用户名: 密码: 验证码:
聚乙二醇介导RNase-BSA偶联物的制备及性质表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
共价偶联是将一种蛋白偶联于另一种蛋白或者其他大分子物质,达到改善原蛋白溶解性或其他性质的化学交联或化学修饰的方法。白蛋白与药物可通过共价键相连形成偶联物,进入人体后,连接键将被体内酶催化断裂而释放药物,此过程不仅使药物溶解性提高,而且实现药物的缓释及靶向作用。聚乙二醇(PEG)由于具有良好的水溶性,与许多有机物组分有良好的相容性,已被广泛应用于食品、医药、化妆品及化学纤维等领域。PEG化可以通过延长蛋白质药物在体内的循环半衰期以及降低免疫原性和抗原性达到提高蛋白质药物的功效。研究表明,牛胰核糖核酸酶A(RNase A)的结构和功能清晰明确,近年来的研究还发现其超家族与结构类似物具有抗肿瘤活性,但其本身表现不明显。为此,本论文以牛胰RNase A为模型蛋白,采用PEG等交联剂与大分子载体BSA(牛血清白蛋白)的交联技术对其进行修饰偶联研究,以增强、稳定其生物学活性。
     一、制备偶联产物。通过引入异型双功能交联剂Sulfo-SMCC、PEG3500及辅助交联剂HDA,运用3种修饰策略实现RNaseA与BSA的偶联。采用分析型Superdex200凝胶过滤柱分析(1cm×30cm)及SDS-PAGE电泳法检测偶联物,得出最佳偶联条件。结果表明,以4℃作为最适反应温度; BSA:NEM:SMCC:RNase:IT=1:5:20:8:80;BSA:IT:RNase:PEG3500=1:10:0.8:4;RNase:IT:PEG3500:HDA=1:3:2:2,每200μL体系中加入20μL0.2mmol/L的BSA作为最佳摩尔比条件。采用AKTA蛋白纯化系统与制备型Superdex200凝胶过滤柱(2.6cm×70cm)制备偶联产物。
     二、对偶联产物进行结构和功能的表征。首先利用内源荧光光谱、动态光散射技术及超速离心分析技术对3种RNase-BSA偶联产物的结构进行表征。发现与RNase A相比,BSA的荧光强度占主导地位,并且在偶联产物中RNase A起到荧光猝灭作用;偶联后流体力学半径都明显增加;RNase-SMCC-BSA偶联物具有最大的沉降系数和最小的摩擦系数比。推测其与分子量大小,交联剂的性质及偶联物的空间结构特点有关。另外,体外活性结果表明,RNase-SMCC-BSA偶联物拥有最高的相对活性保留率,偶联产物过夜之后(19h以后),相对活性保持率都基本稳定在75%以上,实现了缓释作用。说明白蛋白偶联及PEG修饰在改良RNaseA药学性质方面具有很大的优势。
     本论文的修饰策略可对其它蛋白质和多肽类药物的药学性质改善提供借鉴,并为食品、饲料、化妆品及医药等领域的应用提供参考。
Bioconjugation technology is the process of conjugate proteins with proteins or otherbiomolecules by chemical crosslinking and modification methods, to alter the solubility or otherproperties of the original protein. Conjugation of albumin to the protein drug is achieved bycovalent bond that can be broken by the enzyme in vivo, which imparts resistance to proteolysis,improves solubility and achieves targeting. Poly-ethylene glycol (PEG) has been widely used infood, medicine, cosmetics, chemical fiber and other fields, due to its good water-solubility andfavorable compatibility with many organic components. PEGylation can improve the therapeuticefficacy of proteins by enhancing persistence in circulation and reducing immunogenicity andantigenicity. The structure and function of bovine pancreatic ribonuclease A (RNase A) has beenclearly known. Recent studies have found that the super-family and structural analogues haveanti-tumor activity. However, its own performance is not obvious. To strengthen and stabilize thebiological activity, RNase A was chosen as the model protein in the present study. Theconjugation of RNase A with albumin (BSA) by crosslinkers like PEG was conducted.
