用户名: 密码: 验证码:
内蒙芹菜连做障碍微生物修复研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
内蒙古太仆寺旗被誉为“中国芹菜第一乡”,它位于内蒙古锡林郭勒盟南部,芹菜种植面积2000多hm2,产值约3亿元。近几年来由于连茬种植,芹菜根腐病大面积发生,一般田块发病率达30%以上,重田块绝收,损失惨重,化学防治效果差,该病害已成为限制当地芹菜种植业发展的瓶颈。为了有效解决该病害的发生,本试验筛选得到对芹菜根腐病具有拮抗作用的高效放线菌菌株,并探讨其对芹菜的防病促生作用。主要得出以下结果:
     1.对内蒙古芹菜病株与健株根区、根表土壤及根内的细菌、真菌和放线菌的数量及组成进行了比较分析,研究表明根腐病的发生与根区和根表土壤中微生物区系异常密切相关。就根区土壤而言,发病初期病株细菌和真菌的数量分别较健株有所减少,而发病中、晚期,病株细菌和真菌数量分别较健株有所增加。就根表土壤而言,发病初期细菌数量较健株减少,而发病中期和晚期,细菌数量分别较健株大幅提高。发病初期、中期和晚期根表土壤真菌数量均高于健株。发病初期、中期和晚期,根区和根表土壤中B/F均大幅度减少,表明病原真菌所占比例大幅度提高,土壤由细菌型向真菌型转变。
     2.从内蒙古太仆寺旗芹菜种植地染病植株及根区土壤、根表土壤中分离得到病原菌,经过形态学和分子生物学鉴定,确定其为接骨木镰刀菌(Fusarium sambucinum)、链格孢菌(Alternaria alternata)、尖孢镰刀菌萎蔫专化型(Fusarium oxysporum f. sp. Vasinfectum)、芬芳镰刀菌(Fusarium redolen)、黄瓜萎蔫病菌(Plectosphaerella cucumerina)。
     3.利用琼脂块法和生长速率法,从621株放线菌中筛选得到5株对芹菜根腐病原菌有较强拮抗作用的生防放线菌,其原始编号分别为A11、A12、A7、A28及A49号。对其进行16S rDNA序列分析,将其确定为肉质链霉菌(Streptomyces carnosus)、密旋链霉菌(Streptomyces pactum),球孢链霉菌(Streptomyces globisporus)、球孢链霉菌的亚种(Streptomyces globisporus subsp. globisporus )及卡那霉素链霉菌。(Streptomyces kanamyceticus)。
     4.研究了培养基中加入CaCl2和微波处理的方法对钙质土壤放线菌总数、链霉菌属、小单孢菌属、未鉴定属数量及对拮抗性放线菌的影响。发现向高氏1号培养基上加入CaCl2后大部分供试土壤的放线菌总数及拮抗放线菌数量增加,强拮抗性及广谱拮抗性菌株增加。同样,微波处理后绝大部分供试钙质土壤在GA、GACa及HA 3种培养基上的放线菌总数、链霉菌数、小单孢菌及未鉴定放线菌数量均有明显增加,表明微波处理土壤对放线菌分离时出菌量的提高具有显著作用。
     5.盆栽试验表明,单接3株病原菌时,芹菜叶片和根系PPO酶活性、叶片及根系可溶性蛋白含量、芹菜叶片的POD活性、丙二醛含量及芹菜根系活力均较对照显著降低,而芹菜叶片细胞膜的相对透性和伤害率均较对照有所提高。而3株生防放线菌单接时,且在适宜接种量处理下,能显著提高叶片和根系的PPO酶活性、叶片及根系可溶性蛋白含量、芹菜叶片的POD活性以及降低芹菜叶片细胞膜的相对透性和伤害率。当3株生防放线菌与3株病原菌混接时,芹菜叶片和根系PPO酶活性、叶片及根系可溶性蛋白含量、芹菜叶片的POD活性和叶片丙二醛含量及芹菜根系活力都较单接病原菌时显著升高,而芹菜叶片细胞膜的相对透性和伤害率均有所降低。进而证明,3株生防放线菌有助于提高芹菜的诱导抗性,抑制连作病害发生。
The Taibus County located in the southern part of Xilin Gol League is known as“the Chinese celery first township”where the celery planting-area is about 2000hm2and the business about celery can produce about 3 million yuan per year. For the continuous cropping, a kind of celery disease named root-rot often happened recently over large area. The happening frequency of this kind disease is generally more than 30%, and the more serious situation is the completely loss in harvest on the heavy infected region. The traditional chemical pesticide has little effective on this kind disease. The happening of this disease has limited the development of local celery planting. In order to solve this problem effectively, the experiments study on screening higher efficient antagonistic actinomyces, and discusses that it can whether promote the growth of plant, and control the disease of plant or not. The main results are as follow:
     1.The occurrence of root rot disease in is closely related to the abnormal of microflora in celery rhizosphere soil and root surface soil in Inner Mongolia. In the rgizosphere soil, the number of bacteria, fungus of diseased plant in initial stage is less than healthy plant, while the number of bacteria, fungus of diseased plant in middle and late stage is much more than healthy plant. In the root surface soil, the number of bacteria of diseased plant in initial stage is less than healthy plant, while that in middle and late stage is much more than healthy plant. In initial, middle and late stage, the number of fungus of diseased plant is much more than healthy plant. In the reduction of the ratio of B / F in the rgizosphere soil and the root surface soil and the proportion of pathogenic fungi increasing and lead to the disease. The type of soil change form bacterium to fungi.
