用户名: 密码: 验证码:
波动方程保辛近似解析离散化算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
正演数值模拟算法是反演的重要基础,而差分方法又是目前地震勘探领域应用最为广泛的正演手段之一。本文提出了一类新的求解地震波方程的正演差分方法。首先,通过在传统的波动方程哈密尔顿系统中引入位移与粒子速度的空间梯度,建立了波动方程扩充的哈密尔顿系统。然后,针对波动方程扩充的哈氏系统,发展了一类具有保辛和低数值频散特性的数值方法,称为近似解析保辛分部龙格库塔(NSPRK)方法。其后,针对NSPRK方法进行了详细的理论分析,包括其误差、稳定性条件、数值频散关系等。理论分析表明,与传统辛算法相比,尽管NSPRK类方法稳定性条件略严格,但数值频散误差较小。
     为了进一步考察本文所提出新方法的有效性和优越性,论文采用NSPRK方法计算得到了三维声波与弹性波方程的数值解,并与解析解进行了比较,二者能够很好地吻合,从而证实了NSPRK方法的正确性。此外,本文还就NSPRK的计算效率和存储需求进行了分析和比较,结果表明,在同样消除数值频散的条件下,NSPRK(2,4)方法计算效率最高。例如,与传统的保辛格式SPRK(4,4)相比,NSPRK(2,4)的计算速度提高了约10.4倍,内存需求和并行通信量仅有其14.8%和7.6%。
     另一方面,为了解决波场模拟中的人工边界问题,本文提出了一种将目前流行的分裂波场完全匹配层(PML)吸收边界条件与NSPRK相结合的新方法,有效地消减了由人工边界引起的反射波。另外,本研究还推导了二阶地震波方程所对应的卷积PML条件。数值实验表明,与分裂波场PML相比,卷积PML的内存需求减少了32%,计算速度提高了50倍以上。
     最后,本文使用NSPRK(2,4)方法和两类PML吸收边界条件,给出了许多波场模拟结果,进一步证实了NSPRK方法的正确性、低数值频散特性和与PML条件结合的有效性,并研究了地震波在不同地质模型和复杂地质条件下的传播规律,获得了不少有意义的波传播新认识。
Forward modeling method is an important basis of inversion problems. Currentlyin seismic exploration, one of the most widely applied forward methods is finitedifference. This dissertation proposes a new type of finite difference method for solvingseismic wave equations. At first, a new extended Hamiltonian system for waveequations is established by introducing the spatial gradients of the displacement andparticle velocity into the phase space of the Hamiltonian system. Subsequently, forsolving the extended Hamiltonian system, a new type of symplectic numerical methodwith low numerical dispersion is developed, which is called the nearly-analyticsymplectic partitioned Runge-Kutta (NSPRK) method. Afterwards, the theoreticalproperties of the NSPRK method are analyzed in detail, including the theoretical error,stability condition, and numerical dispersion relation. The results show that, comparedwith conventional symplectic method, although the NSPRK method has a relativelytighter stability condition, it can suppress numerical dispersion effectively.
     To verify the validity of NSPRK, numerical experiments for3D acoustic wave andelastic wave equations are made, which show that the numerical solutions generated byNSPRK are well coincident with the analytic solutions. Under the condition that visiblenumerical dispersions are eliminated, the computational efficiencies of NSPRK and fourconventional schemes are compared. The result shows that the NSPRK(2,4) is the mostefficient of them. For example, compared with the conventional symplectic methodSPRK(4,4), the computational speed of NSPRK(2,4) is increased by10.4times, whileits memory requirement and communication time between nodes in parallel are reducedto14.8%and7.6%, respectively.
     On the other hand, to resolve the artificial boundary problem in wave-fieldsimulation, the prevalent split-field perfectly matched layer (PML) absorbing boundarycondition is combined with the NSPRK in a new strategy. This strategy turns outeffective in reducing the reflected waves caused by the truncated boundaries. In addition,the convolutional PML for the second order seismic wave equation is derived. Thenumerical experiment shows that compared with the split-field PML, the convolutionalPML needs32%less memory storage, while its computational speed can be increasedby more than50times.
     Finally, NSPRK(2,4) and the two kinds of PML conditions are applied towave-field simulations in both2D and3D complex geological models. The resultsfurther prove the validity of NSPRK and its property of low numerical dispersion, andmoreover confirm the effectiveness of its combination with PML conditions. On theother hand, seismic wave propagation in different types of geological models withcomplex geological conditions is studied through these numerical simulations, and somenew recognization on wave propagation is obtained.
