用户名: 密码: 验证码:
基于高阶叠层矢量基函数的快速算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代目标识别、目标隐身技术、微波成像及微波遥感等工程领域均需要对目标的电磁散射特性进行分析,而如何采用数值分析方法精确高效地分析目标的电磁散射特性一直是计算电磁学领域研究工作的重点。本文的研究是以高阶叠层矢量基函数在电磁场积分方程方法中的应用为主要内容,重点研究了如何使用该基函数精确高效地计算目标的电磁响应,主要分为四个部分进行讨论。
     本文第一部分从频域角度出发,先将基于修正勒让德多项式的高阶叠层矢量基函数应用于频域电磁场积分方程方法中,并研究了基函数的正交性对其计算性能的影响。通过分析可发现基函数的正交性越好,其计算性能也越好。因此,本文重点研究了对高阶叠层矢量基函数进行正交化而得到的最大正交高阶矢量基函数,并对尺度因子进行修正以提高其计算性能。其次,本文还分析了定义在大尺寸单元上的高阶基函数的辐射特性,提出一种针对采用电磁场积分方程方法求解三维导体目标时得到的阻抗矩阵进行稀疏化的方法。同时,本文还将定义在四边形单元上的高阶叠层矢量基函数进行推广,提出一种定义在三角形单元上的基于修正勒让德多项式的高阶叠层矢量基函数,以解决四边形单元难以精确拟合复杂结构目标的问题。
     本文第二部分从时域角度出发,重点研究了准正交高阶叠层矢量基函数在时域电磁场积分方程方法(TDIE)中的算法实现,并通过数值算例详细讨论了该基函数在时域积分方程方法中的性质。其次,本文在简要分析了时域积分方程时间步进算法(MOT)的后时不稳定性问题后,指出引起该算法后时不稳定的主要原因之一是离散TDIE时采用了不精确的数值计算方法。因此,本文提出一种基于曲面单元的卷积积分方法,以精确求解任意曲面单元上的时域阻抗矩阵元素。同时,本文还采用TDIE对运动金属目标的时域电磁响应做了初步研究,并采用时域区域分解算法对空间相对运动的群目标的电磁响应做了简单分析。
     本文第三部分研究了时频互推算法。该部分首先说明了当前时域方法的主要困难,指出时频互推算法是解决时域算法后时不稳定的有效手段之一。本文对时频互推算法的互推原理进行了详细的分析,并提出一种自适应算法以确定时域和频域信息的采样宽度。其次,本文还将准正交高阶叠层矢量基函数应用于该算法中计算时频采样信息,从而解决了传统算法中频域算法低频采样时计算量过大的问题。最后本文充分研究了该算法的物理基础,提出一种采用频域滤波对互推结果进行校正的方法,从而有效地提高了互推结果的可靠性,并降低了互推算法的计算复杂度。
     本文第四部分针对大尺寸单元难以精确拟合复杂结构目标几何结构的问题,提出一种非均匀剖分的解决方案。该方法通过将目标表面结构分解,采用不同尺寸的单元对不同区域进行剖分,并对交界处公共边上的基函数进行特殊处理,从而使得在保持电流连续性的同时,极大地方便了复杂结构目标的几何建模。同时,本文还将该方法推广,提出一种自适应剖分方法。
     通过以上四部分,本文对基于高阶叠层矢量基函数的电磁场积分方程方法进行了系统而深入的研究,并以其在三维电磁散射问题中的优异表现证明了高阶叠层矢量基函数的优势。本文的工作表明基于高阶叠层矢量基函数的电磁场积分方程方法具有解决工程电磁场问题的优势和潜力,必将在未来的研究工作中得到广泛使用。
The electromagnetic scattering is very important in many fields such as modern radar target recognizing, microwave imaging and microwave remote sensing. In order to meet the practical engineering requirement, the field of computational electromagnetics has seen a considerable surge in research on efficient accurate numerical methods. The emphases of this paper are concentrating on the application of the higher order hierarchical vector basis functions in the electromagnetic integral equation method, specially majored on the methods to improve the computational property when those bases are used to get the electromagnetic response of the target. This paper is composed as the following four parts.