     2. From Inner Mongolia Taibus we isolated some fungi form infected plants and rhizosphere soil and root surface of soil. After morphological and molecular biology, we determine these are Fusarium sambucinum, Alternaria alternate, Fusarium oxysporum f. sp. Vasinfectum, Fusarium redolen, Plectosphaerella cucumerina.
     3. Using agar block and the growth rate method, we were screened five strong antagonistic former 621 actinomycetes. These stains number are A11, A12, A7, A28 and A49. After we analyzing its 16S rDNA sequence and turned out these are Streptomyces carnosus, Streptomyces pactum , Streptomyces globisporus , Streptomyces globisporus subsp. Globisporus and Streptomyces kanamyceticu.
    
     4.we studyed on the medium by adding CaCl2 and the method of microwave treatment have effect on the total number of actinomycetes, Streptomyces, Micromonospora, not identified kinds and the antagonistic actinomycetes. After adding CaCl2 to the medium, we found that the total number of actinomycetes, antagonistic actinomycetes and strong broad-spectrum of antagonistic strains increased. Similarly, the microwave treatment of tested soil in the GA, GACa and HA 3 kinds of media, we found out the total number of actinomycetes, Streptomyces, Micromonospora and unidentified genus were significantly increased, which show that the microwave could increase the amount of actinomycetes significantly.
     5. Pot experiments showed that when inoculating three pathogens, celery leaves and roots PPO enzyme activity and soluble protein content, POD activity and MDA content in leaves were significantly lower than the CK, while the cell membrane permeability and injury rate celery leaves higher than the CK. when inoculating three antagonistic actinomycetes, celery leaves and roots PPO enzyme activity and soluble protein content, POD activity and MDA content in leaves were significantly higher than the CK, while the cell membrane permeability and injury rate celery leaves lower than the CK. when mixed inoculating three pathogens and three antagonistic actinomycetes, celery leaves and roots PPO enzyme activity and soluble protein content, POD activity and MDA content in leaves were significantly higher than inoculated pathogens, while the cell membrane permeability and injury rate celery leaves lower than inoculated pathogens. Further proof, three actinomycetes contribute to the induction of celery resistance and inhibit the disease occurred.
引文
Booth .C.镰刀菌属. 1988.陈其焕译.北京:农业出版社.
    鲍士旦. 2000.土壤农化分析.北京:中国农业出版社.
    蔡桂荣,孙爱武. 2007.设施蔬菜连作障碍的发生机制及防治措施.吉林蔬菜, (3): 49~50.
