用户名: 密码: 验证码:
图像分割若干问题的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
图像分割是图像处理中一个基本而关键的环节,是图像分析和机器视觉研究的基础。虽然,近些年的研究已经取得了一定卓有成效的成果。但是,面对众多的图像分割问题,还是存在着一些有待进一步探讨的地方。本文根据不同的分割特征对图像分割方法进行了较为深入的研究,具体工作如下:
     (1)针对图像的阈值分割问题,提出了一种基于超模糊集的多属性阈值分割算法。将图像分割问题引申到超模糊集中进行解决,利用推广到超模糊集合下的超模糊熵和超模糊相似性的概念,构造综合评价函数,从不同角度刻画分割性能,获得最佳阈值。与传统方法相比,该方法体现了更好分割准确性。
     (2)针对图像的边缘分割问题,提出了一种基于边缘分类与Hopfield网络优化的边缘检测方法。首先利用改进的边缘定义,有效地解决了传统方法对边缘拐点,终点,以及孤立噪声点的误检问题;然后,利用Hopfield网络对所得的初边缘进行优化,通过弥补缺失边缘和消除假边缘达到精确检测的目的。实验证明,这种多阶段的边缘检测方法能够有效地检测出粗细适度的图像边缘。
     (3)提出了基于视觉感知理论和基于交互式分割两种轮廓提取方法。基于视觉感知理论的轮廓提取方法,通过模拟初级视皮层细胞抑制与增强作用,有效地抑制了背景纹理的干扰,增强了具有相同结构神经元的响应,得到了清晰的轮廓;而基于结构张量的随机游走分割算法,则通过提出一种自适应各向异性的结构张量,代替灰度值作为随机游走分割所需的权值,解决了传统随机游走算法,无法体现待分割图像局部结构的问题。两种分割方法都改善了在区域分割过程中,局部结构中背景纹理信息对图像分割的影响。实验表明,两种分割方法都取得了较好的分割效果。
     (4)利用视觉感知理论,将图像的全局特征和局部特征结合,提出一种无监督的显著目标自动识别方法。通过模拟不同尺度、不同朝向的细胞响应,有效地提取到了图像的全局特征。然后,再结合显著目标的自身特性,定义图像的局部特征,进一步确定感兴趣区域的位置。从而准确地检测出图像中的显著目标。
     (5)针对车牌检测过程中的定位问题,提出一种新的解决策略。通过分析我国车牌的特点,算法提出四种车牌特征描述算子,结合数学形态学和自组织映射神经网络,实现车牌的精确定位。实验结果表明,所提定位策略有效地克服了传统单一特征检测方法的不足,针对80幅彩色图像进行测试,总有效率可达96.25%。
Image segmentation is a basic and important problem in image processing, and it is also the foundation of the researches on image analysis and computer vision. Although, some effective algorithms have been proposed in recent years, there are some deficiencies and problems that needed to be improved in most researches. This paper deeply investigates image segmentation according to different segmentation features, and the primary works and remarks are as follows:
     (1) For the threshold segmentation, this paper presents a new threshold segmentation measure based on the multi-properties in ultra-fuzzy set. The algorithm solves the segmentation problem in ultra-fuzzy set, and obtains the optimal threshold by comprehensive assessment function constructed by ultra-fuzzy entropy and ultra-fuzzy similarity, which evaluate performances of the segmentation operation from different aspects. Comparing the ordinary thresholding algorithms, the proposed method embodies better results.
     (2) For the edge detection, we propose a new edge detection algorithm based on edge classification and Hopfield neural network optimization. Firstly, a new edge detector is employed to label the edges, which is improved for overcoming the miss-detection of abrupt and end of the edges, isolated noise. And then, the Hopfield neural net is applied for enhancement of the labeled edges by recovering missing edges and eliminating false edges. In experiments, this algorithm is proved that it can obtain the moderately thick edges for the image.
     (3) This paper also presents two contour extraction algorithms, which are based on visual perception theory and interactive segmentation respectively. The visual perception based model effectively suppresses the interference of the background texture and enhances the response of the neurons with the same configuration, and obtains a clear contour by simulating the inhabitation and enhancement of cells in primary visual cortex. Moreover, the improved random walk algorithm embodies the better structure features of an image by proposing a new adaptive anisotropy structure tensor to replace the intensity to represent the weights in common random walk algorithm. Both of them overcome the interference of local texture information in the segmenting process. The experiments show that two extracting methods can all obtain the desired results.
     (4) Propose an unsupervised algorithm for automatically extracting the salient object by combining the global feature and local feature of the image based on visual perception theory. The method firstly obtains the global feature by simulating the cell responses of different scales and different orientation. And then, define the local feature according to the unique features of the salient object as supplement. So, the salient object in an image can be located exactly.