     The first part is the application of those bases in the frequency domain integral equation. The near orthogonal basis functions are introduced at first, which based on the modified Legendre polynomials. Then, the influences of the orthogonality on the bases have been investigated and the result is that the bases will have a well computational property when they have a better orthogonality. So the following part will emphasize the orthogonality and analyze the maximally orthogonalized higher order vector basis functions. The scaling factor was reformed to speed up the iteration convergence in the numerical solution. Furthermore, the radiating far field of the higher order bases which defined on the large patches has been analyzed. The result is that a new method to sparsify the impedance matrix and relief the memory pressure is introduced when the higher order vector basis functions defined on large patches have been utilized in the numerical solution of integral equations. At last, the idea of near orthogonal basis functions has been extended into the triangular case as a new higher order hierarchical vector bases defined on the triangular elements is introduced.
     The second part is the application of the near orthogonal hierarchical vector bases in the time domain integral equation method (TDIE). In this part, the algorithm of the near orthogonal bases in the TDIE is investigated, and the numerical example in this part will show the well property of this method. Then, after briefly discussing several causes of the late-time instability of the TDIE solvers, a novel viewpoint about the instability is proposed. A new method has been invented to calculate the element of the impedance matrix accurately in TDIE. This method is adapted to the higher order geometric model which will lead it universal in TDIE. At last, some work on the temporal response of the moving PEC target by TDIE is introduced. Furthermore, the temporal response of the multi-target with a relative movement is investigated too, which will use the domain decomposition method in time domain.
     The interpolation/extrapolation method of the information in time and frequency domain researched in the third part. The difficulties in the time domain method will be listed in this part at first. Then the interpolation/extrapolation method will be introduced as it is a perfect method to delay the instability of explicit MOT algorithm. This method will use the low frequency information in the frequency domain to complement the information of the latter temporal response of the target which will deal the instability. An adaptive sampling method is introduced when the principle of the interpolation/extrapolation method have been investigated. Then, the near orthogonal hierarchical vector basis functions are used to get the sampling information in the frequency and time domain respectively, which will improve the efficiency in frequency domain dramatically. At last, the physical bases of the interpolation/extrapolation method have been emphasized and a new method to consolidate the results by the interpolation/extrapolation method is invented.
     The fourth part has deal with the problem of the large size patch is hard to model the surface of the complex structure. This problem is the foremost difficulty in utilizing the higher order bases to solve the engineering problem. The method introduced in this paper will make it flexible in geometry model by separate the surface of the target into slick and subtle areas. Then the different size patches are used to mesh the different areas. This method will make sure the continuity of the normal current along the common edge between the different areas and get a flexible meshing method. Furthermore, a new adaptive meshing method in introduced as the extend of this meshing method.
     The studies of this paper demonstrate the high accuracy and efficiency of higher order hierarchical vector bases in the integral equation method. The analysis and the numerical results in this paper display its potential to solutions of electromagnetic engineering problems.
引文
[1]R.F.Harrington.Field computation by moment methods.Malabar, Fla.: R.E.Krieger, 1968.
    [2]克拉特著,阮颍铮,陈海译.雷达散射截面—预估,测量和缩减.电子工业出版社,1988.
    [3]J.B.Keller.Geometrical theory of diffraction,Opt.1962, 52:116-130.
    [4]陈毅乔.电大尺寸目标的电磁特性分析方法研究,电子科技大学硕士学位论文,2008.
    [5]P.Y.Ufimtsev.Elementary edge waves and the physical theory of diffraction, Electromagnetics1991, 11: 125-160.
    [6]U.Jakobus and F.M.Landstorfer.Improved PO-MM hybrid formulation for scattering from three-dimensional perfectly conducting bodies of arbitrary shape.IEEE Trans.on Antennas Propagat., Feb.1995, 43(2):162-169.
    [7]U.Jakobus and F.M.Landstorfer,Improvement of the PO-MoM hybrid method by accounting for effects of perfectly conducting wedges.IEEE Trans.on Antennas Propagat., Oct.1995,43(10):1123-1129.
