用户名: 密码: 验证码:
以TiO_2光催化剂为基的过渡金属氧化物结构和性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文的主要工作是基于探索在异相催化反应中,尤其是在目前比较热门的光催化反应研究领域中,催化剂的结构和其催化性能之间的相互关系。半导体材料Ti02具有廉价,无毒,化学性质稳定,降解有机物彻底等优点,被广泛地应用于光催化领域。本论文即以不同的制备方法,合成具备一定功能的TiO2光催化剂,并将其应用于吸附,酸催化以及光催化反应,研究经不同制备方法合成的具有特殊结构的Ti02光催化剂,其吸附、催化性能与其结构之间的相互关系,探讨催化学科中构效关系这一基础问题。主要结果如下:
     1.利用溶胶凝胶法制备了不同Ce含量的CeO2-TiO2过渡金属复合氧化物,研究了此种复合氧化物界面和表面的结构,以及这种特殊结构对于有机染料甲基橙的吸附性能影响。通过XRD、可见光激发Raman和紫外光激发Raman、XPS、SEM等常规表征,以及同步辐射XAFS表征,我们发现此复合氧化物系列有如下特征:Ce未进入Ti02晶格,当Ce含量较低时,Ce会在Ti02内部氧缺陷成核,并随Ce含量增加形成Ce02萤石结构,Ce在界面上会首先形成Ce-O-Ti结构,并且少量Ce的加入对TiO2的局域结构和锐钛矿相的相稳定即可起很大的作用。CeO2-TiO2复合氧化物中Ti02是表面富集的,Ce02则分布在相对较内层,这种体相-表面组成分布的不均匀不仅可以由上述表征手段,如XRD、紫外拉曼和可见拉曼、XPS综合得出,也可由此复合氧化物在不同Ce含量时,对于甲基橙的化学选择吸附的差异而看出。藉由纯Ti02和纯CeO2对有机染料甲基橙吸附性能的巨大差异,我们发现了一种简单的化学选择性吸附方法,通过对比不同Ce含量的复合氧化物对甲基橙吸附的特点,来确定复合氧化物的表面组成。并且我们已经将这种方法成功的应用到了几个其他相似的体系,包括CeO2-Fe2O3, CeO2-ZrO2等。我们希望通过这种简单的方法可以有效的确定复杂的复合氧化物体系的表面组成。
     2.利用共沉淀法制备了不同Ce含量的CeO2-TiO2过渡金属复合氧化物,通过XRD、EXAFS等研究方法表征了其体相、表面和界面结构,发现一定的Ce/Ti比可形成固溶体结构,如Ceo.3Ti0.7O2这种特殊的单斜晶体固溶体结构。复合氧化物随着Ce含量的增加,由于固溶体生成,其结构表现出更加复杂的变化趋势。由H2-TPR和CO-TPR结果表明,固溶体样品的氧化还原性由于其结构的特殊关系并不同于其他复合氧化物样品,复合氧化物和固溶体样品的储氧能力均大于纯的Ce02样品。CO-TPR中发现了水汽变换现象,这可能与样品表面的羟基浓度有关。此种方法制备的复合氧化物,对甲基橙的吸附能力随着Ce含量的增加而增大。各复合氧化物对甲基橙的吸附主要是依靠Ce02的吸附作用,因此,表面组成的变化是影响复合氧化物和固溶体吸附性能的主要因素。化学选择吸附方法也可用于这个体系的样品表面组成测定。
     CeO2-TiO2复合氧化物体系均未表现出好的光降解甲基橙的催化活性,这可能与样品制备方法,反应体系的选择,反应装置的效率都有关系。
     3.低温下,以[TiO(C2O4)2]2-为反应物,经氨水沉淀后得前驱体,不同温度焙烧后得到掺杂N元素的Ti02光催化剂。结果表明:制得的Ti02光催化剂都是锐钛矿相样品,且N元素在Ti02晶格间隙位掺杂,由于掺杂导致的光照响应波长范围已经明显进入了可见光区域。经程序升温反应实验,我们发现400℃焙烧样品表面有共价草酸基团,存在Bronsted酸性位。各样品对甲基橙的光催化降解都有比较好的活性,而且400℃焙烧的样品因为其酸性,对甲基橙有较好的吸附作用,是一种具有酸催化和光催化的双功能催化剂。
     4.以硫酸氧钛铵为前躯体,通过不同温度焙烧一步法合成了掺杂N,S非金属元素的Ti02光催化剂。800℃焙烧样品仍能保持锐钛矿相结构,有较好的晶体稳定性。XPS结果表明样品均为四价S阳离子掺杂,且600℃焙烧样品为N、S双掺,且N处于Ti02晶格间隙位。这种N、S的掺杂并未明显减小样品的禁带宽度。通过NH3-TPD和1H固体核磁共振谱表征,600℃焙烧样品表面有较多的磺酸酸性基团构成的Bronsted酸性位。通过光降解有机染料甲基橙和光解水制氢来检测各个光催化剂的催化活性。不同温度焙烧的样品在全波长光下均对甲基橙降解有比较好的催化活性,其中600℃焙烧样品活性最优,好于商品化的P25。可见光下,由于掺杂的原因,各样品均对甲基橙有光降解作用。在担载Pt之后,催化剂全波长光照下光解水产氢活性有了明显提高。而由于担载Pt和N、S元素掺杂的共同作用,可以一定程度上提高Ti02可见光下产氢活性。600℃焙烧样品为N、S双掺,表面又有磺酸酸性基团构成的Bronsted酸性位,因此其是同时具有酸催化和光催化性质的双功能催化剂。其在酯化反应中对乙酸乙酯的生成有很好的催化作用,而在可见光下对降解甲基橙以及光解水制氢也有很好的活性,是一种很具应用前景的双功能催化剂。
The major work in this dissertation is focused on the study of the relationships between the structures and the catalytical properties of the catalysts in the heterogeneous catalysis, especially in photocatalysis, which is one of the hot research fields these years. Semiconductor material TiO2 is low-cost, non-toxic, chemically stable, and it can photodegrade the organic pollutants completely. So it has been widely used in photocatalysis. In this dissertation, We have prepared the TiO2 photocatalyst with certain functions by different methods, and it has been utilized in adsorption, acid-catalysis and photocatalysis. We have investigated the adsorption, catalytical properties of these TiO2 photocatalysts, and the relationships between the structures and the properties of these catalysts.