    陈红军,郭明,冯建菊. 2000.我国生物农药的研究应用近况.植物保护, 20(3): 21~22.
    陈华保,杨春平. 2005.放线菌IPS254代谢产物的农用活性.农药, (5): 232~234.
    陈李红. 2007.浅谈减轻蔬菜连作障碍的几种农业措施.广西园艺, 18(4): 50~51.
    陈文新. 1996.土壤和环境微生物学.(北京):北京农业大学出版社.
    陈晓红,邹志荣. 2002.温室蔬菜栽培连作障碍研究现状及防治措施.陕西农业科学, (12): 16~20.
    陈宗泽,殷勤燕,戴秉丽. 1999.连作大豆土壤病原菌的分离及其致病性的研究.吉林农业科学, 24(2): 36~39.
    程丽娟,薛泉宏. 2000.微生物学实验技术.西安:世界图书出版公司.
    戴方澜. 1979.中国真菌总汇.北京:科学出版社.
    丁万隆,程惠珍,陈君. 2003.应用木霉制剂防治几种药用植物病害的研究.中国中药杂志, 28(1): 24~27.
    董艳,董坤,郑毅. 2009.种植年限和种植模式对设施土壤微生物和酶活性的影响区系.农业环境科学学报, 28(3): 527~532.
    方中达. 1961.植株病理研究方法.上海:上海科学技术出版社.
    封海胜,张思苏,万书波. 1995.土壤微生物与连轮作花生的相互效应研究.莱阳农学院学报, 12(2): 97~101.
    冯红贤,杨暹,李欣允. 2004.蔬菜连作对土壤生物化学性质的影响.长江蔬菜, (11): 40~43.
    冯兰香,李世东,夏善隆,谢丙炎. 2005.多伦县芹菜黑心病大发生.中国蔬菜, (9): 57.
    高俊凤. 2000.植物生理学实验技术.西安:世界图书出版公司.
    桂春爽,梁宁,蒋继志. 2009.拮抗真菌和放线菌复配发酵产物对马铃薯晚疫病的防病作用.河北大学学报(自然科学版), 29(4): 416~420.
    郝芳,周国英,李河. 2009.经济林植物病原真菌分类鉴定方法研究进展.经济林研究, 27(1): 112~116.
    郝永娟,刘春艳,王勇. 2007.设施蔬菜连作障碍的研究现状及综合调控.中国农学通报, 2007, 23(8): 396~398.
    贺普超,牛立新. 1982.我国葡萄野生种质资源的抗寒性分析.园艺学报, (3):17~21.
    胡元森,吴坤,刘娜. 2004.黄瓜不同生育期根际微生物区系变化研究.中国农业科学, 37(10): 1521~1526.
    黄锦法,李艾芬. 2001.浙江嘉兴保护地土壤障碍的农化性状指标研.土壤通报, 32 (4): 160~162.
    黄仲生,杨玉茹. 1990.黄瓜枯萎病病原菌鉴定及防治研究.华北农学报, 5(4): 99~104.
    贾学文,闫伟,白淑兰. 2007.根际土壤微生物最佳分离条件筛选研究.华北农学报, 22 (6): 147~151.
    季尚宁,肖玉珍,田慧梅. 1996.土壤灭菌对连作大豆生长发育的影响.东北农业大学学报, 27(4): 326~329.
    蒋细良,谢德龄. 1994.农用抗生素的作用机理.生物防治通报, 10(2): 76~81.
    姜怡,段淑蓉,唐蜀昆. 2006.稀有放线菌分离方法.微生物学通报, 33(1): 181~183.
    蒋燕,康业斌. 2000.日光温室蔬菜连作障碍及防治对策.石河子大学学报(自然科学版), 4(2): 159~164.
    李德勇,江涛. 2002.茼蒿、苋菜、丝瓜、大白菜高效间作套种植模式.河北农业科技, (2):17.
    李好琢,霍建勇. 2005.蔬菜作物的连作障碍发生机理及生态育种.北方园艺, (3):10~11.