    [8]V.Rokhlin.Rapid solution of integral equations of scattering theory in two dimensions.J.Comput.Phys.Feb.1990, 86: 414-439.
    [9]胡俊,复杂目标矢量电磁散射的高效算法—快速多极子算法及其应用,电子科技大学博士学位论文,2000.
    [10]T.K.Sarkar, E.Arvas, and S.M.Rao.Application of FFT and the Conjugate Gradient Method for the solution of Electromagnetic Radiation From Electrically Large and Small Conducting bodies.IEEE Trans.on Antennas Propagat., May 1986, 34:635-640.
    [11]Peters T.J., and J.L.Volakis.The application of a conjugate gradient FFT method to scattering from thin planar plates.IEEE Trans.on Antennas Propagat., April 1988, 36:518-526.
    [12]S.M.Rao, D.R.Wilton, and A.W.Glisson.Electromagnetic scatteringby surfaces of arbitrary shape.IEEE Trans.on Antennas Propagat., May 1982, 30:409-418.
    [13]W.Cai, T.Yu, H.Wang, Y.Yu.High-order mixed RWG basis functions for electromagnetic applications.IEEE Trans.on Microwave Theory Tech., 2001, 49(7): 1295-1303.
    [14]R.D.Graglia, D.R.Wilton,A.F.Peterson.Higher order interpolatory vector bases for computational electromagnetics.IEEE Trans.on Antennas Propagat., 1997, 45 (3): 329-342.
    [15]弓晓东,三维导电目标电磁散射的高阶多层快速多极子方法,电子科技大学硕士论文,2003.
    [16]J.M.Song, W.C.Chew.Moment method solution using parametric geometry.Journal of Electomagnetic Waves and Applications, 1995, 9(1/2): 71-83.
    [17]M.Djordevic and B.M.Notaros.Three types of higher-order MoM basis functions automatically satisfying current continuity conditions, Proc.of the 2002 IEEE Antennas Propagat.Soc.Int.Symp., San Antonio, TX, USA, June 2002, vol.Ⅳpp: 610-613.
    [18]S.Wandzura, Electric current basis functions for curved surfaces.Electromagnetics, 1992, 12: 77-91.
    [19]L.R.Hamilton, P.A.Macdonald,M.A.Stalzer, R.S.Turley, J.L.Visher, and S.M.Wandzura, Electromagnetic scattering computations using highorder basis functions in the method of moments.Proc.of the 1994 IEEE Antennas Propagat.Soc.Int.Symp., Ann Arbor, MI, USA,July 1994, vol.Ⅳ, pp: 2166-2169.
    [20]L.F.Canino, J.J.Ottusch, M.A.Stalzer, J.L.Visher, and S.M.Wandzura.Numerical solution of the Helmholtz equation in 2D and 3D using a high-order Nystrom discretization.Journal of Computational Physics, 1998, 146(2): 627-663.
    [21]B.M.Kolundzija and B.D.Popovic.Entire-domain Galerkin method for analysis of metallic antennas and scatterers.IEE Proceedings-H, Feb.1993, 140(1):1-10.
    [22]B.D.Popovic and B.M.Kolundzija.Analysis of Metallic Antennas and Scatterers.The Institution of Electrical Engineers, London, UK, 1994.
    [23]B.M.Kolundzija.Electromagnetic modeling of composite metallic and dielectric structures.IEEE Trans.on Antennas Propagat., July 1999, 47(7):1021-1032.
    [24]B.M.Notaros and B.D.Popovic, General entire-domain method for analysis of dielectric scatterers.IEE Proc.-Microw.Antennas Propag., Dec.1996, 143(6):498-504.
    [25]B.M.Notaros, B.D.Popovic, J.P.Weem, R.A.Brown, and Z.Popovic.Efficient large-domain MoM solution to electrically large EM problems.IEEE Trans.on Microwave Theory Tech.,Jan.2001, 49(1):151-159.
    [26]L.S.Andersen and J.L.Volakis.Development and application of a novel class of hierarchical tangential vector finite elements for electromagnetics.IEEE Trans.on Antennas Propagat., Jan.1999.47(1):112-120.