     1. The preparation of CeO2-TiO2 transition metal composite oxides with different Ce contents via sol-gel-method. We investigated the interfacial/surface structures of the composites, and the adsorption ability toward methyl orange based on the unique structure. Based on the results of XRD, UV-Raman and Visible-Raman, XPS, XAFS, we found that:Ce do not enter the TiO2 lattice, Ce first nucleated at the defects in the bulk of TiO2, as the Ce content increased, it formed the CeO2 fluorite structure. On the interface, Ce-O-Ti bond formed, a few amount of Ce can stabilize the local structure and anatase phase of TiO2. In CeO2-TiO2 composite oxides, TiO2 is rich in surface, and CeO2 is distributed in inner layer. It was concluded not only from these characterization techniques above, but also from the selective chemisorption toward methyl orange by the composite oxides. Based on the distinguished differences of the adsorption ability toward methyl orange between CeO2 and TiO2, we developed a facile method to identify the surface composition of the CeO2-TiO2 composite oxides, and we have broaden the application to other composite oxides, like CeO2-Fe2O3, CeO2-ZrO2 et al. We hope that the surface composition of complex composite oxides can easily identified by this method.
     2. The preparation of CeO2-TiO2 transition metal composite oxides with different Ce via co-precipitation method. We have investigated the bulk, surface and interface structures of the composite oxides by XRD, XAFS et al. the solid solution could formed, like the Ce/Ti ratio 3:7, Ce0.3Ti0.7O2 is a monoclinic solid solution. As the Ce content increased, because of the formation of the solid solution, the structure evolution of the composite oxides is more complicated. The results of H2-TPR and CO-TPR show that the redox properties of solid solution are different with other composite oxides based on the unique structure. The oxygen storage ability of composite oxides and solid solution is better than CeO2. We found water-gas reaction in CO-TPR, it is related to the concentration of the hydroxyl groups on the surface of the composite oxides. The adsorption ability toward methyl orange by the composite oxides become stronger as the increasing of the Ce content. CeO2 is the main component that adsorbed methyl orange, thus the evolution of the surface components is the main point that effect the adsorption properties of the composite oxides.
     The photocatalytic activity of the CeO2-TiO2 composite oxides for the photodegradation of methyl orange is low. It could be the preparation method, the type of the photocatalytic reaction, or the efficiency of the experiment's equipment that needed the further study.
     3. The N-doped TiO2 photocatalysts have been prepared by clacination of the precusors at different temperature, which was synthesized via the precipitation of [TiO(C2O4)2]2-by ammonium hydroxide at low temperature. The results shows that all the photocatalysts are anatase phase, N is doped at the interstitial sites in TiO2 lattice, and because of this N doping, the light response of these photocatalysts is moved into the visible light region. Based on the TPRS results, we found that the photocatalyst calcined at 400℃is covalently bonded with oxalate groups on the surface to form Bronsted acid sites. All photocatalysts are performed well in the photocatalytic reaction for the degradation of methyl orange. The photocatalyst calcined at 400℃could adsorb methyl orange effectively because of the acidity, and it is an acid-catalysis and photocatalysis bi-funcitional catalyst.
     4. We developed an one-step method to prepare N,S co-doped TiO2 photocatalyst via the controlled thermal decomposition of ammonium titanyl sulfate. the photocatalyst calcined at 800 C is still anatase, shows the phase stabilization ability. The results of XPS show that the photocatalysts are all S(IV) cation doping, the photocatalyst calcined at 600℃is co-doped with N,S and N is at the interstitial sites in TiO2 lattices. The band gap of TiO2 is not narrowed down by these doping. Based on the results of NH3-TPD and 1H soild-state MAS NMR, the photocatalyst calcined at 600 C is covalently bonded with the sulfate acid groups on the surface to form Bronsted acid sites. The evaluation of the photocatalytic activity is conducted by the photodegradation of methyl orange and photolysis of water for H2 production. Under all-wavelength light illumination, the photocatalytic activity of the photodegradation of methyl orange is well for all the photocatalysts, the photocatalyst calcined at 600℃is most active, better than the commercial P25. All the photocatalysts could degrade methyl orange under visible light illumination because of the N, S doping. After Pt loading, the H2 production under all-wavelength light illumination by the photocatalysts increased dramatically compared with the bare TiO2. Because of the synergy effect of Pt loading and the N, S co-doping, the 0.1Pt/TiO2 shows an improved photocatalytic activity for H2 production. the photocatalyst calcined at 600℃is both very active in the esterification for the ethyl acetate production and the photocatalytic reactions. So it is a acid-catalysis and photocatalysis bi-functional catalyst.
引文
1. 甄开吉,王国甲,毕颖丽,李荣生,阚秋斌催化作用基础科学出版社.
    2. N. Kholmanov, E. Barborini, S. Vinati, P. Piseri, A. Podesta,C. Ducati, C. Lenardi, P. Milani. The influence of the precursor clusters on the structural and morphological evolution of nanostructured TiO2 under thermal annealing. Nanotechnology 2003,14,1168.
    3. P.T. Moseley, B.C. Tofield. Solid State Sensors, Adam Hilger, Bristol,1987.
    4. Trovarelli. Catalytic Properties of Ceria and Ce02-Containing Materials. Catal. Rev. Sci. Eng. 1996,38,439, and references therein.
    5. J.G. Nunan, H.J. Robota, M.J. Cohn, S.A. Bradley. Physicochemical properties of Ce-containing three-way catalysts and the effect of Ce on catalyst activity. J. Catal.1992,133, 309.
    6. Jiang, JH; Gao, QM; Hu, In-Situ Fourier Transform Infrared Spectroscopy Study on CO Oxidation Over Au/Titanate and Au/Titania Nanocatalysts. J. NANOSCI. NANOTECHNO. 2009,9(2),1483.
    7. Camellone, MF; Fabris, S. Reaction Mechanisms for the CO Oxidation on Au/CeO2 Catalysts: Activity of Substitutional Au3+/Au+Cations and Deactivation of Supported Au+Adatoms. JACS 2009,131(30),10473.