     (5) To locate the vehicle license palate accurately, a new detecting measure is proposed in this paper. The method presents four feature operators by analyzing the unique features of vehicle license palate to characterize vehicle license palate. And, combine them with morphology and self organizing map neural network to achieve the accurate location. The experiments prove that the proposed measure can overcome the deficiencies of the common locating algorithms, and the total correct recognition rate is 96.25% according to 80 test images.
引文
1.章毓晋.图像分割[M],北京:科学出版社,2001.
    2. Milan Sonka, Vaclav Hlavac, Roger Boyle著,艾海舟,武勃等译.图像处理、分析与机器视觉[M],北京:人民邮电出版社,2003.
    3.罗希平,田捷,诸葛婴.图像分割方法综述[J],模式识别与人工智能,1999,12(3):300-312.
    4. Y. J. Zhang, J. J. Gerbrands. Objective and quantitative segmentation evaluation and comparison[J], Signal Processing,1994, (39):43-54.
    5. A. Abouelela, H. M. Abbas, H. Eldeeb, A. A. Wahdan, S. M. Nassar. Automated vision system for localizing structural defects in textile fabrics[J], Pattern Recognition Letters,2005,26(10):1435-1443.
    6. M. Fiala, A. Basu. Robot navigation using panoramic tracking[J], Pattern Recognition,2004,37(11): 2195-2215.
    7. N. Ohnishi, A. Imiya. Dominant plane detection from optical flow for robot navigation[J], Pattern Recognition Letters,2006,27(9):1009-1021.
    8. A. Tellaeche, X. P. BurgosArtizzu, G. Pajares, A. Ribeiro. A Vision-based Classifier in Precision Agriculture Combining Bayes and Support Vector Machines [C], IEEE International Symposium on WISP 2007.3-5 Oct.2007:1-6.
    9. E. Laemmer, A. Deruyver, M. Sowinska. Watershed and adaptive pyramid for determining the apple's maturity state[C],2002 International Conference on Image Processing.2002,1:22-25.
    10. A. Kim, H. Krim. Hierarchical stochastic modeling of SAR imagery for segmentation/compression[J], IEEE Transactions on Signal Processing,1999,47(2):458-468.
    11. Y. Cao, H. Sun, X. Xu. An unsupervised segmentation method based on MPM for SAR images[J], Geoscience and Remote Sensing Letters,2005,2(1):55-58.
    12. C. H. Fosgate, H. Krim, W. W. Irving, W. C. Karl, A. S. Willsky. Multiscale segmentation and anomaly enhancement of SAR imagery[J], IEEE Transactions on Image Processing,1997,6(1):7-20.
    13. J. A. Noble, D. Boukerroui. Ultrasound image segmentation:a survey[J], IEEE Transactions on Medical Imaging,2006,25(8):987-1010.
    14.严加勇,庄天戈.高强度聚焦超声技术的发展和应用[J],北京生物医学工程,2002,21(4):302-307.
    15. J. H. Xue, P. Aleksandra, P. Wilfried, etc. An integrated method of adaptive enhancement for unsupervised segmentation of MRI brain images[J], Pattern Recognition Letters,2003,24(15): 2549-2560.
    16. C. Gentile, O. Camps, M. Sznaier. Segmentation for robust tracking in the presence of severe occlusion [J], IEEE Transactions on Image Processing,2004,13(2):166-178.
    17. C. C. C. Pang, W. W. L. Lam, N. H. C. Yung. A Method for Vehicle Count in the Presence of Multiple-Vehicle Occlusions in Traffic Images[J], IEEE Transactions on Intelligent Transportation Systems,2007,8(3):441-459.
    18. N. Habili, C. L.Cheng, A. Moini. Segmentation of the face and hands in sign language video sequences using color and motion cues[J], IEEE Transactions on Circuits and Systems for Video Technology,2004,14(8):1086-1097.
    19. T. Taxt, P. J. Flynn, A. K. Jain. Segmentation of document images[J], IEEE Transactions on Pattern Analysis and Machine Intelligence,1989,11(12):1322-1329.
    20. R. Nikhil, K. Sankar. A review on image segmentation techniques [J], Pattern Recognition,1993,26(9): 1277-1294.
    21. R. C. Gonzalez, R. E. Woods著.阮秋琦,阮宇智译.数字图像处理[M],北京:电子工业出版社,2003
    22.荆仁杰.计算机图像处理[M],杭州:浙江大学出版社,1990.
    23.王鹏伟.基于多尺度理论的图像分割方法研究[D],中国科学技术大学,2007.