    [27]M.Djordevic and B.M.Notaros, Three types of higher-order MoM basis functions automatically satisfying current continuity conditions.Proc.of the 2002 IEEE Antennas Propagat.Soc.Int.Symp., San Antonio, TX, USA, June 2002, vol.Ⅳpp.610-613.
    [28]B.M.Notaros, personal communications, June 2002.
    [29]K.R.Aberegg, A.Taguchi, and A.F.Peterson.Application of higher-order vector basis functions to surface integral equation formulations.Radio Science, Sep.-Oct.1996, 31(5):1207-1213.
    [30]R.D.Graglia, D.R.Wilton, and A.F.Peterson.Higher order interpolatory vector bases for computational electromagnetics.IEEE Trans.on Antennas Propagat., March 1997, 45(3):329-342.
    [31]W.C.Chew, J.-M.Jin, E.Michielssen, and J.Song.Fast and Efficient Algorithms in Computational Electromagnetics.Artech House, Norwood, MA, 2001.[32]G.Kang, J.Song, W.C.Chew, K.C.Donepudi, and J.-M.Jin.A novel grid-robust higher order basis function for the method of moments.IEEE Trans.on Antennas Propagat., June 2001,49(6):908-915.
    [33]J.C.Nedelec, Mixed finite element in R3.Numer.Mathem.,1980, 35:315-341.
    [34]E.Jorgensen, J.L.Volakis, P.Meincke, and O.Breinbjerg, Higher order hierarchical Legendre basis functions for iterative integral equation solvers with curvilinear surface modeling.2002 IEEE Antennas Propagat.Soc.Int.Symp., San Antonio, TX, USA, June 2002, vol.Ⅳpp.618-621.
    [35]E.Jorgensen, J.L.Volakis, P.Meincke, and O.Breinbjerg.Divergence-conforming higher order hierarchical basis functions and preconditioning strategies for boundary integral operators.6th Int.Workshop on Finite Elements in Microw.Eng., p.63, Chios, Greece, May 2002.
    [36]E.Jorgensen, J.L.Volakis, P.Meincke, and O.Breinbjerg.Higher-order hierarchical legendre basis functions for electromagnetic modeling.IEEE Trans.on Antennas Propagat., Nov.2004,52(11): 2985-2995.
    [37]E.Jorgensen, P.Meincke, and O.Breinbjerg.A hybrid PO_ higher-order hierarchical MoM formulation using curvilinear geometry modeling.Symp.Antennas and Propagation, Columbus, OH, USA, June 2003.
    [38]E.Jorgensen, O.Kim, P.Meincke, and O.Breinbjerg, Higher-order hierarchical discretization scheme for surface integral equations for layered media.IEEE Trans.on Geoscience and Remote Sensing, Apr.2004, 42(4):764-772.
    [39]E.Jorgensen, Higher order integral equation methods in computational electromagnetics, Ph.D.dissertation, Technical University of Denmark, 2003.
    [40]O.S.Kim, P.Meincke, and O.Breinbjerg.Method of moments solution of volume integral equations using higher-order hierarchical Legendre basis functions.Radio Science, 39, 2004.
    [41]B.M.Kolundzija and D.S.Sumic.Hierarchical conjugate gradient method applied to MoM analysis of electrically large structures.Proceedings of the 2004 international IEEE APS Symposium, June 2004, session no.156, paper no.3.
    [42]Drazen S.Sumic and Branko M.Kolundzija.Efficient Iterative Solution of Surface Integral Equations Based on Maximally Orthogonalized Higher Order Basis Functions.Proc.IEEE Antennas and Propagation Society Int.Sym., session 116, 2005.
    [43]Y.Ren, Yanwen Zhao, Zaipin Nie,Higher Order Hierarchical Vector Basis Functions used in the Frequency Domain.2006 China-Japan Joint Microwave Conference Proceedings, August 23-25 Chengdu.China, 523-526.
    [44]丁大志,复杂电磁问题的快速分析和软件实现,南京理工大学博士论文,2006.
    [45]年丰,董硕,周乐柱,夏明耀.三维电磁辐射问题混合阶矢量基有限元完全匹配层方法的研究,北京大学学报,2007,(01).
