用户名: 密码: 验证码:
压缩感知在图像处理中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着压缩感知理论研究工作的深入,压缩感知在信号和图像处理领域已引起众多研究者的关注。理论已经证明自然图像本身具有稀疏的表示特性,符合人类所接触的很多信号和图像的处理。随着稀疏表示算法的不断完善,特别是学习字典理论提出之后,近年来,压缩感知理论已被大量应用到信号和图像处理的各个领域。
     本文基于压缩感知理论,围绕图像识别和图像超分辨率重建问题,重点研究了如何构造更高鲁棒性和更少计算复杂度的分类识别算法,以及如何构造冗余字典更有效地重建超分辨率图像。主要工作如下:
     1)研究基于压缩感知的图像识别算法,阐述基于稀疏表示的SRC(Sparse Representation-based Classification)方法理论框架,由于SRC方法利用L1范数最小化算法求解稀疏表示系数在计算复杂度上过高,采用计算复杂度较低的OMP(Orthogonal Matching Pursuit,正交匹配追踪)算法对SRC方法进行改进。
     2)针对SRC方法在低维情况下识别率较低,提出基于类别信息的SRC识别方法,人脸识别和空间目标识别实验表明,该方法在低维情况下提高了识别率且具有较强的抗噪声能力。
     3)研究基于稀疏表示的图像重建算法,将其应用到YCbCr、RGB彩色图像模型来进行超分辨率重建,并与经典的如最近二次插值、三次插值、邻域插值和小波与局部适应插值等方法进行分析比较,实验结果表明相对于经典方法,基于稀疏表示的图像重建算法对灰度和彩色图像的重建效果优势明显。
The further research of the Compressed Sensing(CS) theory draws many researchers attention in signal and image processing area. Natural images are proven has the feature of Sparse Representation, which accord with much signal and image processing work people usually contact. As the improving of Sparse Representation algorithms, especially after put forward of learning dictionary theory, the CS theory has been applied to signal and image processing fields.
     Based on the CS theory, and centered on image recognition and super resolution reconstruction of images, this thesis focuses on how to construct a classification recognition algorithm with high robust and low computational complexity, and how to construct overcomplete dictionary to build super-resolution image more effectively.
     The main works are described as follows:
     1) Based on Sparse Representation, SRC (Sparse Representation-based Classification) theory framework is stated in details. Due to the high computational complexity in using the L1 norm minimize algorithm to get the Sparse Representation coefficient of SRC methods. We propose an OMP (Orthogonal Matching Pursuit) algorithm with lower computational complexity to improve SRC method.
     2) For the problem of the low recognition rate of SRC method in under low dimensional case, a new SRC recognition method based on the categories information is presented. Face recognition and space target recognition experiment shows that this method improves recognition rate under low dimension case and has strong anti-noise ability.
     3) Based on Sparse Representation, image reconstruction algorithm is stated to reconstruct super-resolution by using YCbCr or RGB color image model, and also contrasted to traditional methods such as nearest neighbor interpolation, wavelet interpolation and etc, and the experience result shows that image reconstruction algorithm based on Sparse Representation has obvious advantages compared with traditional method on reconstruction of grey level and color images.
引文
[1] D. L. Donoho. Compressed sensing[J]. IEEE Trans. on Information Theory. 2006, 52(4): 1289-1306.
    [2] B. Kashin. The widths of certain finite dimensional sets and classes of smooth functions[J]. Izv Akad Nauk SSSR. 1977, 41(2): 334-351.
    [3] E. J. Candès, J. Romberg, T. Tao. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Trans. on Information Theory, 2006, 52(2): 489-509.
    [4] H. Rauhut, K. Schass, P. Vandergheynst. Compressed sensing and redundant dictionaries[J]. IEEE Trans. on Information Theory. 2008, 54(5): 2210-2219.
    [5] R. Baraniuk, P. Steeghs, Compressive radar imaging[C]. IEEE Radar Conference, 2007, 128-133.
    [6] M. Duarte, M. Davenport, D. Takbar, et al. Single-pixel imaging via compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 82-91.
    [7] M. Sheikh, O. Milenkovic, R. Baraniuk. Designing compressive sensing DNA microarrays[C]. IEEE Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2007, 141-144.
    [8] S. Kirolos, J. Laska, M. Wakin, et al. Analog-to-information conversion via random demodulation[C]. Proceedings of the IEEE Dallas Circuits and Systems Workshop. 2006, 71-74.