    李合生. 2000.植物生理生化实验原理和技术.北京:高等教育出版社.
    李洪连,袁红霞,王烨. 1999.根际微生物多样性与棉花品种对黄萎病抗性的关系研究II.同抗性品种根际真菌区系分析及其对棉花黄萎病菌的抑制作用.植物病理学报, 29(3): 242~246.
    李洪连,王守正,王金生. 1993.黄瓜对炭疽病诱导抗性的初步研究Ⅱ.诱导抗病性机制的研究.植物病理学报, 23(4): 327~330.
    李彦斌,刘建国. 2007.植物化感自毒作用及其在农业中的应用.农业环境科学学报, 26(3): 347~350.
    梁军锋,薛泉宏,牛小磊. 2005. 7株拮抗性放线菌在辣椒根部定殖及对辣椒叶片PAL与PPO活性的影响.西北植物学报, 25 (10): 2118~2123.
    梁亚萍,宗兆锋,马强. 2007. 6株野生植物内生放线菌防病促生作用的初步研究.西北农林科技大学学报(自然科学版), 35(7): 131~136.
    林超峰,陈占全,薛泉宏. 2007.青海三江源地区风沙土养分及微生物区系.应用生态学报, 18 (1) : 101~106.
    刘德,吴凤芝,栾非时. 1998.不同连作年限土壤对大棚黄瓜根系活力及光合速率的影响.东北农业大学学报, 29(3) :219~223.
    刘峰,温学森. 2006.根系分泌物与根际微生物关系的研究进展.食品与药品, 8(9): 37~40.
    刘凤淮,文廷刚,杜小凤. 2008.蔬菜连作障碍因子分析及其防治措施.江西农业学报, 20(5): 41~43.
    刘建辉,崔鸿文. 1995.电导法鉴定黄瓜抗寒性的研究.西北农业大学学报(自然科学版), 23(4): 74~77.
    刘建军. 2006.浅析太仆寺旗蔬菜市场现状与发展.内蒙古农业科技, (3): 49.
    刘军,温学森,郎爱东. 2007.植物根系分泌物成分及其作用的研究进展.食品与药品, 9(3): 63~65.
    刘润进,沈崇尧,李怀方. 1993. VA菌根对大丽轮枝菌于棉花体内PR蛋白的诱导作用.植物病理学报, 23(2): 162~165.
    刘志恒. 2005.放线菌—微生物药物的重要资源.微生物学通报, 32(6): 143~145.
    罗晓丽,肖娟丽,王志安. 2008.菠菜甜菜碱醛脱氢酶基因在棉花中的过量表达和抗冻耐逆性分析.生物工程学报, 24(8): 1464~1469.
    罗正荣,章文才. 1994.应用Logistic方程测定柑桔抗冻力的探讨.果树科学, 11(2): 100~102.
    梅汝鸿,徐维敏. 1998.植物微生态学.北京:中国农业出版社.
    潘争艳,刘伟成,裘季燕. 2005.放线菌Ⅲ~61和A~21对蔬菜枯萎病和灰霉病的控制作用.华北农学报, 20(4): 92~97.
    任爱芝,赵培宝. 2008.保护地蔬菜茎基腐病拮抗真菌的筛选及防病效果研究.北方园艺, (7): 231~233.
    阮继生,刘志恒,梁立儒. 1990.放线菌研究及应用.北京:北京科学出版社.
    申玉香,李洪山,乔华. 2007.芹菜叶斑病的发生特点及其化学防治.安徽农业科学, 35(33): 10760~10761.
    沈玲,郭正彦,吴文君. 2005.极端环境中分离放线菌的方法.西北农业学报, 14(5): 146~149.
    时向东,方圆,程传策. 2009.植物抗逆性与细胞壁expansin的关系概述.河南农业科学, 4: 10~13.
    史应武,娄恺,李春. 2009.内生真菌对甜菜主要农艺性状及氮糖代谢关键酶活性的影响.作物学报, 35(5): 946~951.