     First, the RNase-BSA conjugates were prepared. Heterobifunctional crosslinkersSulfo-SMCC, PEG3500and assistant crosslinker Hexadecylamine (HDA) were chosen tofacilitate conjugation of RNase to albumin. The optimal conjugation conditions were analyzedby size exclusion chromatography using analytical grade Superdex200column (1cm×30cm)and SDS-PAGE. The result showed that the optimal reactant ratios were:BSA:NEM:SMCC:RNase:IT=1:5:20:8:80; BSA:IT:RNase:PEG3500=1:10:0.8:4;RNase:IT:PEG3500:HDA=1:3:2:2,20μL of0.2mmol/L BSA was added to200μL reactionsystem, and all reactions were taken at4℃. AKTA Purification System and preparative gradeSuperdex200(2.6cm×70cm) were used for purification of the RNase-BSA conjugates.
     Secondly, the structural and functional characterization of the RNase-BSA conjugates wascarried out. Structural characterization of the conjugates was carried out using intrinsicfluorescence spectra, dynamic light scattering (DLS) and sedimentation velocity analyticalultracentrifugation (AUC). The present study suggested that compared with the weak emissionfluorescence intensity of RNase A which was equivalent to a quencher, BSA was predominant. The hydrodynamic radius of RNase A was increased greatly after conjugation of albumin. Whilethe RNase-SMCC-BSA conjugate showed the largest sedimentation coefficients (S20, w) andlowest frictional ratios (f/f0). It was presumably related to the molecular weight, the properties ofcrosslinkers and the structural characteristic of the conjugates. Then, the result of vitro activityshowed that the bioactivity of RNase-SMCC-BSA conjugate was the highest, and the bioactivityof75%was remained overnight (above19h), delay releasing was realized. This indicated that thealbumin binding and PEGylation would be a better strategy to improve the therapeutic efficacyof RNase A.
     The present strategy may rationally optimize and tailor the pharmacological properties ofpeptides and proteins. Moreover, it can also provide a reference for application in many fieldslike food, feed, cosmetics, medicine and so on.
引文
[1] Leader B, Baca QJ, Golan DE. Protein therapeutics: A summary and pharmacological classification [J]. Nat.Rev. Drug. Discov,2008(7):21-39.
    [2] Kodera Y, Matsushima A, Hiroto M, et al. Pegylation of proteins and bioactive substances formedical and technical applications [J]. Prog. Polym. Sci,1998(23):1233-1271.
    [3] Frokjaer S, Otzen DE. Protein drug stability: A formulation challenge [J].Nat. Rev. Drug. Discov,2005(4):298-306.
    [4] Pasut G, Veronese FM. Polymer-drug conjugation, recent achievements and general strategies [J]. Prog.Polym. Sci,2007(32):933-961.
    [5] Jevsevar S, Kunstelj M, Porekar VG. PEGylation of therapeutic proteins [J].Biotechnol,2010(5):113-128.
    [6] Veronese FM, Pasut G. PEGylation, successful approach to drug delivery [J].Drug.Discov. Today,2005(10):1451-1458.
    [7] Korn K, Foerster H, Hahn U. Phage display of RNase A and an improved method forPurification of phages displaying RNase [J]. Bio. Chem,2000,381(2):179-180.
    [8] Crestfield AM, Stein WH, Moore S. Properities and conformation of histidine residues at theactive site of ribonuclease [J]. Biol. Chem,1963(204):81-92.
    [9] Smith D G, Moore S, Stein WH. On the sequence of residues11-18in bovine pancreatic ribonuclease [J].Biol. Chem,1962(200):493-506.
    [10] Anfinsen CB. Principles that govern the folding of protein chains [J]. Science,1973,181(4096):223-230.
    [11] Schein CH. From housekeeper to microsurgeon: the diagnostic and therapeutic potential of ribonucleases[J]. Nature Biotech,1997(15):529-533.
    [12]王瑾,徐瑞.抗肿瘤核糖核酸酶研究进展[J].国外医学肿瘤学分册,2005,32(9):650-653.
    [13]张颖,李伟军,苏志国.核糖核酸酶特殊生物学功能及药理作用研究新进展[J].生物医学工程学杂志,2001,18(3):456-460.
    [14]刘军,薛采芳.治疗用核糖核酸酶研究进展[J].生命科学,2002,14(3):139-142.
    [15]肖文楚.重组核糖核酸酶A的表达和复性研究[D].天津:天津大学,2009.
    [16] KoIbanovskaya EY, Mukhortov VG, Ardelt W, et, al. LocaIization and anaIysis of nonpoIar regions inonconase [J]. Cell. Mol. Life. Sci,2000,57(8-9):1306–1316.