    8. Fujishima A, Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature,1972,238,37
    9. P. Fornasiero, M. Graziani. Use of CeO2-based oxides in the three-way catalysis. Catalysis Today.1999,50,285.
    10. Burdett J K. Electronic control of the geometry of rutile and related structures. Inorg. Chem. 1985,24,2244.
    11. Burdett J K, Hughbands T, Gordon J M, Richardson J W Jr, Smith J V. Structural-electronic relationships in inorganic solids:powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K. J. Am. Chem. Soc.1987,109,3639
    12. Poirier G E, Han B K, White J M. Scanning tunneling microscopic and Auger electron spectroscopic characterization of a model catalyst:rhodium on titania(001). J. Phys. Chem 1993, 97,5965
    13. Henrich V E. The surfaces of metal oxides. Rep. Prog. Phys.1985,48,1481
    14. Fahmi A, Minot C, Silvi B, Causa M. Theoretical analysis of the structures of titanium dioxide crystals. Phys. Rev. B.1993,47,11717
    15. Sanjines R, Tang H, Berger H, Gozzo F, Margaritondo G, Levy F J, Appl. Phys.1994, 75,2945
    16.高濂,郑珊,张青红.纳米氧化钛光催化材料及应用.化学工业出版社
    17. Gratzal, M. Heterogeneous Photochemical Electron Transfer. CRC Press, Baton Rouge, FL, 1998
    18.刘守新,刘鸿.光催化及光电催化基础与应用化学工业出版社
    19. Tanaka K, White J M. Characterization of species adsorbed on oxidized and reduced anatase. J. Phy. Chem.1982,86,4708
    20. Boccuzzi F, Guglielminotti E, Spoto G. Vibrational and electronic effects of NO chemisorption on TiO2 and Ru/TiO2. Surf. Sci.1991,251,1069
    21. Pande N K, Bell A T. A study of the interactions of NO with Rh/TiO2 and TiO2-promoted Rh/TiO2. J. Catal.1986,97,137
    22. Boer, K. W.; Survery of Semiconductor Physics. New York:Van Nostrand Reinhold,1990, 249
    23. Albeici, R. M. and W.F. Jardim. Photocatalytic destruction of VOCs in the gas-phase using titanium dioxide. Appl. Catal. B:Environ,1997,14,55
    24. Brillas, E., et al. Aniline mineralization by AOP's:anodic oxidation, photocatalysis, electro-Fenton and photoelectro-Fenton processes. Appl. Catal. B:Environ.,1998,16,31
    25.靳治良等,光催化分解水制氢研究进展分子催化,1 8(4),310
    26. Bickley, R. T. Gonzalea-Carreno, and J. Lees. A structural investigation of titanium dioxide photocatalysts. J. Solid State Chem.1991,92,178
    27. Bacsa, R.R. and J. Kiwi, Effect of rutile phase on the photocatalytic properties of nanocrystalline titania during the degradation of p-coumaric acid. Applied Catalysis B-Enviornmental,1998.16(1),19
    28. Salvador, P, M.L.G Garcia, F. Munoz. Catalytic role of lattice defects in the photoassisted oxidation of water at (001) n-titanium(IV) oxide rutile. J. Phys. Chem B,1992,96,10349.
    29.岳林海,水淼,徐铸德,二氧化钛微晶结构和光催化性能关联研究无机学报,1999.57,1219
    30.周武艺,唐绍裘,万隆等.纳米Ti02光催化降解有机物的机理及其影响因素的研究[J].中国陶瓷工业,2003,10(5),26.
    31. Serpone N, Texier I, Emerline A V, Pichat P, Hidaka H, Zhao J. Post-Irradiation Effect and Reductive Decholrophenols at Oxygen-Free TiO2/Water Interfaces in the Presence of Prominent HolScavengers. J. Photochem Photobiol, A,2000,136(3),145
    32. Blake, Daniel M. NREL/TP-430-6084, National Renewal Energy Laboratory, Golden, Co, 1994
    33. Blake, Daniel M. NREL/TP-340-22197, National Renewal Energy Laboratory, Golden, Co, 1997
    34. Blake, Daniel M. NREL/TP-570-26797, National Renewal Energy Laboratory, Golden, Co, 1999
    35. Blake, Daniel M. NREL/TP-640-28297, National Renewal Energy Laboratory, Golden, Co, 2002
    36.程沧沧,李太友,李华禄等.载银Ti02光降解2,4-二氯苯酚水溶液的研究.环境科学研究,1998,1 1(6),212.
    37.蒋伟川,谭湘萍.载银Ti02半导体光催化剂降解染料水溶液的研究.环境科学,1998,16(2),17.
    38. Dawson Amy, Prashant V Kamat. Semiconductor-Metal Nanocomposites Photoinduced Fusion and Photocatalysis of Gold-Capped TiO2(TiO2/Gold) Nanoparticles. J Phys. Chem B, 2001,105(5),960-966
    39. Mario Schiaveuo. Some working Principles of Heterogeneous Photocatalysis by Semiconductors. Electrochemical Acta,1993,38(1),1056.
    40.刘守新,博士学位论文,哈尔滨,东北林业大学,2001,29(6),56.
    41. Junbiao Liu, John C Crittenden, David W Hand, David L Perram. Regeneration of Adsorbents Using Heterogeneous Photocatalytic Oxidation. Journal of Environmental Engineering, 1996,4,456.
    42. Tanaka T, Takenaka T I S, Funabiki T, Yoshida S. Photocatalytic Oxidation of Alkane at a Steady Rate over Alkali-Ion-Modified Vanadium Oxide Supported on Sillica. Catal. Today,2000, 61(4),109.
    43. Testa, Juan J, Maria A Grela, Marta I Litter. Experimental Evidence in Favor of an Initial One-Electron-Transfer Process in the Heterogeneous Photocatalytic Reduction of Chromium(Ⅳ) over TiO2. Lagmuir,2001,17(12),3515.
    44. Kang, Man Gu, Hyea-Eun Han, Kang-Jin Kim. Enhanced Photodecomposition of 4-Chlorophenol in Aqueous Solution by Deposition of CdS on TiO2. J Photochem Photobiol:A, 1999,125(3),119.
    45. Litter M. I. and J.A. Navio. Photocatalytic properties of iron-doped titania semiconductors. J. Photochem. Photobio. A-Chem.1996,98(3),171
    46. San N. et al. Photocatalytic degradation of 4-nitrophenol in aqueous TiO2 suspensions: Theoretical prediction of the intermediates. Journal of Photochemistry and Photobiology a-Chemistry,2002,146(3),189.