    [9] J. Laska, S. Kirolos, Y. Massoud etc. Random sampling for analog-to-information conversion of wideband signals[C]. Proceedings of the IEEE Dallas Circuits and Systems Workshop. 2006, 119-122.
    [10] P. Borgnat, P. Flandrin. Time-frequency localization from sparsity constraints[C]. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing. Piscataway: Institute of Electrical and Electronics Engineers Inc. 2008, 3785-3788.
    [11] R. Willett, M. Gehm, D. Brady. Multiscale reconstruction for computational spectral imaging[C]. Proceedings of SPIE-IS and T Electronic Imaging-Computational Imaging. 2007.
    [12] J. W. Ma, F. X. L. Dimet. Deblurring from highly incomplete measurements for remote sensing[C]. IEEE Trans. on Geoscience and Remote Sensing. 2009, 3(47): 792-802.
    [13] M. Lustig, D. L. Donoho, J. M. Pauly. Sparse MRI: The application of compressedsensing for rapid MR imaging[J]. Magnetic Resonance in Medicine. 2007, 58(6): 1182-1195.
    [14] W. Bajwa, J. Haupt, A. Sayeed, et al. Compressive wireless sensing[C]. International Conference on Information Processing in Sensor Networks. 2006, 134-142.
    [15] G. Quer, R. Masiero, D. Munaretto, et al. On the Interplay Between Routing and Signal Representation for Compressive Sensing in Wireless Sensor Networks[C]. Information Theory and Applications Workshop. 2009,1-10.
    [16] W. Bajwa, J. Haupt, A. Sayeed, et al. Compressive wireless sensing[C]. Proceedings of the fifth International Conference on Information Processing in Sensor Networks. 2006, 134-142.
    [17] E. J. Candès, T. Tao. Decoding by linear programming[J]. IEEE Trans. on Information Theory. 2005, 51(12): 4203-4215.
    [18] E. J. Candès, M Rudelson, T Tao. Error correction via linear programming[OL]. http://www.math.ucla.edu/~tao/preprints/FOCS05.pdf.
    [19] M. Rudelson, R. Vershynin. Geometric approach to error correcting codes and reconstruction of signals. International Mathematical Research Notices. 2005, 64: 4019-4041.
    [20] D. Shamsi, P. Boufounos, F. Koushanfar. Noninvasive leakage power tomography of integrated circuits by compressive sensing[C]. Proceeding of the thirteenth International Symposium on Low Power Electronics and Design, 2008.
    [21] J. Bobin, J. Starck, R. Ottensamer. Compressed sensing in astronomy[J]. Applied Mathematics and Computation. 2008, 206 (2): 980-988
    [22] D. H. Liu, G. M. Shi, D. H. Gao. A new method for signal sparse decomposition[C]. International Symposium on Intelligent Signal Processing and Communications Systems. 2007, 45-48.
    [23] G. M. Shi, J. Lin, X. Y. Chen, F. Qi, et al. UWB Echo Signal Detection With Ultra-Low Rate Sampling Based on Compressed Sensing[J]. IEEE Trans. on Circuits and Systems II. 2008, 55(4): 379-383.
    [24] L. J. Wang, X. L. Wu, G. M. Shi. A Compressive Sensing Approach of Multiple Descriptions for Network Multimedia Communication[C]. IEEE 10th International Workshop on Multimedia Signal Processing. 2008: 445-449.
    [25]石光明,刘丹华,高大化等.压缩感知理论及其研究进展[J].电子学报. 2009, 37(5): 1070-1081.
    [26]刘丹华,石光明,周佳社等.基于Compressed Sensing框架的图像多描述编码方法[J].红外与毫米波学报. 2009, 28(4): 298-302.
    [27] Y. Zhang, S. Mei, Q. Chen, et al. A novel image/video coding method based on compressed sensing theory[C]. IEEE International Conference on Acoustics, Speech, and Signal Processing, 2008, 1361-1364.
    [28]尹忠科,解梅,王建英.基于稀疏分解的图像去噪[J].电子科技大学学报, 2006, 35(6): 876-878.
    [29]傅霆,尧德中.稀疏分解的加权迭代方法及其初步应用[J].电子学报, 2004, 32(4): 567-570.
    [30]李小波.基于压缩感知的测量矩阵研究[硕士论文].北京:北京交通大学. 2010.
    [31]乔雅莉.基于稀疏表示的图像去噪算法研究[硕士论文].北京:北京交通大学. 2009.
    [32]高睿.基于压缩传感的匹配追踪重建算法研究[硕士论文].北京:北京交通大学. 2009.