    [17] Soucek J, Pouckova P, Matousek J, et, al. Antitumor action of bovine seminal ribonuclease [J].Neoplasma,1996,43(5):335-40.
    [18] Wodak SY, Liu MY, Wyckoff H W. The structure of cytidyl (2’,5’) adenosine when boundto pancreatic ribobuclease S [J]. Mol. Biol,1977,116(4):855-875.
    [19] Bauer S, Lamed R, Lapidot Y. Large scale synthesis of dinucleoside monophosphatescatalyzed by ribonuelease from Aspergillus clavatus [J]. Biot. Bioeng,1972(14):861-870.
    [20]陈洁,王璋.麦芽根中核酸酶的分离纯化及性质研究[J].无锡轻工大学学报,2001,20(3):270-274.
    [21] Newton DL, Ilercil O, Youle RJ, et al. Cytotoxic ribonuclease chimeras, targeted tumoricidal activity invitro and in vivo [J]. Biol.Chem,1992,267(27):19572-19578.
    [22] De lorenzo C, Nigro A, Piccoli R,et al. A new RNase-based immunocojugate selectivelycytotoxic for ErbB2-overexpressing cells [J]. FEBS Lett,2002,516(1-3):208-212.
    [23] Leich F, K ditz J, Arnold U, et al. Tandemization endows bovine pancreatic ribonuclease with cytotoxicactivity [J]. Mol. Biol,2006,358(5):1305-1313.
    [24] Merlino A, Krauss IR, Perillo M, et al. Toward an antitumor form of bovine pancreatic ribonuclease: thecrystal structure of three noncovalent dimeric mutants [J]. Biopolymers,2009,91(12):1029-1037.
    [25] Mikulski SM, Costanzi JJ, Vog elzang NJ, et al. PhaseⅡtrial of a single weekly intravenousdose of ranpirnase in patients with unresectable malignant mesothelioma [J]. Clinical Oncology,2002,20(1):274-281.
    [26] Schiavon O, Caliceti P, Sartore L, et al. Surface modification of enzymes for therapeutic use:monomethoxypoy (ethylne glycol) derivatization of ribonuclease [J]. Farmaco,1991,46(7-8):967-978.
    [27]张建军,高缘,孙婉瑾.白蛋白作为药物载体的研究[J].化学进展,2011,23(8):1748-1754.
    [28] Bosse D, Praus M, Kiessling P, et al. Phase I comparability of recombinant human albuminand huaman serum albumin [J]. Clin. Pharmacol,2005,45(1):57-67.
    [29] Petitpas I, Grune T, Bhattachary AA, et al. Crystal structures of human serum albumincomplexed with monounsaturated and polyunsaturated fatty acids [J]. MolecularBiology,2001,314(5):955-960.
    [30] Kratz F. Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles [J]. ControlledRelease,2008,132(3):171-183.
    [31] Dobrovolskaia MA, Patri AK, Zheng JW, et al. Interaction of colloidal gold nanoparticleswith human blood: effects on particle size and analysis of plasma protein binding profiles [J]. Nanomedicine,2009,5(2):106-117.
    [32]瞿小兰.叶酸-白蛋白-多柔比星的制备及其抗肿瘤性质研究[D].武汉:华中科技大学,2009.
    [33]吴开智,汤继辉.血清白蛋白作为药物载体的研究进展[J].安徽医药,2011,15(10):1193-1194.
    [34]陈辰,何军,陆伟根,等.白蛋白作为注射用难溶性药物载体的研究进展[J].中国医药工业杂志,2010,41(1):51-54.
    [35] Green MR, Manikhas GM, Orlov S, et al. Abraxane, a novel Cremophor-free, albumin-boundparticle form of paclitaxel for the treatment of advanced non-small-cell lung cancer [J]. Annals ofoncology,2006,17(8):1263-1268.
    [36]周洁,曾甫清,高翔,等.三氧化二砷白蛋白纳米微球的制备及体外释药特性[J].中国新药杂志,2005,14(1):54-57.
    [37] Devineni D, Blanton CD, Gallo JM. Preparation and in vitro evaluation of magneticMicrosphere-mathotrexate conjugate drug delivery syestems [J]. Bioconjug Chem,2005,6(2):203-210.