    24. J.Wiley.模式分类[M],北京:机械工业出版社,2004.
    25. T.Mitchell机器学习[M],北京:机械工业出版社,2003.
    26.吴一全,朱兆达.图像处理中阈值选取方法30年(1962-1992)的进展(一)[J],数据采集与处理,1993,8(3):54-59
    27. C. K. Chow, T. Kaneko. Automatic boundary detection of left ventricle from cineangioograms[J], Computer Biomed Res,1972,5:388-410.
    28. S. D. Yanowitz, A. M. Bruckstein. A new method for image segmentation [J], Computer Vision, Graphics and Image Processing,1989,46:82-95.
    29. N. Otsu, A threshold selection method from gray-level histograms[J], IEEE Transactions on Systems, Man, and Cybernetics,1979,9(1):62-66.
    30. J. N. Kapur, P. K. Sahoo, A. K. C. Wong. A New Method for Gray-level Picture Thresholding Using The Entropy of Histogram [J], Computer Vision, Graphics and Image Processing,1985,29:273-289.
    31.薛景浩,章毓晋,林行刚.图像分割中的交义熵和模糊散度算法[J],电子学报,1999,27(10):131-134.
    32. A. Rosenfeld, M. Thurston, L. Yung. Edge and Curve Detection:Further Experiments [J], IEEE Transactions on Computers,1972, C-21(7):677-715.
    33. S. Morrison, L. M. Linnett. A model based approach to edge detection and parameterisation[C], 1999 Seventh International Conference on Image Processing And Its Applications,1999,201: 202-205.
    34. J. P. Wang. Stochastic relaxation on partitions with connected components and its application to image segmentation[J], IEEE Transactions on PAMI,1998,20(8):619-636.
    35. L. Vincent, P. Soille. Watersheds in Digital Space:An Efficient Algorithm Based on Immersion Simulations[J], IEEE Trans. Pattern Analysis and Machine Intelligence,1991,13(6):583-598.
    36. G.Winkler.图象分析、随机场和动态蒙特卡罗方法[M],北京:世界图书出版公司,1999.
    37.薛景浩,张毓晋,林行刚.二维遗传算法用于图像动态分割[J],自动化学报,2000,26(5):685-689.
    38. E. Y. Kim, S. W. Hwang, S. H. Park, H. J. Kim. Spatiotemporal segmentation using genetic algorithms[J], Pattern Recognition,2001,34(10):2063-2066.
    39.翟艺书,柳晓鸣.基于小波变换和模糊c均值聚类的图像边缘检测[J],大连海事大学学报,2005,31(4):83-86.
    40.张亶,陈刚.基于偏微分方程的图像处理[M],北京:高等教育出版社,2004.
    41. J. K. Romberg, C. Hyeokho, R. G. Baraniuk. Bayesian tree-structured image modeling using wavelet-domain hidden Markov models[J], IEEE Transactions on Image Processing,2001,10(7): 1056-1068.
    42.王保平,基于模糊技术的图像处理方法研究[D],西安电子科技大学,2004.
    43. K. Bart. Fuzzy Engineering[M], Engle wood Cliffs:Prentice Hall,1997.
    44. W. Duch. Uncertainty of data, fuzzy membership functions, and multilayer perceptrons[J], IEEE Transactions on Neural Networks,2005,16(1):10-23.
    45. H. Frigui. MembershipMap:Data Transformation Based on Granulation and Fuzzy Membership Aggregation[J], IEEE Transactions on Fuzzy Systems,2006,14(6):885-896.
    46. D. Z. Silvnao, C. Luigi, L. Stefano. Image thresholding using fuzzy entropies[J], IEEE Trnasactions on System Man and Cbyemreties-Part B,1998,28(1):15-23.
    47. J. T. Orinado, S. Rui. Imgae segmentation by histogram thresholding using fuzzy sets[J], IEEE Trnasactionsons on Image Poreessing.2002,11(12):1457-1465.
    48. Z. Mansuo, M. N. Alna, Y. Hong. A technique of three-level thresholding baesd on Probability Partition and fuzzy 3-Partition[J], IEEE Transactions on Fuzzy System.2001,9(3):469-479.
    49. H. D. Cheng, J. Chen, J. Li. Thresholding selection based on fuzzy c-partition entropy approach[J], Patten Recongition,1998,31(7):857-870.
    50. A. D. Luca and S. Termini. A definition of non probabilistic entropy in the setting of fuzzy set theory[J], Information and Control,1972,20:301-312
    51. W. Xie and S. Bedrosian. An information measure for fuzzy sets[J], IEEE Transactions on systems, man and cybernetics,1984,14(1):151-156.