    [33]周灿梅.基于压缩感知的信号重建算法研究[硕士论文].北京:北京交通大学. 2010.
    [34] D. Takhar, V. Bansal, M. Wakin, et al. A compressed sensing camera: New theory and an implementation using digital micromirrors[J]. SPIE Electronic Imaging: Computational Imaging. 2006.
    [35] M. Duarte, M. Davenport, D. Takbar, et al. Single-pixel imaging via compressive sampling[J]. IEEE Signal Processing Magazine. 2008, 25(2): 82-91.
    [36] J. Trzasko, A. Manduca. Highly undersampled magnetic resonance image reconstruction via homotopic ell-0 minimization[J]. IEEE Trans. on Medical Imaging. 2009, 28(1): 106-121.
    [37] Multiple Optical Non-Redundant Aperture Generalized Sensors[OL]. http://www.disp.duke.edu/history/archives/imaging/
    [38]刘吉英.压缩感知理论及在成像中的应用[博士论文].长沙:国防科学技术大学. 2010.
    [39] J. Wright J, A. Yang A, A. Ganesh, et al. Robust face recognition via sparse representation[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence (PAMI). 2009, 31(2):210-227.
    [40]高敏.基于CS的SAR目标识别[硕士论文].西安:西安电子科技大学. 2010.
    [41]曹凤杰.红外人脸识别方法研究[硕士论文].西安:西安电子科技大学. 2010.
    [42] Huang J, Huang X, Metaxas D. Simultaneous image transformation and sparse representation recovery[C]. IEEE Conference on Computer Vision and Pattern Recognition. 2010, 1-8.
    [43] Wagner A, Wright J, Ganesh A, et al. Towards a Practical Face Recognition System: Robust Registration and Illumination via Sparse Representation[J]. IEEE Conference on Computer Vision and Pattern Recognition. 2009, 597-604.
    [44]平强.压缩感知人脸识别[硕士论文].合肥:中国科学技术大学. 2011.
    [45] J. Yang, J. Wright, T. Huang, et al. Image super-resolution via sparse representation[J]. IEEE Trans. on Image Processing. 2010, 19 (11): 2861-2873.
    [46] S. Mallat, G. Yu. Super-resolution with sparse mixing estimators [J]. IEEE Transaction on Image Processing, 2010, 19(1): 2889-2900.
    [47] J. Wang, S. Zhu, Y. Gong. Resolution enhancement based on learning the sparse association of image patches[J]. Pattern Recognition Letters. 2010, 31(1): 1-10.
    [48]张伟.基于稀疏表示的图像超分辨率重构算法研究[硕士论文].燕山:燕山大学,2011.
    [49]宋慧慧.基于稀疏表示的图像超分辨率重建算法研究[硕士论文].合肥:中国科学技术大学, 2011.
    [50]李民.基于稀疏表示的超分辨率重建和图像修复研究[博士论文].成都:电子科技大学, 2011.
    [51]刘丹华.信号稀疏分解及压缩感知理论应用研究[博士论文].西安:西安电子科技大学. 2009.
    [52] E. J. Candès. Ridgelets: Theory and Applications[M]. USA: Department of Statistics. Stanford University, 1998.
    [53] E. J. Candès, D. L. Donoho. Curvelets[M]. USA: Department of Statistics. Stanford University. 1999.
    [54] E. L. Pennec, S. Mallat. Image compression with geometrical wavelets[C]. Proc. of IEEE International Conference on Image Processing. 2000, 1: 661-664.
    [55] M. N. Do, M. Vetterli. Contourlets: A new directional multiresolution image representation[C]. Conference Record of the Asilomar Conference on Signals, Systems and Computers. 2002, 1: 497-501.
    [56] E. J. Candès and T Tao. Near optimal signal recovery from random projections: Universal encoding strategies?[J]. IEEE Trans. on Information Theory. 2006, 52(12): 5406-5425.
    [57] G. Peyré. Best Basis Compressed Sensing[J]. Lecture Notes in Computer Science. 2007, 4485: 80-91.
    [58]张春梅,尹忠科,肖明霞.基于过完备字典的信号过完备表示与稀疏分解[J].科学通报. 2006, 51 (6): 628- 633.
    [59] V. Temlyakov. Nonlinear Methods of Approximation[R]. IMI Research Reports,Dept of Mathematics, University of South Carolina. 2001, 01- 09.
    [60] S. Mallat, Z. Zhang. Matching pursuits with time-frequency dictionaries[J]. IEEE Trans. on Signal Processing. 1993, 41(12): 3397-3415.