    [38] Fiehn C, Kratz F, Sass G, et al. Targeted drug delivery by in vivo coupling to endogenousalbumin: an albumin-binding prodrug of methotrexate (MTX) is better than MTX in the treatmentof murine collagen-induced arthritis [J]. Ann. Rheum. Dis,2008,67(8):1188-1191.
    [39]王树斌,袁飞,彭志平,等. EGF偶联牛血清白蛋白纳米粒载体的构建[J].重庆医科大学学报,2008,33(6):645-648.
    [40] Joseph KS, Hage DS. The effects of glycation on the binding of human serum albumin to warfarin andL-tryptophan [J]. Pharm. Biom.Anal,2010,53(3):811-818.
    [41]茅国栋,熊振平,史炳照.人血清白蛋白修饰尿激酶及其性质研究[J].中国医药工业杂志,1984(12):42-44.
    [42] Abuchowski A, Mccoy JR, Palczuk NC, et al. Alteration of Immunological Properties ofBovine Serum Albumin by Covalent of Polyethylene Glycol [J]. Biol.chem,1977,252(11):3578-3581.
    [43] Beauchamp CO, Gonias SL, Menapace DP, et al. A New Procedure for the synthesis of polyethyleneglycol-protein adducts; Effects on function, receptor recognition, and clearance of superoxide dismutase,lactoferrin, and α2-macroglobulin [J]. Anal.Biochem,1983,131(1):25-33.
    [44] Pasut G, Veronese FM. PEGylation of proteins as tailored chemistry for optimized bioconjugates [J]. Adv.Polym. Sci,2006(192):95-134.
    [45]邱蕊. PEG修饰ω-干扰素与尿酸氧化酶的制备、纯化、结构分析与生物活性的研究[D].福州:福建农林大学,2011.
    [46] Abuchowski A, McCoy JR, Palczuk NC, et al. Effect of covalent attachment of polyethylene glycol onimmunogenicity and circulating life of bovine liver catalase [J]. Biol.Chem,1977,252(11):3582-3586.
    [47] Caliceti P, Veronese FM. Pharmacokinetic and biodistribution properties of poly (ethylene glycol)-proteinconjugates [J]. Adv. Drug. Deliv. Rev,2003,55(10):1261-1277.
    [48] Veronese FM, Mero A. The impact of PEGylation on biological therapies [J]. Biodrugs,2008,22(5):315-329.
    [49]姜广志.单甲氧基聚乙二醇修饰超氧化物歧化酶的研究[D].吉林:吉林大学,2006.
    [50]周莉,罗贵民,郭中满,等.聚乙二醇修饰牛血清白蛋白[J].吉利大学自然科学学报,1997(4):63-66.
    [51]李伟军,张颖,苏志国,等.聚乙二醇修饰核糖核酸酶[J].药物生物技术,2001,8(3):147-151.
    [52] Rutkoski TJ, Kink JA, Strong LE, et al. Site-specific PEGylation endows a mammalian ribonuclease withantitumor activity [J]. Cancer Biology&Therapy,2011,12(3):208-214.
    [53]季波,徐滢波,赵树进.聚乙二醇修饰超氧化物歧化酶及其稳定性研究[J].广州医学院学报,2002,30(3):16-18.
    [54] Gabriel NE, Farrar CE. N-terminally chemically modified protein compositions and methods
    [P]. USA:7090835.2006-08-15.
    [55] Lee S, Wylie DC, Susan V, et al. Pegylated interleukin-10[P]. USA:7052686.2006-05-30.
    [56] Tayar N EI, Roberts MJ, Harris M, et al. Polyol-IFN-β conjugates modified at cys-17andcomposition containing same [P]. European:6638500.2003-10-28.
    [57] Basu A, Yang K, WangM, et al. Structure-function engineering of interferon-beta-1b forimproving stability, solubility, potency, immunogenicity, and pharmacokinetic properties bysite-selective mono-PEGylation [J]. Bioconjug. Chem,2006,17(3):618-630.
    [58] Yang C, Lu D, Liu Z. How PEGylation enhances the stability and potency of insulin: a moleculardynamics simulation [J]. Biochem,2011,50(13):2585-2593.
    [59]汪媛媛,李泳宁,郭养浩.双交联法制备桔霉素-蛋白质偶联抗原及抗体[J].生物化学与生物物理进展,2010,37(3):337-341.
    [60]谢琪璇,李莉. SPDP蛋白偶联技术在抗原构建中的应用[J].暨南大学学报(自然科学与医学版),1998,19(1):36-40.