    47. Bahnemann, Detlef W. Current Challenges in Photocatalysis:Improved Photocatalysts and Appropriate Photoreactor Engineering. Res Chem Intermed,2000,26(2),207.
    48. Asahi, R. et al. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science,2001, 293(5528),269.
    49. Khan, S.U.M., M. Al-Shahry, and W.B. Ingler, Efficient photochemical water splitting by a chemically modified n-TiO2. Science,2002,297(5590),2243.
    50. Umebayashi, T. et al. Band gap narrowing of titanium dioxide by sulfur doping. Applied Physics Letters,2002,81(3),454.
    51. Rominder P S, et al. Removal and Destruction of Organic Contaimnants in Water Using Adsorption, Stream Regeneration, and Photocatalytic Oxidation:A Pilot-Svale Study. Journal of the Air&Waste Management Association,1999,49(5),1246.
    52. Zhang, et al. Method and apparatus for destroying organic compounds in fluid. USP No 5501801.1996
    53. Machida, Norimoto M K, Watanabe T, Hashimoto K, Fujishma A, The Effect of SiO2 Addition on Super-Hydrophilic Property of TiO2 Photocatalyst. J Mater Sci.,1999,34(11),2569.
    54.付贤智,李旦振.Ti02纳米晶表面羟基自由基的生成对光催化性能的影响.福州大学学报(自然科学版)29(6),104-114
    55. Ohno T, Saito S, Fujihara K, et al. Photocatalyzed Production of Hydrogen and Iodine from Aqueous Solutions of Iodide Using Platinum-Loaded TiO2 Powder. Bull Chem Soc Jpn,1996,69, 3059.
    56. Kudo A. Photocatalyst materials for water splitting. Catal Sur Asia,2003,7(1),31.
    57. Zou Z.G., Ye J.H., Sayama K, Arakawa H. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst Nature,2001,41,625.
    58. Zou Z.G., Ye J.H., Arakawa H. Photocatalytic Behavior of a New Series of In0.8M0.2TaO4 (M= Ni, Cu, Fe) Photocatalysts in Aqueous Solutions. Catal. Lett.,2001,75,209.
    59. Chun W.J., Ishikawa A, Fujisawa H, Takata T, Kondo J. N., Hara M, Kawai M, Matsumoto Y, Domen K. J. Phys. Chem. B,2003,107,1798.
    60. Hitoki G, Takata T, Kondo JN, Hara M, Kobayashi H, Domen K. Chem. An oxynitride, TaON, as an efficient water oxidation photocatalyst under visible light irradiation (λ< 500 nm). Commun.2002,1698.
    61. Kasahara A, Nukumizu K, Takata T, Kondo J N, Hara M, Kobayashi H, Domen K. LaTiO2N as a Visible-Light (≤600 nm)-Driven Photocatalyst (2). J Phys. Chem. B,2003,107,791.
    62. Kudo A, Sekizawa M. Photocatalytic H2 evolution under visible light irradiation on Ni-doped ZnS photocatalyst. Chem. Commun.2000,1371-1372
    63. Ishikawa A, Takata T, Matsumura T, Kondo J N, Hara M, Kobayashi H, Domen K. Oxysulfides Ln2Ti2S2O5 as Stable Photocatalysts for Water Oxidation and Reduction under Visible-Light Irradiation. J Phys. Chem B,2004,108,2637.
    64. Ishikawa A, Takata T, Kondo J N, Hara M, Kobayashi H, Domen K. Oxysulfide Sm2Ti2S2O5 as a Stable Photocatalyst for Water Oxidation and Reduction under Visible Light Irradiation (λ< 650 nm). J. Am. Chem. Soc.2002,124,13547.
    65. Hongjian Yan, Jinhui Yang, Guijun Ma, Guopeng Wu, Xu Zong, Zhibin Lei, Jingying Shi and Can Li. Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt-PdS/CdS photocatalyst. J. CATAL.2009,266(2),165.
    66. Tsuji I, Kato H, Kobayashi H, Kudo A. Photocatalytic H2 Evolution Reaction from Aqueous Solutions over Band Structure-Controlled (AgIn)xZn2(1-x)S2 Solid Solution Photocatalysts with Visible-Light Response and Their Surface Nanostructures. J. Am. Chem. Soc.2004,126,13406.
    67. Tsuji I, Kato H, Kobayashi H, Kudo A. Photocatalytic H2 Evolution under Visible-Light Irradiation over Band-Structure-Controlled (CuIn)xZn2(1-x)S2 Solid Solutions. J. Phys. Chem. B, 2005,109,7323.
    68. Maeda K, Takata T, Hara M, Saito N, Inoue Y, Kobayashi H, Domen K. GaN:ZnO Solid Solution as a Photocatalyst for Visible-Light-Driven Overall Water Splitting. J. Am. Chem. Soc. 2005,127,8286.
    69. Maeda K, Teramura K, Lu D L, Takata T, Saito N, Inoue Y, Domen K. Photocatalyst releasing hydrogen from water. Nature,2006,440,295
    1. P. Fornasiero, M. Graziani Use of CeO2-based oxides in the three-way catalysis. Catalysis Today 1999,50,285-298
    2. Tauster, S.J.; Fung, S.C.; Garten, R.L. Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide. J. Am. Chem. Soc.1978,100,170
    3. Cunningham J, Cuthnane D, Sanz J, et al. Effects of prereduction at moderate temperatures on Rh/CeO2 on the interactions of D2, H2 and CO with Rh/CeO2. J Chem Soc Faraday Trans.,1992,88,3233
    4. Cunningham J, O'Brien S, Sanz J, et al. Exceptional susceptibility of ceria-supported rhodium catalyst to inhibitory SMSI effects including acetone hydrogenation. J Mol Catal,1990, 57,379
    5. Ricken M, Noel Ting J, Riess I, et al. Specific heat and phase diagram of nonstoichiometric ceria (CeO2-x). J Solid State Chem,1984,54,89
    6. Ganduglia-Pirovano M. V, Hofmann A, Sauer J. Oxygen vacancies in transition metal and rare earth oxides:Current state of understanding and remaining challenges. Surface Science Reports,2007,62,219
    7. Laachir A, Perrichon V, Badri A, et al. Reduction of CeO2 by hydrogen. Magnetic susceptibility and Fourier-transform infrared, ultraviolet and X-ray photoelectron spectroscopy measurements. J. Chem. Soc. Faraday Trans.1991,87,1601.