    [61] D. L. Donoho, X. Huo. Uncertainty principles and ideal atomic decompositions[J]. IEEE Trans. Inform Theory. 2001, 47(7): 2845-2862.
    [62] M. Elad, A. M. Bruckstein. A generalized uncertainty principle and sparse representation in pairs of bases[J]. IEEE Trans. on Information Theory. 2002, 48(9): 2558-2567.
    [63] A. Feuer, A. Nemirovsky. On sparse representation in pairs of bases[J]. IEEE Trans. on Information Theory. 2003, 49(6): 1579-1581.
    [64] J. A. Tropp. Greed Is Good: Algorithmic Results for Sparse Approximation[J]. IEEE Trans. on Information Theory. 2004, 50(10): 2231-2242.
    [65] R. Gribonval, M. Nielsen. Sparse decompositions in unions of bases[J]. IEEE Trans. on Information Theory. 2003, 49 (12): 3320-3325.
    [66] R. Neff, A. Zakhor. Very low bit rate video coding based on matching pursuits[J]. IEEE Trans. on Circuits and Systems for Video Technology. 1997, 7(1): 158-171.
    [67] S. S. Chen, D. L. Donoho, M. A. Saunders. Atomic decomposition by basis pursuit. SIAM Review. 2001, 43(1): 129-159.
    [68] J. A. Tropp, A. Gilbert. Signal Recovery from Partial Information by Orthogonal Matching Pursuit[J]. IEEE Trans. on Information Theory. 2007, 53(12): 4655-4666.
    [69] S. Mallat著.杨力华,戴道清等译.信号处理的小波导引(第二版)[M].北京:机械工业出版社. 2002.
    [70] C. La, M. N. Do. Signal reconstruction using sparse tree representation[C]. Proceedings of SPIE. San Diego, CA, United States: International Society for Optical Engineering. 2005, 5914: 1-11.
    [71] D. L. Donoho, Y. Tsaig, I. Drori, et al. Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit[R]. Technical Report. 2006.
    [72] R. Baraniuk. A Lecture on Compressive Sensing[J]. IEEE Signal Processing Magazine. 2007, 24(4): 118-121.
    [73] E. J. Candès. The restricted isometry property and its implications for compressed sensing[J]. Acadèmie des sciences. 2006, 346(1): 598-592.
    [74] E. J. Candès, J. Romberg, T. Tao. Stable signal recovery from incomplete and inaccurate measurements[J]. Communications on Pure and Applied Mathematics. 2006, 59(8): 1207-1223.
    [75] D. L. Donoho, Y. Tsaig, I. Drori etc. Sparse solution of underdetermined linearequations by stagewise orthogonal matching pursuit[R]. Technical Report. 2006.
    [76] E. T. Hale, W. Yin, Y. Zhang. A Fixed-point continuation method for L1-regularization with application to compressed sensing[R]. SIAM Journal on Optimization.
    [77] G. Cormode and S Muthukrishnan. Towards an algorithmic theory of compressed sensing[R]. DIMACS Tech. Report. 2005.
    [78] A. C. Gilbert, M. J. Strauss, J Tropp, et al. Algorithmic linear dimension reduction in the L1-norm for sparse vectors[OL]. http://dsp.rice.edu/files/cs/allerton 2006GSTV.pdf.
    [79] D. Needell, R. Vershynin. Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit[OL]. http://www.math.ucdavis.edu/%7Evershynin/ papers/ROMP-stability.pdf.
    [80] D. Needell, R. Vershynin. Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit[OL]. http://www.math.ucdavis.edu/~vershynin/papers/ROMP. pdf.
    [81] S. J. Kim, K. Koh, M. Lustig, et al. A method for large-scale L1-regularized least-squares[J]. IEEE Journal on Selected Topics in Signal Processing. 2007, 4(1): 606-617.
    [82] M. A. T. Figueiredo, R. D. Nowak, S. J. Wright. Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems[J]. Journal of Selected Topics in Signal Processing: Special Issue on Convex Optimization Methods for Signal Processing. 2007, 1(4): 586-598.
    [83] I. Daubechies, M.Defrise, C. D. Mol. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[J]. Comm. Pure Appl. Math. 2004, 57(11): 1413-1457.
    [84] A. C. Gilbert, S. Guha, P. Indyk, et al. Near-optimal sparse Fourier representations via sampling[C]. Proceedings of the Annual ACM Symposium on Theory of Computing. Montreal, Que., Canada: Association for Computing Machinery. 2002, 152-161.