    [46]Lu C C, Chew W C.A Multilevel Algorithm for Solving a Boundary Integral Equation of Wave Scattering .Microwave Opt Tech Lett, 1994,710, 7(10) :466-470.
    [47]胡俊,王晓峰,聂在平,肖运辉.三维目标电磁散射的自适应积分方法,电波科学学报,Aug.2007, 22(4):614-618.
    [48]Bleszynski, E.Bleszynski and Jaroszewicz.AIM: Adaptive integral method for solving large-scale electromagnetic scatting and radiation problems.Radio Science, 1996, 31 (5):1225-1251.
    [49]W.Zhuang, L.Mo, R S Chen.An Improved Adaptive Integral Method (AIM) with Far-Field Expansion for Analysis of Microstri PStructures.IEEE Antenna and Propagation Symposium, 2005.
    [50]王秉中,计算电磁学,科学出版社,北京,2001.
    [51]GEDNEY S D.An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices.IEEE Trans.on Antennas Propagat., 1996, 44 (12) :1630-1639.
    [52]Y.Qian and T.Itoh.FDTD Analysis and Design of Microwave Circuits and Atennas.Tokyo,Japan; Realize Inc., 1999.
    [53]Jianming Jin.The Finite Element Method in Electromagnetics, Second Edition, A Wiley Interscience Publication, 2002.
    [54]N.Marais, D.B.Davidson.Numerical evaluation of hierarchical vector finite elements on curvilinear domains in 2-D.IEEE Trans.on Antennas Propagat., 2006, 54(2): 734-738.
    [55]J.S.Savage, A.F.Peterson.Higher-order vector finite elements for tetrahedral cells.IEEE Trans.on Antennas Propagat., 1996, 44(6): 874-879.
    [56]H.A.Pascal.Parallel implementation of the fast multipolemethodfor Maxwell's equations.Int J Numer Meth, 2003, (43): 839-864.
    [57]潘小敏,盛新庆.一种多层快速多极子的高效并行方案,电子学报,Mar.2007, 35(3):171-175.
    [58]Shaoxin Peng and Zaiping Nie.Acceleration of the Method of Moments Calculations by Using Graphics Processing Units.IEEE Trans.Antennas Propagat., Jul.2008, 56(7): 2130-2133.
    [59]S.E.Krakiwsky, L.E.Turner, and M.M.Okoniewski.Graphics processor unit (GPU) acceleration of fmite-difference time-domain (FDTD) algorithm.in Proc.Int.Symp.on Circuits and Systems, 2004, pp.V-265-V-268.
    [60]尹雷,区域分裂算法及其在电磁电磁问题中的研究,东南大学博士学位论文,2000.
    [61]M.Vouvakis, Z.Cendes, and J.F.Lee.A FEM Domain Decomposition Method for Photonic and Electromagnetic Band Gap Structures.IEEE Trans.Ant.Prop., Feb.2006, 54, (2).
    [62]K.Donepudi, G.Kang, et al.Higher-order MoM implementation to solve integral equations,IEEE Antennas and Propagation Symposium, July 11-16, 1999,Florida, 3:1716-1719.
    [63]Jeannick Sercu, N.Fache, and P.Laasse.First-Order Rooftop Functions for the Current Discretisation in the Method of Moments Solution of Planar Structures.IEEE APS Int.Symp.Dig., June 1994.3:2170-2173.
    [64]A.F.Peterson.Higher-order surface patch basis functions for EFIE formulations.IEEE APS Int.Symp.Dig.June 1994, 3:2162-2164.
    [65]Branislav M.Notaros.Higher Order Frequency-Domain Computational Electromagnetics.IEEE Trans.on Antennas Propagat., Aug.2008.56(8): 2251-2276.
    [66]J.M.Jin, J.Liu, Z.Lou, and C.S.T.Liang.A fully high-order fmite-element simulation of scattering by deep cavities.IEEE Trans.on Antennas Propagat., Sep.2003, 51(9):2420-2429.