    52. N. Pal and S. Pal. Higher order fuzzy entropy and hybrid entropy of a fuzzy set[J], Information Sciences,1992,61:211-221.
    53. R. Yager. On the measure of fuzziness and negation. Part Ⅰ:membership in the unit interval[J], International Journal on General systems,1979,5:221-229.
    54.张红蕾,宋建社,张宪伟.基于二维模糊熵的GA在SAR图像分割中的应用[J],计算机工程2007,33(5):158-160.
    55.刘政清,杨华,范彬,同武勤.基于最大模糊熵的红外图像边缘检测算法[J],红外技术,2007,29(1):47-50.
    56.王建军,刘文江,石磊,周世俊.基于凸多项式模糊熵的图象阈值方法[J],控制与决策,2000,15(3):371-374.
    57. T. L. Huntsherger, C. L. Jacobs, R. L. Cannon. Iterative fuzzy image segmentation[J], Pattern Recongition,1985,2(18):131-138.
    58.丁震,胡钟山等.一种适用于灰度图像分割的快速FCM算法[J],模式识别和人l:智能,1997,10(2):133-139.
    59.裴继红,谢维信.直方图模糊约束FCM聚类自适应多闽值图像分割算法[J],电子学报,1999,27(10):38-42.
    60.王磊,戚飞虎.图像分割的自适应FKCN方法[J],电子学报,2000,28(2):4-6.
    61.刘健庄.基于二维直方图的图象模糊聚类分割方法[J],电子学报,1992,20(9):40-46.
    62. M. M. Trivedi, J. C. Bezdek. Low-level segmentation of aerial image with fuzzy clustering[J], IEEE Transactions on SMC,1986,16(4):589-598.
    63.田捷,韩博闻等.模糊C-均值聚类算法在医学图像分析中的应用[J],软件学报,2001,12(11):1623-1628.
    64.宋锦萍,职占江.图像分割方法研究[J],现代电子技术,2006,6:59-64.
    65.许锋,卢建刚,孙优贤.神经网络在图像处理中的应用[J],信息与控制,2003,32(4):344-351.
    66. D. Culibrk, O. Marques, D. Socek, H. Kalva, B. Furht. Neural Network Approach to Background Modeling for Video Object Segmentation [J], IEEE Transactions on Neural Networks,2007,18(6): 1614-1627.
    67.黄传明,方千山.脉冲藕合神经网络在图像处理中的应用[J],仪表学报器仪,2006,27(6):2143-2144.
    68. G. Kuntimad, H. S. Ranganath. Perfect Image Segmentation Using Pulse Coupled Neural Networks[J], IEEE Transactions on neural networks,1999,10(3):591-598.
    69. T. Song, M. M. Jamshidi, R. R. Lee, M. Huang, A Modified Probabilistic Neural Network for Partial Volume Segmentation in Brain MR Image[J], IEEE Transactions on Neural Networks,2007,18(5): 1424-1432.
    70. R. Perfetti, E. Ricci, D. Casali, G. Costantini. Cellular Neural Networks With Virtual Template Expansion for Retinal Vessel Segmentation[J], IEEE Transactions on Circuits and Systems Ⅱ:Express Briefs,2007,54(2):141-145.
    71.张军,朱虹,许朝晖,李永盛.基于多边界特征神经元网络的肾小球区域分割方法[J],中国生物医学工程学报,2005,24(1):114-117.
    72. J.S. Lin, K. S. Cheng, C. W. Mao. A fuzzy Hopfield neural network for medical image segmentation[J], IEEE Transactions on Nuclear Science,1996,43(4):2389-2398.
    73. J. Kim, T. Chen. Combining static and dynamic features using neural networks and edge fusion for video object extraction[J], IEE Proceedings-Vision, Image and Signal Processing,2003, 150(3):160-167.
    74. G. Grassi, D. E. Sciascio, L. A. Grieco, P. Vecchio. New object-oriented segmentation algorithm based on the CNN paradigm[J], IEEE Transactions on Circuits and Systems II:Express Briefs,2006,53(4): 259-263.
    75. J. Shi, J. Malik. Normalized cuts and image segmentation[C], IEEE Conference on Computer Vision and Pattern Recognition 1997:731-737.
    76. W. Tao; Hai Jin; Liman Liu. A New Image Thresholding Method Based on Graph Cuts[C] IEEE International Conference on ICASSP 2007.2007,1:605-608.
    77. Y. Boykov, M. P. Jolly. Interactive graph cuts foroptimal boundary and region segmentation of objects in n-d images[C], In Proceedings of ICCV,2001,1:105-112.