    [85] A. C. Gilbert, S. Muthukrishnan, M J Strauss. Improved time bounds for near-optimal sparse Fourier representation[C]. Proceedings of SPIE, Wavelets XI. Bellingham WA: International Society for Optical Engineering. 2005, 5914: 1-15.
    [86] A. Gilbert, M. Strauss, J. Tropp, et al. One sketch for all: Fast algorithms for compressed sensing[C]. Proceedings of the 39th Annual ACM Symposium on Theory of Computing. 2007, 237-246.
    [87]刘亚新.用于压缩感知信号重建的算法研究[硕士论文].北京:北京交通大学.2010.
    [88] E. J. Candès, J. Romberg. Sparsity and incoherence in compressive sampling[J]. Inverse Problems. 2007, 23(3): 969-985.
    [89] D. L.Donoho,M.Elad, V Temlyakov. Stable recovery of sparse overcomplete representations in the presence of noise[J]. IEEE Trans. on Information Theory. 2006, 52(1): 6-18.
    [90] S. Kim, K.Koh, M.Lustig, et al. An interior-point method for large-scale L1regularized least squares[J]. IEEE Journal of Selected Topics in Signal Processing. 2007, 1(4): 606-617.
    [91] S.Boyd,L. Vandenberghe. Convex optimization[M]. Cambridge,UK:Cambridge University Press: 2004.
    [92] M. A. T. Fiqueiredo,R. D. Nowak, S. J.Wright. Gradient projection for sparse reconstruction:Application to compressed sensing and other inverse problems[J]. IEEE Journal of Selected Topics in Signal Processing. 2007, 1(4): 586-598.
    [93] D. L.Donoho,Y. Tsaig. Fast solution of L1-norm minimization problems when the solution may be sparse[R]. Technical Report, Department of Statistics,Stanford University, USA. 2008.
    [94] E. J. Candès,N.Braun, M.B.Wakin. Sparse signal and image recovery from compressive samples[C]. Proceedings of the 4th IEEE International Symposium on Biomedical Imaging. 2007, 976-979.
    [95]李小波.基于压缩感知的测量矩阵研究[硕士论文].北京:北京交通大学. 2010.
    [96]许鹏.基于图像序列的目标识别研究[硕士论文].上海:上海交通大学. 2010.
    [97] J. A. Parker, R. Kenyon, D. E. VTroxel. Comparison of interpolating methods for image resampling[J]. IEEE Trans. on Medical Imaging.1983, 2(1): 31-39.
    [98] S. Battiato, G. Gallo, F. Staneo. A locally adaptive zooming algorithm for digital images[C]. Image and Vision Computing. 2002, 20: 805-812.
    [99] S. Battiato, G. Gallo, F. Stanco. A new edge-adaptive zooming algorithm for digital images[C]. Proceeding of Signal Processing and Communications SPC. 2000, 144-149.
    [100] S. Mallat. A theory for multiresolution in signal decomposition: The wavelet representation[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence (PAMI). 1989, 11(7): 674-683.
    [101] T. Hongjiu, T. Xinjian, L. Jian, et al. Super Resolution Remote Sensing Image Processing Algorithm Based on Wavelet Transform and Interpolation[C].Proceedings of SPIE. 2003, 259-263.
    [102]林红.基于小波和插值的超分辨率图像重建算法研究[硕士论文].西安:西安电子科技大学, 2005.
    [103]付怀正.基于稀疏表示的彩色图像超分辨率重建算法研究[硕士论文].汕头:汕头大学, 2010.
    [104] W. T. Freeman, E. C. PasZtor, O. T. Cartniehael. Leaning low level vision[J]. Computer Vision. 2000.
    [105] Q. Wang, X. Tang, H. Shum. Patch based blind image super resolution[C]. Processing International Conference on Computer Vision. 2005, 1: 709 - 716.
    [106] C. Liu, H. Y. Shum, W. T. Freeman. Face hallucination: theory and Practice[J]. International Journal of Computer Vision. 2007, 1(75): 115-134.
    [107] L. C. Pickup, S. J. Roberts, A. Freeman. A Sampled Texture Prior for Image Super-Resolution[C]. Advances in Neural Information Processing Systems. 2003,1-8.
    [108] H. Chang, D. Y. Yeung, Y. Xiong. Super-resolution through neighbor embedding[C]. IEEE Conference on Computer Vision and Pattern Recognition. 2004, 1: 275–282.
    [109]肖杰雄.基于POCS算法的超分辨率图像重建[硕士论文].上海:上海交通大学, 2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700