    [67]A.Mohan and D.S.Weile.Convergence properties of higher order modeling of the cylindrical wire kernel.IEEE Trans.on Antennas Propagat., May 2007, 55(5):1318-1324.
    [68]M.M.Bibby and A.F.Peterson.High accuracy evaluation of the EFIE matrix entries on a planar patch.Appl.Computat.Electromagn.Soc.(ACES), Nov.2005, 20(3):198-206.
    [69]M.M.Bibby and A.F.Peterson.High accuracy calculation of the magnetic vector potential on surfaces.Appl.Computat.Electromagn.Soc.(ACES), Mar.2003, 18, (1):12-22.
    [70]T.T.Zygiridis and T.D.Tsiboukis.Development of higher order FDTD schemes with controllable dispersion error.IEEE Trans.on Antennas Propagat., Sep.2005, 53(9): 2952-2960.
    [71]E.H.Newman.Polygonal plate modeling.Electromagnetics, 1990, 10:65-83.
    [72]M.G.Duffy.Quadrature over a pyramid or cube of integrands with a singularity at a vertex.SIAM J.Numer.Anal.,Dec.1982, 19(6):1260-1262.
    [73]K Sertel and J.L.Volakis.Method of moments solution of volume integral equations using parametric geometry.Radio Science, Jan.-Feb.2002, 37(1):1-7.
    [74]任仪,聂在平,赵延文,高阶叠层基函数矩量法中的加速迭代求解方法,电波科学学报,Feb2008, 23(1):100-105.
    [75]A.F.Peterson, C.F.Smith, and R.Mittra.Eigenvalues of the moment-method matrix and their effect on the convergence of the conjugate gradient algorithm, IEEE Trans.on Antennas Propagat., Aug.1988, 36:1177-1179.
    [76]Eric Carlen.Notes on the Gramm-Schmidt Procedure for Constructing Orthonormal Bases, http: www.deetc.isel.ipl.pt/analisedesinai/tss/Bibliografia/Tutorials/gram.pdf.
    [77]Robert L.Wagner, Weng Cho Chew.A study of wavelets for the solution of electromagnetic integral equations.IEEE Trans.on Antennas Propagat., Aug.1995, 4(8):802-8 10.
    [78]H.Deng, H.Ling.Moment matrix sparsifaction using adaptive wavelet packet transform.Electronics letters, June 1997, 33(13).
    [79]R.E.Collin, Antennas and Radio Wave propagation, McGraw-Hill, 1985.
    [80]Yi Ren, Zaiping Nie, Yanwen Zhao.Sparsification of Impedance Matrix in Solution of Integral Equation by Using the Maximally Orthogonalized Basis Function.IEEE Trans.Geosci.Remote Sen.Jul.2008, 46(7):1975-1981.
    [81]任仪,聂在平,赵延文,马文敏.矩量法中阻抗矩阵的稀疏化研究,电子学报,Dec.2007,35(12):2354-2358.
    [82]任仪,赵延文,聂在平,矩量法中阻抗矩阵的稀疏化研究,电波科学学报(增刊),Sep.2007,22: 253-255.
    [83]班永灵,高阶矢量有限元方法,电子科技大学博士学位论文,2003.
    [84]L.S.Andersen, J.L.Volakis.Miexed-order tangential vector finite elements for triangular elements.IEEE Antennas Propag.Magazine, 1998, 40(1): 104-108.
    [85]Jingguo Wang and Jon P.Webb.Hierarchal Vector Boundary Elements and p-Adaption for 3-D Electromagnetic Scattering.IEEE Trans.on Antennas Propagat., Dec.1997, 45(12):1869-1879.
    [86]任仪,聂在平,赵延文,马文敏,一种新的基于三角形单元的高阶叠层矢量基函数,2007年全国天线年会论文集,中国.合肥,May.2007,5.20-5.23.
    [87]C.L.Bennett, JR.Member and W.L.Weeks.Transient Scattering from Conducting Cylinders.IEEE Trans.on Antennas Propagat., Sep.1970, 18:627-633.
    [88]A.M.Aukenthaler and C.L.Bennett.Computer solution of transient and time domain thin wire antenna problems.IEEE Trans.on Microwave Theory Tech., Nov 1971, 19:892-893.