    78.曹建农,方丹霞.基于图论的图像分割方法及其局限性研究[J],测绘技术装备,2006,8(2):12-15.
    79. C. Rother, A. Blake, V. Kolmogorov. Grabcut-Interactive foreground extraction using iterated graph cuts[J], ACM Transaction on Graphics,2004,23(3):309-314.
    80. J. Malcolm, Y. Rathi, A. Tannenbaum. Tracking Through Clutter Using Graph Cuts[C], British Machine Vision Conference,2007.
    81. J. Malcolm, Y. Rathi, A. Tannenbaum. Multi-Object Tracking Through Clutter Using Graph Cuts[J], IEEE 11th International Conference on ICCV 2007.2007:1-5.
    82. L. Grady. Random Walks for Image Segmentation [J], IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28(11):1768-1783.
    83.罗四维.视觉感知系统信息处理理论[M],北京:电子工业出版社,2006.
    84.徐志平.基于交叉视觉皮质模型的图像处理关键技术研究[D],复旦大学,2007,4.
    85. P. Kruizinga, N. Petkov. Nonlinear operator for oriented texture[J], IEEE Transactions on Image Processing,1999,8(10):1395-1407.
    86. M. Ursino, G. Emiliano. A model of contextual interactions and contour detection in primary visual cortex[J], Neural Networks,2004,17:719-735.
    87. C. Grigorescu, N. Petkov, M. A. Westenberg. Contour and boundary detection improved by surround suppression of texture edges[J], Image and Vision Computing,2004,22:609-622.
    88.桑农,唐奇伶,张天序.基于初级视皮层抑制的轮廓[J],红外与毫米波学报,2007,26(1):47-60.
    89. L. Itti, C. Koch. Computational Modeling of Visual Attention[J], Nature Reviews Neuroscience,2001, 2(3):194-230.
    90. C. Koch, S. Ullman. Shifts in selective visual attention:towards the underlying neural circuitry[J], Human Neurobiology,1985,4(4):219-227.
    91. S. Satoh, S. Miyake. A model of overt visual attention based on Scale-space theory[J], Systems and computers in Japan,2004,35(10):1-13.
    92. Y. Sun, R. Fisher. Object-Based Visual Attention for Computer Vision[J], Artificial Intelligene,2003, 146(1):77-123.
    93. A. A. Salah, E. Alpaydin, L. Akarun. A selective attention-based method for visual Pattern recognition with application to hand written digit recognition and face recognition[J], IEEE Transations on Pattern Analysis and Machine Intelligenee,2002,24(3):420-425.
    94.田媚,罗四维,廖灵芝.基于what和where信息的目标检测方法[J],电子学报,2007,35(11):2054-2061.
    95.崔屹.图像处理与分析-数学形态学方法及应用[M],北京:科学出版社,2002.
    96. J. S. J. Lee, R. M. Haralick. Morphology edge detection[J], IEEE Transactions on Robotics and Automation,1987,3(2):142-153.
    97. S. Krishnamurthy, S. S. Iyengar, R. J. Holyer, M. Lybanon. Histogram-based morphological edge detector[J], IEEE Transactions on Geoscience and Remote Sensing,1994,32(4):759-767.
    98.侯志强,韩崇昭,左东广等.基于局部多结构元素数学形态学的灰度图像边缘检测算法[J],西安交通大学学报,2003,37(4):389-393.
    99.周维忠,赵海洋,孙国基等.基于多尺度数学形态学的边缘检测[J],数据采集与处理.2000,15(3):316-319.
    100.梁勇,李天牧.多方位形态学结构元素在图像边缘检测中的应用[J],云南大学学报(自然科学版),1999,1(5):392-394.
    101.刘岚岚.形态学边缘检测的新算法及其应用[J],红外与毫米波学报.1998,17(5):386-390.
    102. A. N. Evans, X. U. Liu. A morphological gradient approach to color edge detection[J], IEEE Transactions on Image Processing,2006,15(6):1454-1463.
    103.梁虹,周纪勤,梁洁.基于数学形态学的商标图象边缘提取[J],计算机应用研究,2001,(3):94-96.
    104.蒋刚毅,郑义,郁梅.基于数学形态学的交通标志自动识别[J],汕头大学学报,1998,13(1):90-96.
    105.邓世伟,袁保宗.基于数学形态学的深度图像分割[J],电子学报,1995,23(4):6-9.
    106. H. Gao, W. C. Siu, C. H. Hou. Improved techniques for automatic image segmentation [J], IEEE Transactions on Circuits and Systems for Video Technology,2001,11(12):1273-1280.