    8. Ji P.F., Zhang J.L., Chen F. Anpo, M. Study of adsorption and degradation of acid orange 7 on the surface of CeO2 under visible light irradiation. Applied Catalysis B:Environmental,2009, 85,148-154
    9. Reddy B.M., Khan A. Nanosized CeO2-SiO2) CeO2-TiO2, and CeO2-ZrO2 Mixed Oxides: Influence of Supporting Oxide on Thermal Stability and Oxygen Storage Properties of Ceria.Catalysis Surveys from Asia,2005,9,155.
    10. Singh P, Hegde M.S. Controlled synthesis of nanocrystalline CeO2 and Ce1-xMxO2-δ (M=Zr, Y, Ti, Pr and Fe) solid solutions by the hydrothermal method:Structure and oxygen storage capacity. Journal of Solid State Chemistry.2008,181,3248.
    11. Reddy, BM; Khan, A; Yamada, Y, et al. Structural Characterization of CeO2-TiO2 and V205/CeO2-Ti02 Catalysts by Raman and XPS Techniques. J. Phys. Chem. B.2003,107,5162.
    12. Lopez T.,Rojas F., Alexander-Katz R., Galindo F. Balankin A., Buljan A. Journal of Solid State Chemistry 177 (2004) 1873-1885
    13. Nakagawa K., Murata Y., Kishida M., Adachi M., Hiro M., Susa K. Formation and reaction activity of CeO2 nanoparticles of cubic structure and various shaped CeO2-TiO2 composite nanostructures. Mater. Chem. Phys.2007,104,30.
    14. Yang S.X., Zhu W.P., Jiang Z.P., Chen Z.X.,Wang J.B. The surface properties and the activities in catalytic wet air oxidation over CeO2-TiO2 catalysts. Applied Surface Science.2006, 252,8499
    15. Fang J, Bi X.Z., Si D.J., Jiang Z.Q., Huang W.X. Applied Surface Science Spectroscopic studies of interfacial structures of CeO2-TiO2 mixed oxides.2007,253,8952.
    16. Luo M.F., Chen J., Chen L.S., Lu J.Q., Feng Z.C., Li C. Structure and Redox Properties of CexTi1-xO2 Solid Solution. Chem. Mater.2001,13,197.
    17. Dutta G., Waghmare U. V., Baidya T., Hegde M.S., Priollkar K.R. Sarode P.R. Origin of Enhanced Reducibility/Oxygen Storage Capacity of Ce1-xTixO2 Compared to CeO2 or TiO2. Chem. Mater.2006,18,3249.
    18. Zhu H.Q., Qin Z.F., Shan W.J., Shen W.J., Wang J.G. Pd/CeO2-TiO2 catalyst for CO oxidation at low temperature:a TPR study with H2 and CO as reducing agents. J. Catal.2004,225, 267.
    19. F. Zhang, S.W. Chan, J.E. Spanier, E. Apak, Q. Jin, R.D. Robinson, I.P. Herman. Cerium oxide nanoparticles:Size-selective formation and structure analysis. Appl. Phys. Lett.2002,80, 127.
    20. J. Lin, J.C. Yu, An investigation on photocatalytic activities of mixed TiO2-rare earth oxides for the oxidation of acetone in air. J. Photochem. Photobiol. A 1998,116,63.
    21.0. Carp, C.L. Huisman, A. Reller, Prog. Photoinduced reactivity of titanium dioxide. Solid State Chem.2004,32,33, and references therein.
    22. K.J. Hadjiivanov, D.G. Kissurski, Surface chemistry of titania (anatase) and titania-supported catalysts. Chem. Soc. Rev.1996,25,61.
    23. C. Anderson, A.J. Bard, An Improved Photocatalyst of TiO2/SiO2 Prepared by Sol-Gel Synthesis. J. Phys. Chem.1994,99,9882.
    24. T. Ohsaka, F. Izumi, Y.J. Fujiki, Raman spectrum of anatase, TiO2. Raman Spectrosc.1978. 7.321.
    25. W.H. Weber, K.C. Hass, J.R. McBride, Raman study of CeO2:Second-order scattering, lattice dynamics, and particle-size effects. Phys. Rev. B.1993,48,178.
    26. J. Zhang, M.J. Li, Z.C. Feng, J. Chen, C. Li. UV Raman Spectroscopic Study on TiO2. I. Phase Transformation at the Surface and in the Bulk. J. Phys. Chem. B.2006,110,927.
    27. M.F. Luo, Z.L. Yan, L.F. Jin, M. He, Raman Spectroscopic Study on the Structure in the Surface and the Bulk Shell of CexPr1-xO2-δ Mixed Oxides. J. Phys. Chem. B 2006,110,13068.
    28. L.S. Dake, R.J. Lad, Electronic and chemical interactions at aluminum/TiO2(110) interfaces. Surf. Sci.1993,289,297.
    29. Z. Zhang, V.E. Henrich. Electronic interactions in the vanadium/TiO2(110) and vanadia/TiO2(110) model catalyst systems. Surf. Sci.1992,277,263.
    30. N.J. Price, J.B. Reitz, R.J. Madix, E.I. Solomon. A synchrotron XPS study of the vanadia-titania system as a model for monolayer oxide catalysts. J. Electron Spectrosc. Relat. Phenom.1999,99,257.
    31. P. Burroughs, A. Hamnett, A.F. Orchard, G. Thornton. Satellite structure in the X-ray photoelectron spectra of some binary and mixed oxides of lanthanum and cerium. J. Chem. Soc., Dalton Trans.1976,17,1686.
    32. G. Praline, B.E. Koel, R.L. Hance, H.I. Lee, J.M. White, X-Ray photoelectron study of the reaction of oxygen with cerium. J. Electron Spectrosc. Relat. Phenom.1980,21,17.
    33. A. Pfau, K.D. Schierbaum. The electronic structure of stoichiometric and reduced CeO2 surfaces:an XPS, UPS and HREELS study. Surf. Sci.1994,321,71.
    34. E. Paparazzo, G.M. Ingo, N. Zacchetti. X-ray induced reduction effects at CeO2 surfaces:An x-ray photoelectron spectroscopy study. J. Vac. Sci. Technol. A 1991,9,1416.
    35. Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem.1985,57,603.