    [89]H.Mieras and C.L.Bennett.Space-time Integral Equation Approach to Dielectric Targets.IEEE Trans.on Antennas Propagat., Jan.1982, 30:2-9.
    [90]S.M.Rao.Time domain electromagnetics, Academic, New York, 1999.
    [91]D.S.Weile, A.A.Ergin, B.Shanker, and E.Michielssen.An accurate discretization scheme for the numerical solution of time domain integral equations.2000 IEEE Antennas Propagat.Int.Symp., Salt Lake City, UT, July 2000, 741-744.
    [92]Jianming Jin.The Finite Element Method in Electromagnetics, Second Edition, A Wiley Interscience Publication, 2002.
    [93]路占波,张安,共形时域有限差分法在不同形状微带贴片天线特性分析中的应用,西北工业大学学报,Apr.2007 25(2):235-238.
    [94]Niraj Sachdeva, Sadasiva M.Rao, N.Balakrishnan.A Comparison of FDTD-PML With TDIE.IEEE Trans.on Antennas Propagat., 2002, 50(11):1609-1614.
    [95]Yan-Wen Zhao, Zai-Ping Nie, etl.Stable and accurate solution of time-domain electric field integral equation.Computation Electromagnetics and Its Applications, Nov.2004 Page(s):1-4.
    [96]S.M.Rao and T.K.Sarkar.An alternative version of the time-domain electric field integral equation for arbitrarily shaped conductors.IEEE Trans.on Antennas Propagat.,1993,41:831-834.
    [97]Daniel S.Weile, G.Pisharody, Nan-wei Chen, B.Shanker and Eric Michielssen.A Novel Scheme for the Solution of The Time-Domain Integral Equations of Electromagnetics.IEEE Trans.on Antennas Propagat., January 2004.52:283-294.
    [98]任仪,赵延文,聂在平,基于高阶叠层矢量基函数的MOT算法,电子学报,Mar.2008,36(3):516-519.
    [99]Y.Ren, Yan-Wen Zhao and Zai-Ping Nie.Hierarchical Vector Basis FunctionsMarching on Time Method using Higher Order.Antennas and Propagation Society International Symposium,2007 IEEE, 10-15 June 2007 .5239-5242.
    [100]Yi Ren, Yan-wen Zhao, Zai-ping Nie, A Novel Approach for Solving the Time Domain Integral Equations using The Higher Order Hierarchical Vector Basis Functions.Electromagnetics, Nov.2008,25(6):582-589.
    [101]Abdulkadir C.Y(u|¨)cel, A.Arif Ergin.Exact evaluation of retarded-time potential integrals for the RWG bases.IEEE Trans.on Antennas Propagat., 2006, 54(5): 1496-1502.
    [102]赵庆广,电磁散射与辐射的时域积分方程方法,电子科技大学硕士学位论文,2008.
    [103]V.C.Chen, F.Y.Li.Wechsler.Micro-Doppler Effect in Radar: Phenomenon, Model, and Simulation Study.IEEE Trans.Aerospace and Electronic system, 2006, 42(1):1-21.
    [104]Jean Van Bladel.Electromagnetic Fields in the Presence of Rotating Bodies.Proc.IEEE, 1976 64(3):301-318.
    [105]Tardy I, Piau G P, Chabrat P, et al.Computational and experimental analysis of the scattering by rotating fans.IEEE Trans.on Antennas Propagat., 1996, 44(10): 1414-1421.
    [106]Harfoush.F.,Taflove.A.,Kriegsmann.G.A.A Numerical Technique for Analyzing Electromagnetic Wave Scattering from Moving Surfaces in One and Two Dimensions.IEEE Trans.on Antennas Propagat., 1989, 37(1) 1989
    [107]Dan Censor.Scattering of Electromagmetic Waves by a Cylinder Moving Along Its Axis.IEEE Trans.on Microwave Theory Tech., 1969, 17(3):154-158.
    [108]郭硕鸿著,电动力学.高等教育出版社,北京,1997.