    107.刘海华,陈心浩,高智勇,谢长生.基于形态学操作和模糊聚类技术的超声图像分割[J],电子学报,2007,35(7):1306-1312.
    108.李哲,黄廉卿,李鹤.基于数学形态学的CR图像实时快速分割算法[J],光学技术,2007,33(1):6-10.
    109. M. Sezgin, B. Sankur. Survey over image thresholding techniques and quantitative performance evaluation[J], Journal of Electronic Imaging,2004,13(1):146-165.
    110.李国友,李惠光,吴惕华.改进的PCNN与Otsu的图像增强方法研究[J],系统仿真学报,2005,17(6):1370-1372.
    111.杨妹,高立群,边丽英.基于优化熵函数二维最大熵阈值算法改进[J],系统仿真学报,2005,17(6):1350-1352.
    112. H. D. Cheng, H. H. Chen. Image segmentation using fuzzy homogeneity criterion[J], Information Sciences,1998:98(1):237-262.
    113. K. Ramar, S. Arumugam, S. N. Sivanandam, L. Ganesan. Quantitative fuzzy measures for threshold selection[J], Pattern Recognition Letter,2000,21(1):1-7.
    114. T. Chaira, A. K. Ray. Segmentation using fuzzy divergence[J], Pattern Recognition Letters,2003, 12(24):1837-1844.
    115. J. M. Mendel, R. I. B. John. Type-2 fuzzy sets made simple[J], IEEE Transaction on Fuzzy Systems, 2002,10(2):117-127.
    116. N. N. Karnik, J. M. Mendel. Operations on type-2 fuzzy sets[J], Fuzzy Sets and Systems,2001,122(2): 327-348.
    117. H. R. Tizhoosh. Image thresholding using type II fuzzy sets[J], Pattern Recognition,2005,38(12): 2363-2372.
    118.杨纶标,高英仪.模糊数学原理及应用[M],广州:华南理工大学出版社,2004.
    119. Q. Liang, J. M. Mendel. Interval Type II fuzzy logic systems:theory and design[J], IEEE Transactions on Fuzzy Systems,2000,8(5):535-549.
    120. J. M. Mendel. Uncertain Rule-Based Fuzzy Logic Systems[M], Englewood Cliffs, NJ:Prentice-Hall, 2001.
    121. S. K. Pal, C. A. Murthy. Fuzzy thresholding:mathematical framework bound functions and weighted moving average technique[J], Pattern Recognition Letters,1990,11(3):197-206.
    122. H. R. Tizhoosh. On thresholding and potentials of fuzzy techniques[C], Informatik'98. Heidelberg, Berlin:Springer,1998:97-106.
    123.袁和金,张艳宁,周涛,杨福增,赵文斌.红外图像的一种Type-Ⅱ模糊增强算法[J],计算机工程与应用,2007,43(16):33-36.
    124. A. Kaufmann. Introduction to the Theory of Fuzzy Subsets-Fundamental Theoretical Elements[M], New York:Academic Press,1975.
    125.何新贵.模糊知识处理的理论与技术[M],北京:国防工业出版社,1998:25-26.
    126. P. Z. Wang. Fuzzy Sets and its Applications[M], Shanghai:Shanghai Science and Technology Press, 1983.
    127. T. Chaira, A. K. Ray. Threshold selection using fuzzy set theory[J], Pattern Recognition Letters,2004, 25(8) 865-874.
    128. X. Ran, N. Farvardin. A perceptually motivated three-component image model. Part I:Description of the model[J], IEEE Transactions on Image Processing,1995,4:401-415.
    129. L. R. Liang, C. G. Looney. Competitive Fuzzy Edge Detection[J], Applied Soft Computing,2003,3: 123-137.
    130. J. Canny. A Computational Approach to Edge Detection[J], IEEE Trans, Pattern Anal. Mach. Intell., 1986,8(6):679-687.
    131. G. S. Robinson. Edge detection by compass gradient masks[J], Comput. Vision Graphics Image Process,1977,6:492-501.
    132. R. H. Park, W. Y. Choi. A new interpretation of the compass gradient edge operators[J], Comput. Vision Graphics Image Process,1989,42:259-265.
    133. L. Pelkowitz. A continuous relaxation labeling algorithm for Markov random fields[J], IEEE Transactions on Systems Man Cybernet,1990,20(3):709-715.
    134. W. Deng, S. S. Iyengar. A new probabilistic relaxation scheme and its application to edge detection[J], IEEE Trans. Pattern Anal. Mach. Intell,1996,18 (4):432-437.
    135. M. Hanmandlu, D. Jha. An Optimal Fuzzy System for Color Image Enhancement[J], IEEE Transactions on Image Processing,2006,15(10):2956-2966.