    司美茹,薛泉宏,陈占全. 2005.青海高原土壤拮抗性放线菌的生态分布.应用与环境生物学报, 11(1): 104~111.
    司美茹,薛泉宏,来航线. 2004.放线菌分离培养基筛选及杂菌抑制方法研究.微生物学通报, 31(2): 61~65.
    孙秉钧,黄礼森,李树玲. 1987.利用电解质渗出率方法测定梨的耐寒性.中国果树, (2): 15~18.
    孙程旭,曹红星,陈思婷. 2009.应用电导率法及Logistic方程测试蛇皮果抗寒性研究.江西农业学报, 21(4): 33 ~35.
    孙冬梅,林志伟,迟丽. 2010.黄绿木霉菌及其混剂对大豆菌核病的诱导抗性初探.大豆科学, 29(1): 88~91.
    孙广宇,张雅梅,张荣. 2004.突脐孢属Brn1基因核苷酸序列比较及系统发育研究.菌物学报, 23(4): 480~486.
    孙秀山,封海胜,万书波. 1999.连作花生主要微生物类群与土壤酶活性变化及其交互作用.应用与环境生物学报, (5): 300~302.
    田丽萍,王祯丽,陶丽琼. 2000.大棚蔬菜连作障碍原因与防治措施.石河子大学学报(自然科学版), 4(2): 159~163.
    田连生,张根伟. 2002.木霉对蔬菜立枯丝核茵病菌的生防效果研究.河北省科学院学报, 19(4): 254~256.
    童有为,陈淡飞. 1991.温室土壤次生盐渍化的形成和治理途径.园艺学报,18(2): 159~162.
    涂璇,薛泉宏,张宁燕. 2007.辣椒疫病生防放线菌筛选及其对辣椒根系微生物区系的影响[J].西北农林科技大学学报(自然科学版), 35(6): 141~149.
    王惠哲. 2003.黄瓜根腐病病原菌的分离鉴定及室内药剂筛选.河北:河北农业大学.
    王克勤,陈亮. 2006.芹菜资源及其保健功能的研究进展.湖南农业科学, (3): 131~133,136.
    魏景超. 1979.真菌鉴定手册.上海:上海科学技术出版社.
    魏艳敏,刘大群,田世民. 2000.链霉菌(Strepto myces spp.)对几种蔬菜病原菌的拮抗作用.河北农业大学学报, 2000, (3): 65~68.
    翁启勇,李开本. 1998.诱导植物系统抗性研究进展.福建农业学报, 13(4): 24~28.
    吴道澄,金友煌,席晓莉. 1999.高功率微波对金黄葡萄球菌杀灭效应的实验研究.中国医学物理学杂志, 16 (3): 183~186.
    吴凤芝,赵凤艳. 2003.根系分泌物与连作障碍.东北农业大学学报, 34(1): 114~118.
    吴凤芝. 2000.设施蔬菜连作障碍原因综合分析与防治措施.东北农业大学学报, 31(3): 241~247.
    吴玉光,张东兴,霍高智. 2005.蔬菜连作障碍防治的研究动态.中国蔬菜, (增刊): 82~86.
    吴赟生,张森泉. 2008.菠菜内生细菌SEB的鉴定及拮抗作用.安徽农业科学, 36(20): 8681~8682, 8698.
    肖炜,李铭刚,崔晓龙. 2006.几种选择性分离稀有放线菌的方法.微生物学通报, 33 (1):133~137.
    薛继澄,毕德义,李家金. 1994.保护地栽培蔬菜生理障碍的土壤因子与对策.土壤肥料, (1): 4~9.
    许艳丽,韩晓增. 1995.大豆重迎茬研究.哈尔滨:哈尔滨工程大学出版社.
    薛泉宏,同延安. 2008.土壤生物退化及其修复技术研究进展.中国农业科技导报, 10(4): 28~35.
    阎逊初. 1992.放线菌的分类和鉴定.科学出版社, 1992.
    杨斌,薛泉宏,陈占全. 2008.微波处理对土壤放线菌分离效果的影响.应用生态学报, 19(5): 1091~1098.