    [109]Tardy I, Piau G P, Chabrat P, et al.computational and experimental analysis of the scattering by rotating fans.IEEE Trans.on Antennas Propagat., 1996, 44(10): 1414-1421
    [110]施一飞,陈如山,樊振宏,区域分解法结合时域积分方程法分析电磁问题,电波科学学报(增刊),Sep.2007, 22: 225-228.
    [111]Y.Hua and T.K.Sarkar.Matrix pencil and system poles.Signal Processing, October 1990, 21(2): 195-198.
    [112]Y.Hua and T.K.Sarkar.On SVD for estimating generalized eigenvalues of singular matrix pencil in noise.IEEE Transactions on Signal Processing, SP-39,4,April 1991:892-900.
    [113]Y.Hua and T.K.Sarkar.A perturbation property of the TLS-LP method.IEEE Transactions on Acoustics, Speech and Signal Processing, ASSP-3 8, Nov.1990, 2004-2005.
    [114]T.K.Sarkar.and Odilon Pereira.Using the Matrix Pencil Method to Estimate the Parameters of a Sum of Complex Exponentials.IEEE.Antennas and Propagation Magazine, February 1995,37(1).
    [115]R.S.Adve, T.P.Sarkar.Application of the Cauchy Method for Extrapolating/Interpolating Narrow-Band System Response.IEEE Trans.on Microwave Theory Tech., May 1997,45(5):837-845.
    [116]Narayana, S.M.; Rao, G.; Adve, R.; Sarkar, T.K.; Vannicola, V.C.; Wicks, M.C.; Scott, S.A.Interpolation/Extrapolation of Frequency Domain Responses Using the Hilbert Transform.IEEE Trans.on Microwave Theory Tech., Oct.1996, 44(10):1621-1627.
    [117]Murli Mohan Rao, Tapan K.Sarka.Extrapolation of Electromagnetic Responses from Conducting Objects in Time and Frequency Domains.IEEE Trans.on Microwave Theory Tech.,Vol.47.No.10.Octorber 1999.
    [118]赵青,三维矢量散射的时域积分方程解及时频互推技术,电子科技大学硕士学位论文,2004.
    [119]Jin-Lin Hu, Chi Hou Chan, T.K.Sarka.Optimal Simultaneous Interpolation/Extrapolation Algorithm of Electromagnetic Responses in Time and Frequency Domains.IEEE Trans.on Microwave Theory Tech., Oct.2001, 49(10):1725-1732.
    [120]欧阳骏,共形阵列天线的分析与综合研究,电子科技大学博士学位论文,2008.
    [121]Bidj an Haghi Ashtiani, Laurent Krahenbuhl, Adaptive Meshing for the boundary Integral Equation Method: Definition and Test of an Error Estimator.IEEE Transactions On Magnetics,Sep.1998, 34(3):3443-3446.
    [122]Brian C.Usner, Genera;ized Hybrid Methods For Modeling Complex Electromagnetics Structures,Ph.D.dissertation, Ohio State University, 2006.
    [123]Debra L.Wilkes, Chung-Chi Cha.Method of Moments solution with Parameteric Curved Triangular Patche.Proc.IEEE Antennas and Propagation Society Int.Sym., 1991, 1512-1515.
    [124]任仪,聂在平,赵延文.高阶基函数与低阶基函数的混合建模,电子学报,Sep.2008,36(9):1844-1847.
    [125]Zaiping Nie, Su Yan, Shiquan He, Jun Hu.The basis functions involving propagating wave phase dependency for solving the scattering from electrically large targets.Proc.IEEE Antennas and Propagation Society Int.Sym., 2008:1-4.
    [126]M.E.Kowalski and B.Singh.Application of the integral equation-asymptotic phase (IE-AP) method to three-dimensional scattering, J.of Electromagn.Wave and Appl., 2001, 15(.7):885-900.
    [127]X.Wang, M.M.Botha, and J.M.Jin.A simple error estimator for the moment method in electromagnetic scattering.IEEE Int.Symp.Monterey, CA, 2004.
    [128]胡俊,聂在平,三维矢量电磁散射高效数值分析中新的迭代方法,电波科学学报,1999,14:99-102.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700