    136. A. Averbuch, B.Epstein, N. Rabin, E. Turkel. Edge-enhancement postprocessing using artificial dissipation[J], IEEE Transactions on Image Processing,2006,15(6):1486-1498.
    137. H. H. Cho, S. H. Kim, T. K. Cho, M. R. Choi. Efficient image enhancement technique by decimation method[J], IEEE Transactions on Consumer Electronics,2005,51(2):654-659.
    138. L. Kitchen, J. Malin. The effect of spatial discretization on the magnitude and direction response of dimple differential edge operators on a step edge[J], Computer Vision, Graphics and Image Processing, 1989,47(2):243-258.
    139.1. Matalas, R. Benjamin, R. Kitney. An edge detection technique using the facet model and parameterized relaxation labling[J], IEEE Transactions on PAMI,1997,19(4):328-341.
    140. J. J. Hopfield. Neural networks and physical with emergent collective computational abilities[C], Proceedings national Academy Science,1982,79:2554-2558.
    141. J. J. Hopfield. Neurons with garded response have collective computational properties like those of two state neurons[C], proceedings National Academy of Science,1984, vol.81:3088-3092.
    142. J. J. Hopfield, D. W. Tank. Neural comptutation of decisions in optimization problems[J], Biological Cybernetics,1985,52(2):141-152.
    143.王旭,王宏,王文辉.人工神经元网络原理与应用[M],沈阳:东北大学出版社,2000.
    144.白艳萍.人工神燃网络在纸合优化与信息处理中的应用[D],中北大学,2005.
    145. R. Wang. An edge detection method by combining fuzzy logic and neural network[C]. Proceedings of the Fourth International Conference on Machine Learning and Cybernetics,2005,8:4539-4543.
    146. Z. Li A neural model of contour integration in the primary visual cortex[J], Neural Computation, 1998,10:903-940.
    147. T. Serre, L. Wolf, S. Bileschi. Robust Object Recognition with Cortex-Like Mechanisms[J], IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(3):441-426.
    148. C. Grigorescu, N. Petkov, M. A. Westenberg. Contour Detection Based on Nonclassical Receptive Field Inhibition[J], IEEE Transactions on Pattern Image Processing,2003,12(7):729-739.
    149. Q. Tang, N. Sang, T. Zhang. Contour detection based on contextual influences [J], Image and Vision Computing,2007,25(8):1282-1290.
    150. M. Kass, A. Witkin, D. Terzopoulos. Snakes:active contour models[J], International Journal of Computer Vision,1987,1 (4):321-331.
    151. S. Osher, J. A. Sethian. Fronts propagating with curvaturedependent speed:algorithms based on Hamilton-Jacobi formulations [J], Journal of Computing Physics,1988,79:12-49.
    152. G. Sundaramoorthi, A. Yezzi. A. C. Mennucci. Coarse-to-Fine Segmentation and Tracking Using Sobolev Active Contours[J], IEEE Transactions on Pattern Analysis and Machine Intelligence,2008, 30(5):851-864.
    153. D. H. Hubel, T. N. Wiesel. Receptive fields, binocular interaction, and fuctional architecture in cat's visual cortex[J]. Journal of Physiology,1962,160(1):106-154.
    154.李新.面向神经计算的视觉信息处理研究[D],西北工业大学,2002.
    155. D. H. Hubel, T. N. Wisesel. Sequence regularity and geometry of orientation columns in the monkey striate cortex[J], The Journal of Comparative Neurology,1974,158(3):267-293.
    156. J. P. Jones, L. A. Palmer. An evaluation of the two dimensional Gabor filter model of simple receptive fields in cat striate cortex[J], Journal of Neurophysiology,1987,58:1233-1258.
    157. R. L. DeValois, D. G. Albrecht, L. G. Thorell. Spatial frequency selectivity of cells in macaque visual cortex[J], Vision Research,1982,22:545-559.
    158.于江波.视觉感知计算模型若干问题的研究及其应用[D],北京交通大学,2007.
    159.I. E. Abdou and W. K. Pratt, Quantitative design and evaluation of enhancement/thresholding edge detectors[C], Proceedings of the IEEE,1979,69(5):753-763.
    160. L. Grady. Multilabel random walker image segmentation using prior models[J], IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2005, 1(20-25):763-770.
    161. M. Meila, J. Shi. A random walks view of spectral segmentation[J], in:NIPS 2000:873-879.
    162. D. Singaraju, L. Grady, R. Vidal. Interactive image segmentation via minimization of quadratic energies on directed graphs[C], IEEE Conference on Computer Vision and Pattern Recognition, 2008:1-8.