    叶雪凌,谢华,曹鸣庆,马荣才. 2008.蔬菜作物抗病基因研究进展.农业生物技术学报, 16 (5): 898~904.
    杨宇容,徐丽华,段若玲. 1997.稀有放线菌分离方法的研究.云南大学学报(自然科学版), 19(4): 403~408.
    姚圣梅,杨晓红,郑雪虹,等.蔬菜大棚土壤微生物种类及数量的初步研究[J].华中农业大学报, 1997, 16(4): 347~350.
    喻景权,杜尧舜. 2000.蔬菜设施栽培可持续发展中的连作障碍问题.沈阳农业大学学报, 31(1): 124~126.
    袁亮,胡俊,高润蕾,苏高升. 2008.番茄内生细菌对番茄溃疡病菌拮抗作用的研究.华北农学报, 23(4): 41~44.
    袁龙刚,张军林. 2006.辣椒连作障碍的主要原因及其对策.园林园艺, (2): 32~33.
    责海燕. 2008.我国北方主要花卉新病害及病原鉴定.东北:东北农业大学.
    张爱华,周国兴. 2008. 4株木霉对人参疫病菌、西洋参锈腐病菌的拮抗作用.特产研究, (3): 34~36.
    张爱君,张明普,张洪源. 2002.果树苗圃土壤连作障碍研防治措施.陕西农业科学, (12): 16~18.
    张纪忠. 1990.微生物分类学.上海:复旦大学出版社.
    张建国,杜索惠. 1996.蔬菜连作障碍原因与防治措施.北方园艺, (22): 37~38.园艺
    张学武,张建丽. 2005.稀有放线菌的选择性分离.生命科学仪器, 3 (6): 17~20.
    赵娟,杜军志,薛泉宏. 2010. 3株放线菌对甜瓜幼苗的促生与抗性诱导作用.西北农林科技大学(自然科学版), 38(2): 110~117.
    赵尊练,谭根堂,严小良. 2003.辣椒高效生产实用技术.陕西:西北农林科技大学出版社.
    赵尊练,严小良. 2003.中国线辣椒产业发展的思路与对策.中国农学通报, 19(5):176~179.
    赵尊练,杨广君,巩振辉,郭建伟. 2007.克服蔬菜作物连作障碍问题之研究进展.园林园艺科学, 23(12): 278~282.
    郑良永,胡剑非,林昌华,唐群锋,郭巧云. 2005.作物连作障碍的产生及防治.热带农业科学, 25(2): 58~62.
    郑亚萍,王才斌,黄顺之,吴正锋. 2008.花生连作障碍及其缓解措施研究进展.中国油料作物学报, 30(3): 384~388.
    中科院微生物所放线菌分类组. 1975.链霉菌鉴定手册.北京:北京科学出版社.
    周艺敏,小仓宽典,吉田彻志. 2006.天津半干旱地区不同种植年限菜田土壤微生物变化特征的研究.植物营养与肥料学报, 6(4): 424~429.
    周永强,薛泉宏,杨斌. 2008.生防放线菌对西瓜根域微生态的调整效应.西北农林科大学学报(自然科学版), 36 (4): 143~150.
    朱宏建,易图永,周鑫钰. 2007.土壤放线菌生防活性物质的研究进展.作物研究, (2): 149~151.
    朱根海,刘祖祺,朱培仁. 1986.应用Logistic方程确定植物组织低温半致死温度研究.南京农业大学学报, (3): 11~16.
    宗兆锋,乔宏萍,何杞真. 2002. 2株重寄生菌的分离和对靶标菌的抑制作用.西北农业学报, 11(4): 1~3.
    Agbessi S, Beausejour J. 2003. Antagonistic properties of two recombinant strains of streptomyces melano sporofaciens obtained by intra-specific protoplast fusion. Applied Microbiology and Biotechnology, 62(2~3): 233~238.
    Blim U, Shafer R, Lehmen M E. 1999. Eidence for inhibitory allelopathic inter actions involving phenolic acids in field soils Concepts VS an experimental model. Crit. Rev. Plant Sci., (18): 637~693.