    [61]张少华,李克生,才学鹏,等.猪带绦虫六钩蚴重组蛋白TSOL18与BSA偶连蛋白的制备[J].甘肃农业大学学报,2007,42(3):7-11.
    [62]王娜,赵丹慧,袁越,等. MBS和戊二醛连接hPTH载体特异抗体及载体抗体的比较研究[J].中国新药杂志,2007,16(18):1469-1473.
    [63]马国昌,陈枢青,朱振洪,等.酶联免疫吸附试验法研究PEG-rhG-CSF与rHSA-hG-CSF在小鼠体内的药代动力学[J].药学学报,2007,42(2):197-200.
    [64] Konda SD, Aref M, Brechbiel M, et al. Development of a tumor-targeting MR contrast agentusing the high-affinity folate receptor: work in progress [J]. Invest. Radiol,2000,35(1):50-57.
    [65] Eftink, MR. Intrinsic Fluorescence of Proteins: Topics in Fluorescence Spectroscopy [M].New York: Kluwer Academic Publishers,2002.1-15.
    [66]娄本浊,王少清,张华东,等.光纤式动态光散射系统综述[J].光学仪器,2007,29(1):89-93.
    [67] Bootz A, Vogel V, Schubert D, et al. Comparision of scanning electron microscopy, dynamic lightscattering and analytical ultracentrifugation for the sizing of poly (butylcyanocrylate) nanoparticles [J]. Pharm.Biopharm,2004,57(1):369-375.
    [68] Lebowitz J, Lewis MS, Schuck P. Modern analytical ultracentrifugation in protein science: a tutorialreview [J]. Protein. Sci,2002,11(9):2067-2079.
    [69] Schuck P. On the analysis of protein self-association by sedimentation velocity analyticalultracentrifugation [J]. Anal. Biochem,2003,320(1):104-124.
    [70] Khan MM, Tayyab S.Understanding the role of interual lysine residues of serum albuminsinconformational stability and bilirubin binding [J].Biochim. Biophys. Acta,2001,1545(1-2):263-277.
    [71]金芬.光谱法研究生理条件下药物与蛋白质的相互作用[D].武汉:华中师范大学,2007.
    [72] Bandyopadhyay P, Sahl K. Surfactant-induced fluorescent sensor activity enhancement of tryptophan atvarious pH [J]. Chemical Physics Letters,2008,457(1-3):227-231.
    [73] Estévez M, Kylli P, Puolanne E, et al.Fluorescence spectroscopy as a novel approach for the assessmentof myofibrillar protein oxidation in oil-in-water emulsions [J]. Meat Science,2008,80(4):1290-1296.
    [74]李绍新.动态光散射技术在生物大分子测量上的应用[D].广州:华南师范大学,2004.
    [75] Tao HU, Belur N, Dongxia LI, et al. Influence of intramolecular cross-links on the molecular, structuraland functional properties of PEGylated haemoglobin [J]. Biochem,2007,402(1):143-151.
    [76] Chou CY, Hsieh YH, Chang GG. Applications of analytical ultracentrifugation to protein size-and-shapedistribution and structure-and-function analyses [J]. Methods,2011,54(1):76-82.
    [77]娄本浊.基于光纤式动态光散射的人血清白蛋白研究[J].激光生物学报,2008,17(6):792-795.
    [78]吴志生,章靓,陈旺,等.激光光散射与荧光光谱法研究大豆苷与牛血清白蛋白作用及聚集态[J].化学学报,2009,67(14):1609-1614.
    [79] Tang JH, Luan F, Chen XG. Binding analysis of glycyrrhetinic acid to human serum albumin:fluoreseence speetroseopy, FTIR, and molecular modeling [J]. Bioorg. Med. Chem,2006,14(9):3210-3217.
    [80]边平凤,马林,许莉,等.荧光猝灭法和动态光散射法研究尿素-水混合溶剂中牛血清白蛋白的构象变化[J].化学学报,2008,66(18):2037-2042.
    [81] Ahrer K, Buchacher A, Iberer G, et al. Detection of aggregate formation during production of humanimmunoglobulin G by means of light scattering [J].Chromatography A,2004,1043(1):41-46.
    [82]罗真理.超速离心分析研究高分子在溶液中的动力学行为[D].中国科学技术大学,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700