    163. S. D. Zenzo. A note on the gradient of a multi-image[J], Computer Vision, Graphics, and Image PrEcessing.1986,33(1):116-125.
    164. T. Brox, J. Weickert, B. Burgeth. Nonlinear structure tensors[J], Image and Vision Computing,2006, 24(1):41-55.
    165. L. Itti, C. Koch. A Saliency-based Search Mechanism for Overt and Covert Shifts of Visual Attention[J], Vision Research,2000,40(10-12):1489-1506.
    166. B. Chalmond, B. Francesconi, S. Herbin. Using Hidden Scale for Salient Object Detection[J], IEEE Transactions on Image Processing,2006,15(9):2644-2656.
    167. Y. Li, Y. Ma, H. Zhang. Salient Region Detection and Tracking in Video[C],2003 International Conference on Multimedia and Expo.,2003:269-272.
    168. J. K. Tsotsos, S. M. Culhane, W. Y. K. Wai, Y. H. Lai, N. Davis, F. Nuflo. Modeling Visual-Attention via Selective Tuning[J], Artificial Intelligence.1995,78(1-2):507-545.
    169. G. Deco, B. Schurmann. A Hierarchical Neural System with Antinational Top-Down Enhancement of The Spatial Resolution for Object Recognition [J], Vision Research,2000,40(20):2845-2859.
    170. L. Itti, C. Koch, E. Niebur. A Model of Saliency-based Visual Attention for Rapid Scene Analysis[J], IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(11):1254-1259.
    171. D. Walther, C. Koch. Modeling Attention to Salient Proto-Objects[J], Neural Networks,2006,19(9): 1395-1407.
    172. R. E. Kronauer, Y. Y. Zeevi. Reorganization and diversification of signals in vision[J], IEEE Transactions on Sys Man an Cyber,1985,15(1):91-101.
    173.张鹏.图像信息处理中的选择性注意机制研究[D],国防科学技术大学,2004.
    174.田媚.模拟自顶向下视觉注意机制的感知模型研究[D],北京交通大学,2007.
    175.罗彤.视觉感知启发的图像分割系统研究[D],浙江大学,2008.
    176. T. Liu, J. Sun, N. N. Zheng. Learning to Detect a Salient Object[C], CVPR'07,2007:1-8.
    177. http://www.saliencytoolbox.net
    178. V. Kamat, S. Ganesan. An efficient implementation of the Hough transform fordetecting vehicle license plates using DSP'S[C], Proceedings IEEE Real-TimeTechnology and Applications Symposium, 1995:58-59.
    179. R. Parisi, et al. Car Plate Recognition by Neural Networks and Image Processing[J], IEEE ISCAS, 1998:195-198.
    180. J. Barroso, et al. Real-Time Number Plate Reading[C],4th IFAC Workshop on Algorithms for Real-Time Control,1997:305-312.
    181.戴青云,余英林.一种基于小波和形态学的车牌图像分割方法[J],中国图像图形学报,2000,5A(5):411-415.
    182.赵春雪,戚飞虎.基于彩色分割的车牌自动识别技术[J],上海交通大学学报,1998,30(5):573-576.
    183.赵海燕,裴志利等.基于车牌颜色变化剧烈特征的彩色车牌定位新方法[J],内蒙古民族大学学报(自然科学版),2002,17(6):500-502
    184.《中华人民共和国机动车号牌》,GA36-2007行业标准.中华人民共和国机动车号牌.
    185. J. Serra. Image Analysis and Mathematical Morphology[M], New York:Academic,1982.
    186. M. Heath, S. Sarkar, T. Sanocki, K. Bowyer. Comparison of edge detectors:a methodology and initial study[J], Computer Vision and Image Understanding,1998,69(1):38-54.
    187. J. Xu. Efficient morphological shape representation by varying overlapping levels among representative disks[J], Pattern Recognition,2003,36(2):429-437
    188. Z. Dokur. A unified framework for image compression and segmentation by using an incremental neural network[J], Expert Systems with Applications.2006,5:1-9.
    189. C. C. Hsu. Generalizing self-organizing map for categorical data[J], IEEE Transactions on Neural Networks,2006,17(2):294-304.
    190. T. Kohonen. The self organizing map[J], Neurocomputing.1998,21(1-3):1-6.
    191.刘晓芳,程丹松,刘家锋,管宁.采用改进HSI模型的车牌区域检测和定位方法[J],哈尔滨工业大学学报,2008,40(11):86-89.
    192.曾丽华,李超,熊璋.基于边缘与颜色信息的车牌精确定位算法[J],北京航空航天大学学报,2007,33(19):1112-1116.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700