    Bulina T I, Alferova I V, Terekhova L P. 1997. A novel approach to isolation of actinomycetes involving irradiation of soil samples with microwaves. Microbiology, 66 ( 2 ): 231~ 234.
    EL Tarabily K. A, Soliman M. H, Nassar A. H. 2000. Biological control of Sclerotinia minor using achitinolytic bacterium and actinomycetes. Plant Pathology, 49: 573~583.
    Gojen N Bordoloi, Babita Kumari. 2002. Potential of a novel antibiotic, 2-methylheptyl is on icotinate, as a biocontrol agent against fusarial wilt of crucifers. Pest Management Science, 58(3): 297~302.
    Kim Beom Seok, Moon Surk Sik. 1999. Isolation, identification, and antifungal activity of a macrolide antibiotic, oligomycin A. produced by streptomyces libani. Canadian Journal of Botany, 7 7(6): 850~858.
    Hammond Kosack K E and Jones J D G. 1996. Resistance gene dependent plant defense responses (J).The Plant Cell, 1773~1791.
    Hayakawa M, Sadakata T, Kajiura T. 1991. New methods for the highly selective isolation of micromonospora and microbispora from soil. Journal of Fermentation and Bioengineering, 72 (5): 320~ 333.
    Hayakawa M, Momose Y, Kajiura T.1995. A selective isolation method for Actinomadura viridis in soil. Journal of Fermentation and Bioengineering, 79 (3): 287~289.
    Hayakawa M, Tamura T, Iino H. 1991. Pollen baiting and drying method for the highly selective isolation of actinoplanes spp. from soil. Journal of Fermentation and Bioengineering, 72 (6): 433~ 438.
    Hayakawa M, Tamura T, Nonomura H. 1991. Selective isolation of actinoplanes and dactylo- sporangium from soil by usingγ-collidine as the chemoattractant. Journal of Fermentation and Bioengineering, 72 (6): 426~ 432.
    Hendricks C W, Pascoe N. 1988. Soil microbial biomass estimates using 2450MHz microwave irradiation. Plant and Soil, 110 (1): 39~47.
    Hopwood D A. 2003. Streptomyces genes: from Waksman to Sanger J. Ind microbio biotechnol, 30: 468~471.
    Jensen H.L. 1930. Actinomycetes in Danish soils. Soil Sci., 30: 59~77.
    Likhacheva A A, Komarova A S, Luk’yanov A A. 2006. The Influence of SHF radiation on soil streptomycetes [J]. Eurasian Soil Science, 39 (8): 854~858.
    Li YV, Terekhova L P, Gapochka M G. 2002. Isolation of actinomycetes from soil using extremely high frequency radiation [J]. Microbiology, 71 (1): 105~108.
    Neilands J B. 1981. Micorbial iron compounds. Anna. Rev.Biochem, 50: 715~731.
    Okami Y. 1991. Concepts and techniques for isolation and characterization of actinomycetes. InSIM~ISBA’91 Workshop on Actinomycetes. Madison:University of Wisconsin.
    Rajashekar C, L V Gusta, M J Burke.1979. Frost damage in liardy herbaceous species[C]// L yons,J M. Low temperature stress in crop plants the role of membrane. New York: Academic Press, 255 ~274.
    S. Manulis, D. Zutra, F. Kleitman, O. Dror, M. Zilberstaine, E. Shabi. 1998. Distribution of streptomyc in resistant strains of Erwinia amylovora in Israel and occurrence of blossom blight in the autumn. Phytoparasitica, 26: 223~230.
    Su W, Bi R Q, Wang W Y. 1988. The study on the quantification of plant resistance The quantitative relationship among stress intensity, duration and strain in plant cold resistance. Science in China, Ser.B, (1): 60~70.
    Yu J Q, Mstsui Y. 1997. Effect of root excudates of cucumber (Cucumber satitum) and allelochemicals on ion up take by cucumber seedlings [J].J. Chem. Ecol., (23):817~827.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700