    36. Kumar, K. N. P.; Kumar, J.; Keizer, K. Effect of Peptization on Densification and Phase-Transformation Behavior of Sol-Gel-Derived Nanostructured Titania. J. Am. Ceram. Soc. 1994,77,1396.
    37. Grunes, L. A. Study of the K edges of 3d transition metals in pure and oxide form by x-ray-absorption spectroscopy. Phys. ReV. B 1983,27,2111.
    38. Picard-Lagnei, F.; Poumellec, B.; Cortes, R. Study of amorphous thin films of (Ti, Nb)O2 solid solutions by X-ray absorption at the Ti K edge. J. Phys. Chem. Solids 1989,50,1211.
    39. Chen, L. X.; Rajh, T.; Wang, Z.; Thurnauer, M. C. XAFS Studies of Surface Structures of TiO2 Nanoparticles and Photocatalytic Reduction of Metal Ions. J. Phys. Chem. B 1997,101, 10688.
    40. Luca, V.; Djajanti, S.; Howe, R. F. Structural and Electronic Properties of Sol-Gel Titanium Oxides Studied by X-ray Absorption Spectroscopy. J. Phys. Chem. B 1998,102,10650
    41. Luca, V.; Hanley, T. L.; Roberts, N. K.; Howe, R. F. NMR and X-ray Absorption Study of Lithium Intercalation in Micro-and Nanocrystalline Anatase. Chem. Mater.1999,11,2089.
    42. Wu, Z. Y.; Ouvrard, G.; Gressier, P.; Natoli, C. R. Ti and O K edges for titanium oxides by multiple scattering calculations:Comparison to XAS and EELS spectra. Phys. ReV. B 1997,55, 10382.
    43. Ghigna, P.; Spinolo, G.; Scavini, M.; Tamburini, A.; Chadwick, A. V. The atomic and electronic structure of cerium substitutional defects in Nd2-xCexCuO4+δ An XAS study. Physica C 1995,253,147.
    44. Wolcyrz, M.; Kepinski, L. Rietveld refinement of the structure of CeOCI formed in Pd/CeO2 catalyst:Notes on the existence of a stabilized tetragonal phase of La2O3 in La-Pd-O system. J. Solid State Chem.1992,99,409.
    45. Hu, Z.; Bertram, S.; Kaindl, G. X-ray-absorption study of PrO2 at high pressure. Phys. ReV. B 1994,49,39.
    46. Nachimuthu, P.; Shih, W. C.; Liu, R. S.; Jang, L. Y; Chen, J. M. The Study of Nanocrystalline Cerium Oxide by X-Ray Absorption Spectroscopy. J. Solid State Chem.2000, 149,408.
    47. O. Carp a, C.L. Huisman b, A. Reller b. Photoinduced reactivity of titanium dioxide. Prog. Solid State Chem.2004,32,33.
    48. C. Gennequin, M. Lamallem, R. Cousin*, S. Siffert, F. ATssi, A. Aboukais. Catalytic oxidation of VOCs on Au/Ce-Ti-O. Catal. Today.2007,122,301.
    49. Noriyoshi Kakuta, Satoshi Ikawa, Takeshi Eguchi, Keisuke Murakami,Hironobu Ohkita, Takanori Mizushima. Oxidation behavior of reduced (CeO2)1-x-(ZrO2)x (x= 0,0.2,0.5) catalysts. J. Alloys. Compd.2006,408-412,1078.
    50. ZHU Huaqing QIN Zhangfeng,WANG Jianguo. CeO2-TiO2'混合氧化物及Pd/CeO2-TiO2催化剂的氧化还原性能.Chin. J. Catal.26, No.5
    51. Hajime Iida, Akira Igarashi Characterization of a Pt/TiO2 (rutile) catalyst for water gas shift reaction at low-temperature. Appl. Catal. A:General.2006,298,152. 52. I.D. Gonzalez, R.M. Navarro, M.C. Alvarez-Galvana, F. Rosa, J.L.G. Fierro. Performance enhancement in the water-gas shift reaction of platinum deposited over a cerium-modified TiO2 support. Catal. Commun.2008,9,1759. 53. Pengfei Ji, Jinlong Zhang, Feng Chen, Masakazu Anpo. Study of adsorption and degradation of acid orange 7 on the surface of CeO2 under visible light irradiation. Appl. Catal. B: Environmental.2009,85,148. 54. A.P. Toor, A. Verma, C.K. Jotshi, P.K. Bajpai, V. Singh. Photocatalytic degradation of Direct Yellow 12 dye using UV/TiO2 in a shallow pond slurry reactor. Dyes Pigments.2006,68,53. 55. Giles CH, D'Silva AP, Easton IA. A general treatment and classification of the solute adsorption isotherm part. Ⅱ. Experimental interpretation. J Colloid Interf Sci.1974,47,766.
    1. R.Asahi, T.Morikawa, T.Ohwaki, K.Aoki, Y.Taga. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science 2001,293:269
    2. Irie H, Watanabe Y, Hashimoto K. Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO2-xNx Powders. J. Phys. Chem. B,2003,107:5483
    3. Diwald O, Thompson T L, Zubkov T, et al. Photochemical Activity of Nitrogen-Doped Rutile TiO (110) in Visible Light. J. Phys. Chem. B.2004,108:6004
    4. Diwald O, Thompson T L, Goralski E G, et al. The Effect of Nitrogen Ion Implantation on the Photoactivity of TiO2 Rutile SingleCrystals. J. Phys. Chem. B.2004,108:52
    5. Yin S, Yamaki H, Komatsu M, et al. Preparation of nitrogen-doped titania with high visible light induced photocatalytic activity by mechanochemical reaction of titania and hexamethylenetetramine.J. Mater. Chem.2003,13:2996
    6. Sano T, Negishi N, Koike K, et al. Preparation of a visible light-responsive photocatalyst from a complex of Ti4+ with a nitrogen-containing ligand. J. Mater. Chem.2004,14:380
    7. Gole J L, Stout J D, Burda C, et al. Highly Efficient Formation of Visible Light Tunable TiO2-xNx Photocatalysts and Their Transformation at the Nanoscale. J. Phys. Chem. B.2004,108: 1230.
