A, BALE D H, et al. Understanding the relationship between composition and hydrodesulfurization properties for cobalt phosphide catalysts [J]. Applied Catalysis A:General,2008,343:68-76.
    [217]PRINS R, JIAN M, FLECHSENHA M. Mecheanism and kinetics of hydrodenitrogenation [J]. Polyhedron,1997,16(18):3235-3246.
    [218]LEE Y K, SHU Y, OYAMA S T. Active phase of a nickel phosphide (Ni2P) catalyst supported on KUSY zeolite for the hydrodesulfurization of 4,6-DMDBT [J]. Applied Catalysis A:General, 2007,322:191-204.
    [219]COCCHETTO J F, SATTERFIELD C N. Thermodynamic equilibria of selected heterocyclic nitrogen compound with their hydrogenated derivatives [J]. Industrial & Engineering Chemistry Process Design and Development,1976,15(2):272-277.
    [220]COCCHETTO J F, SATTERFIELD C N. Chemical equilibriums among quinoline and its reaction products in hydrodenitrogenation [J]. Industrial & Engineering Chemistry Process Design and Development,1981,20(1):49-53.
    [221]SATTERFIELD C N, COCCHETTO J F. Reaction network and kinetics of the vapor-phase catalytic hydrodenitrogenation of quinoline [J]. Industrial & Engineering Chemistry Process Design and Development,1981,20(1):53-62.
    [222]SATTERFIELD C N, GULTEKIN S. Effect of hydrogen sulfide on the catalytic hydrodenitrogenation of quinoline [J]. Industrial & Engineering Chemistry Process Design and Development,1981,20(1):62-68.
    [223]SATTERFIELD C N, CARTER D L. Effects of water vapor on the catalytic hydrodenitrogenation of quinoline [J]. Industrial & Engineering Chemistry Process Design and Development,1981,20(3):538-540.
    [224]SATTERFIELD C N, YANG S H. Simultaneous hydrodenitrogenation and hydrodeoxygenation of model compounds in a trickle bed reactor [J]. Journal of Catalysis,1983,81(2):335-346.
    [225]YANG S H, SATTERFIELD C N. Some effects of sulfiding of a NiMo/Al2O3 catalyst on its activity for hydrodenitrogenation of quinoline [J]. Journal of Catalysis,1983, 81(1):168-178.
    [226]YANG S H, SATTERFIELD C N. Catalytic hydrodenitrogenation of quinoline in a trickle-bed reactor. Effect of hydrogen sulfide [J]. Industrial & Engineering Chemistry Process Design and Development,1984,23(1):20-25.
    [227]SATTERFIELD C N, YANG S H. Catalytic hydrodenitrogenation of quinoline in a trickle-bed reactor. Comparison with vapor phase reaction [J]. Industrial & Engineering Chemistry Process Design and Development,1984,23(1):11-19.
    [228]SATTERFIELD C N, SMITH C M, INGALLS M. Catalytic hydrodenitrogenation of quinoline. Effect of water and hydrogen sulfide [J]. Industrial & Engineering Chemistry Process Design and Development,1985,24(4):1000-1004.
    [229]SATTERFIELD C N, SMITH C M. Effect of water on the catalytic reaction network of quinoline hydrodenitrogenation [J]. Industrial & Engineering Chemistry Process Design and Development,1986,25(4):942-949.
    [230]GIOIA F, LEE V. Effect of hydrogen pressure on catalytic hydrodenitrogenation of quinoline [J]. Industrial & Engineering Chemistry Process Design and Development,1986, 25(4):918-925.
    [231]PEROT G. The reactions involved in hydrodenitrogenation [J]. Catalysis Today,1991, 10(4):447-472.
    ] EIJSBOUTS S, VAN GESTEL J N M, VAN VEEN J A R, et al. The effect of phosphate on the odenitrogenation activity and selectivity of alumina-supported sulfided Mo, Ni and o catalysts [J]. Journal of Catalysis,1991,131(2):412-432.
    ] JIAN M, PRINS R. Mechanism of the hydrodenitrogenation of quinoline over NiMo(P)/Al2O3
    lysts [J]. Journal of Catalysis,1998,179(1):18-27.
    ] KABE T, ISHIHARA A, QIAN W. Hydrodesulfurization and hydrodenitrogenation:Chemistry Engineering [M]. Wiley-VCH, Weinheim,1999.
    ] LAVOPA V, SATTERFIELD C N. Poisoning of thiophene hydrodesulfurization by nitrogen ounds [J]. Journal of Catalysis,1988,110(2):375-387.
    ] PRINS R. Catalytic hydrodenitrogenation [J]. Applied Catalysis,2001,46:399-465.
    ] NIQUILLE-RoTHLISBERGER A, PRINS R. Hydrodesulfurization of dimethyldibenzothiophene and dibenzothiophene over alumina-supported Pt, Pd and Pt-Pd
    lysts [J]. Journal of Catalysis,2006,242:207-216.
    ] LEE J-K, RHEE H-K. Sulfur tolerance of zeolite beta-supported Pd-Pt catalysts for isomerization of n-hexane [J]. Journal of Catalysis,1998,177:208-216.
    ] FIERMANS L, DE GRYSE R, DE DONCKER, et al. Pd segregation to the surface of bimetallic d particles supported on H-β zeolite evidenced with X-Ray photoelectron spectroscopy argon cation bombardment [J]. Journal of Catalysis,2000,193(1):108-114.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700