    8. Ihara T, Miyoshi M, Iriyama Y, et al. Visible-light-active titanium oxide photocatalyst realized by an oxygen-defcient structure and by nitrogen doping. Appl. Catal. B:Environ.2003,42:403
    9. Burda C, Lou Y, Chen X, et al. Enhanced Nitrogen Doping in TiO2 Nanoparticles. Nano. Lett. 2003,3:1049.
    10. Kasahara A, Nukumizu K, Takata T, et al. LaTiO2N as a Visible-Light (≤600nm)-Driven Photocatalyst(2) J. Phys. Chem. B.2003,107:791.
    11. Kasahara A, Nukumizu K, Hitoki G, et al. Photoreactions on LaTiO2N under Visible Light Irradiation. J. Phys. Chem. A.2002,106:6750.
    12. Sato S. Photocatalytic activity of NOx-doped TiO2 in the visible light region. Chem. Phys. Lett. 1986,123:126.
    13. Wang, X. F.; Andrews, L. Infrared Spectra and Structures for Group 4 Dihydroxide and Tetrahydroxide Molecules. J. Phys. Chem. A 2005,109,10689.
    14. Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T. Physical and Biophysical Chemistry Division Commission on Colloid and Surface Chemistry including Catalysis. Pure Appl. Chem.1985,57,603.
    15. Kumar, K. N. P.; Kumar, J.; Keizer, K. Effect of Peptization on Densification and Phase-Transformaiton Behavior of Sol-Gel-Derived Nanostructured Titania. J. Am. Ceram. Soc. 1994,77,1396.
    16. Liu, G.; Chen, Z.; Dong, C.; Zhao, Y.; Li, F.; Lu, G. Q.; Cheng, H.-M. Visible Light Photocatalyst:Iodine-Doped Mesoporous Titania with a Bicrystalline Framework. J. Phys. Chem. B 2006,110,20823.
    17. Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D. Handbook of X-ray Photoelectron Spectroscopy; Perkin-Elmer Corporation:Eden Prairie, MN,1992.
    18. Gu, D. E.; Lu, Y.; Yang, B. C.; Hu, Y. D. Facile preparation of micro-mesoporous carbon-doped TiO2 photocatalysts with anatase crystalline walls under template-free condition. Chem. Commun.2008,2453
    19. Saha N C. Tompkins H G. Titanium nitride oxidation chemistry:An x-ray photoelectron spectroscopy study. J. Appl. Phys.1992,72,3072
    20. Chen X. Burda,C. Photoelectron Spectroscopic Investigation of Nitrogen-Doped Titania Nanoparticles J. Phys. Chem. B.2004,108,15446
    21. Rodriguez, J. A.; Jirsak, T.; Hrbek, J.; Dvorak, J.; Maiti, A. Chemistry of NO2 on Oxide Surfaces:Formation of NO3 on TiO2 (110) and NO2(?)O Vacancy Interactions. J. Am. Chem. Soc. 2001,123,9597.
    22. Sakthivel, S.; Janczarek, M.; Kisch, H. Visible Light Activity and Photoelectrochemical Properties of Nitrogen-Doped TiO2. J. Phys. Chem. B 2004,108,19384.
    23. Fang, J.; Bao, H. Z.; He, B.; Wang, F.; Si, D. J.; Jiang, Z. Q.; Pai, Z. Y.; Wei, S. Q.; Huang, W. X. Interfacial and Surface Structures of CeO2-TiO2 Mixed Oxides. J. Phys. Chem. C 2007,111, 19078.
    24.卜晶,硕士毕业论文,中国科学技术大学,2009.
    1. Hino, M.; Kobayashi, S. and Arata, K. Solid catalyst treated with anion.2. Reactions of butane and isobutane catalyzed by zirconium oxide treated with sulfate ion. Solid superacid catalyst. Journal of American Chemical Society,1979,101(21),6439.
    2. Fu, X. Z.; Zeltner W. A.; Yang, Q et al. Catalytic Hydrolysis of Dichlorodifluoromethane (CFC-12) on Sol-Gel-Derived Titania Unmodified and Modified with H2SO4. Journal of Catalysis, 1997,168,482
    3. Cheung T-K; Gates, B. C. Strong solid-acid catalysts for paraffin conversions Chemtech. 1997,27(9),28
    4. Misono, M., Okuhara, T. Solid superacid catalysts. Chemtech,1993,23(11),23
    5. Xie, C; Xu, Z. L.; Yang, Q. J. et al. Comparative studies of heterogeneous photocatalytic oxidation of heptane and toluene on pure titania, titania-silica mixed oxides and sulfated titania. Journal of Molecular Catalysis A,2004,217,193
    6. Colon, G; Hidalgo, M. C.; Navio, J. A. Photocatalytic behaviour of sulphated TiO2 for phenol degradation. Applied Catalysis B:Environmental,2003,45,39
    7. Santosh, K; Priyabrat, M; Kulamani, P. Physico-chemical characterisation and photocatalytic activity of nanosized SO42-/TiO2 towards degradation of 4-nitrophenol. Journal of Molecular Catalysis A:Chemical,2003,198,277
    8. Muggli, D. S.; Ding, L. F. Photocatalytic performance of sulfated TiO2 and Degussa P-25 TiO2 during oxidation of organics. Applied Catalysis B:Environmental,2001,32,181.
    9. 陈旬,王绪绪,林花香等,固体超强酸高效光催化剂的中试生产工艺研究.福建化工,2002, (4),1
    10. Yu, Y. H.; Wang, L. Y.; Zhang, Q.; Zheng, S. J.; Li, X. J.; Huang, C. Correlation between photoreactivity and photophysics of sulfated TiO2 photocatalyst. Mater. Chem. Phys.2005,92, 470
    11. Wang, X.C.; Yu, J.C.; Hou, YD.; Fu, X.Z. Three-Dimensionally Ordered Mesoporous Molecular-Sieve Films as Solid Superacid Photocatalysts. Adv. Mater.2005,107,99.
    12. Nakajima, A.; Obata, H.; Kameshima, Y.; Okada, K. Photocatalytic destruction of gaseous toluene by sulfated TiO2 powder. Catal. Commun.2005,6,716.
    13. Yang, Q.J.; Xie, C.; Xu, Z.L.; Gao, Z.M.; Du, Y.G. Synthesis of Highly Active Sulfate-Promoted Rutile Titania Nanoparticles with a Response to Visible Light. J. Phys. Chem. B 2005,109,5554.
    14. Zhang, Q.H.; Gao, L. Preparation of Nanocrystalline Titanium Oxide by Decomposition of Molecular Precursor a-(NH4)2TiO(S04)2. Chem. Lett.2003,32,460.
    15. Zhang, Q.H.; Gao, L. One-step preparation of size-defined aggregates of TiO2 nanocrystals with tuning of their phase and composition. J. Euro. Ceram. Soc.2006,26,1535.
    16. Bastow, J.T.; Withfield, H.J.47,49Ti NMR:Evolution of Crystalline TiO2 from the Gel State. Chem. Mater.1999,11,3518.
    17. Moulder, T.F.; Stickle, W.F.; Sobol, P.E.; Bomben, K.D. Handbook of X-ray Photoelectron Spectroscopy; Perkin Elmer:Eden Prairie, Minnesota,1992.
    18. Fang, J.; Bi, X.Z.; Si, D.J.; Jiang, Z.Q.; Huang, W.X. Spectroscopic studies of interfacial structures of CeO2-TiO2 mixed oxides. Appl. Surf. Sci.2007,253,8952.
    19. Gu, D.E.; Lu, Y.; Yang, B.C.; Hu, YD. Facile preparation of micro-mesoporous carbon-doped TiO2 photocatalysts with anatase crystalline walls under template-free condition. Chem. Commun.2008,2453.
    20. Fang, J.; Wang, F.; Qian, K.; Bao, H.Z.; Jiang, Z.Q.; Huang, W.X. Bifunctional N-Doped Mesoporous TiO2 Photocatalysts. J. Phys. Chem. C 2008,112,18150.
    21. Ohno, T.; Akiyoshi, M.; Umebayashi, M.; Asai, K.; Mitsui, T.; Matsamura, M. Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light. Appl. Catal. A 2004,265,115.
    22. Rengifo-Herrera, J.A.; Mielczarski, E.; Mielczarski, J.; Castillo, N.C.; Kiwi, J.; Pulgarin, C. Escherichia coli inactivation by N, S co-doped commercial TiO2 powders under UV and visible light. Appl. Catal. B 2008,84,448.
    23. Sakthivel, S.; Janczarek, M.; Kisch, H. Visible Light Activity and Photoelectrochemical Properties of Nitrogen-Doped TiO2. J. Phys. Chem. B 2004,108,19384.
    24. Crocker, H.; Herold, R.H.M.; Wilson, A.E.; Mackay, M.; Emeis, C.A.; Hoogemdoorn, A.M. 1H NMR spectroscopy of titania. Chemical shift assignments for hydroxy groups in crystalline and amorphous forms of TiO2. J. Chem. Soc. Faraday Trans.1996,92,2791.
    25. Yang, J.; Zhang, M.J.; Deng, F.; Luo, Q.; Yi, D.L.; Ye, C.H. Solid state NMR study of acid sites formed by adsorption of SO3 onto γ-A12O3. Chem. Commun.2003,884.
    26. Zhang, H.L.; Yu, H.G.; Zhang, A.M.; Li, S.H.; Shen, W.L.; Deng, F. Reactivity Enhancement of 2-Propanol Photocatalysis on SO42-/TiO2:Insights from Solid-State NMR Spectroscopy. Environ. Sci. Technol.2008,42,5316.
    27. Chary, K.V.R.; Bhaskar, T.; Seela, K.K.; Lakshmi, K.S.; Reddy, K.R. Characterization and reactivity of molybdenum oxide catalysts supported on anatase and rutile polymorphs of titania. Appl. Catal. A 2001,208,291.
    28. Vinodgopal, K.; Wynkoop, D.E.; Kamat, P.V. Environmental Photochemistry on Semiconductor Surfaces:Photosensitized Degradation of a Textile Azo Dye, Acid Orange 7, on TiO2 Particles Using Visible Light. Environ. Sci. Technol.1996,30,1660.
    29. Nasr, C.; Vinodgopal, K.; Fisher, L.; Hotchandani, S.; Chattopadhyay, A.K.; Kamat, P.V. Environmental Photochemistry on Semiconductor Surfaces. Visible Light Induced Degradation of a Textile Diazo Dye, Naphthol Blue Black, on TiO2 Nanoparticles. J. Phys. Chem.1996,100, 8436.
    30. Yan, X.L.; Ohno, T.; Nishijima, K.; Abe, R.; Ohtani, B. Is methylene blue an appropriate substrate for a photocatalytic activity test? A study with visible-light responsive titania. Chem. Phys. Lett.2006,429,606.
    31. Yang, Q.H.; Kapoor, M.P.; Inagaki, S.; Shirokura, N.; Kondo, J.N.; Domen, K. Catalytic application of sulfonic acid functionalized mesoporous benzene-silica with crystal-like pore wall structure in esterification. J. Mol. Catal. A 2005,230,85.
    32. Liu, J.; Yang, Q.H.; Kapoor, M.P.; Setoyama, N.; Inagaki, S.; Yang, J.; Zhang, L. Structural Relation Properties of Hydrothermally Stable Functionalized Mesoporous Organosilicas and Catalysis. J. Phys. Chem. B 2005,109,12250.
    33. Li, C.G.; Liu, J.; Zhang, L.; Yang, J.; Yang, Q.H. Mesoporous organosilicas containing disulfide moiety:Synthesis and generation of sulfonic acid functionality through chemical transformation in the pore wall. Micropor. Mesopor. Mater.2008,113,333.
    34. Robinson, W.R.A.M; Veen, J.A.R; Beer, V.H.J.; Santen R.A. Development of deep hydrodesulfurization catalysts:II. NiW, Pt and Pd catalysts tested with (substituted) dibenzothiophene. Fuel Process. Technol.1999,61,103.
    35. Stohr, J; Gland, J. L.; Kollin, E. B. Desulfurization and Structural Transformation of Thiophene on the Pt(111) Surface. Phys. Rev. Lett. 1984,53,2161.
    36. Kawai, T.; Sakata, T. Photocatalytic hydrogen production from liquid methanol and water. J.Chem. Soc. Chem. Commun.1980,15,694.
    37. Sreethawong, T; Laehsalee, S; Chavadej, S. Use of Pt/N-doped mesoporous-assembled nanocrystalline TiO2 for photocatalytic H2 production under visible light irradiation. Catal. Commun.2009,10,538.
    38. Ashokkumar, M. An overview on semiconductor particulate systems for photoproduction of hydrogen. Int. J. Hydrogen. Energ.1998,23,427.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700