引文
Abarbanel S, Gottlieb D, and Hesthaven J S. Long time behavior of the perfectly matched layerequations in computational electromagnetics. Journal of scientific Computing,2002,17(1):405-422.
    Abia L, Sanz-Serna J M. Partitioned Runge-Kutta methods for separable Hamiltonian problems.mathematics of computation,1993,60:617-617.
    Aki K, Richards P G. Quantitative seismology. Univ Science Books,2002.
    Alkhalifah T. Acoustic approximations for processing in transversely isotropic media. Geophysics,1998,63(2):623-631.
    Bansal R, Sen M K. Finite‐difference modelling of S‐wave splitting in anisotropic media.Geophysical Prospecting,2008,56(3):293-312.
    Bérenger J P. A perfectly matched layer for the absorption of electromagnetic waves. Journal ofcomputational physics,1994,114(2):185-200.
    Bérenger J P. Perfectly matched layer (PML) for computational electromagnetics. SynthesisLectures on Computational Electromagnetics,2007,2(1):1-117.
    Bridges T J, Reich S. Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs thatconserve symplecticity. Physics Letters A,2001,284(4):184-193.
    Bridges T J. Multi-symplectic structures and wave propagation. the Mathematical Proceedings of theCambridge Philosophical Society,1997,121(01):147-190.
    Carcione J M, Herman G C, and ten Kroode A P E. Seismic modeling, Geophysics,2002,67:1304–1325.
    Cerjan C, Kosloff D, Kosloff R, et al. A nonreflecting boundary condition for discrete acoustic andelastic wave equations. Geophysics,1985,50(4):705-708.
    Chen J B, Qin M Z. Multi-symplectic Fourier pseudospectral method for the nonlinear schrodingerequation. Electronic Transactions on Numerical Analysis,2001,12:193-204.
    Chen J B. High-order time discretizations in seismic modeling, Geophysics,2007,72:SM115-SM122.
    Chen J B. Lax‐Wendroff and Nystr m methods for seismic modelling. Geophysical Prospecting,2009,57(6):931-941.
    Chen S, Yang D, Deng X. A weighted Runge-Kutta method with weak numerical dispersion forsolving wave equations. Communications in Computational Physics,2010,7(5):1027.
    Chen Z, Liu X. An adaptive perfectly matched layer technique for time-harmonic scatteringproblems. SIAM journal on numerical analysis,2006:645-671.
    Chu C, Stoffa P L. Determination of finite-difference weights using scaled binomial windows,Geophysics,2012,77: W17–W26.
    Clayton R, Engquist B. Absorbing boundary conditions for acoustic and elastic wave equations,Bulletin of the Seismological Society of America,1977,67(5):1529-1540.
    Collino F, Tsogka C. Application of the perfectly matched absorbing layer model to the linearelastodynamic problem in anisotropic heterogeneous media. Geophysics,2001,66(1):294-307.
    Dablain M A. The application of high-order differencing to the scalar wave equation. Geophysics,1986,51:54-66.
    Dekker K, Verwer J G. Stability of Runge-Kutta methods for stiff nonlinear differential equations.Amsterdam: North-Holland,1984.
    Dong L, She D, Guan L, et al. An eigenvalue decomposition method to construct absorbingboundary conditions for acoustic and elastic wave equations. Journal of Geophysics andEngineering,2005,2(3):192.
    Eirola T, Sanz-Serna J M. Conservation of integrals and symplectic structure in the integration ofdifferential equations by multistep methods. Numerische Mathematik,1992,61(1):281-290.
    Engquist B, Majda A. Absorbing boundary conditions for numerical simulation of waves.Proceedings of the National Academy of Sciences,1977,74(5):1765-1766.
    Faria E L, Stoffa P L. Finite-difference modeling in transversely isotropic media. Geophysics1994,59:282–289.
    Fei T, Larner K. Elimination of numerical dispersion in finite difference modeling and migration byflux-corrected transport. Geophysics,1995,60:1830-1842:
    Feng K, Qin M. The symplectic methods for the computation of Hamiltonian equations, LectureNote in Math.1987,1297:1-37.
    Forest E. Canonical integrators as tracking codes, SSC Central Design Group Technical Report,1987,SSC-138.
    Fornberg B. The pseudospectral method: comparison with finite difference for the elastic waveequation, Geophysics1987,52:483-501.
    Fornberg B. High-order finite differences and the pseudospectral method on staggered grids. SIAMJournal on Numerical Analysis,1990,27(4):904-918.
    Geller R J, Takeuchi N. A new method for computing highly accurate DSM synthetic seismograms.Geophysical Journal International,1995,123(2):449-470.
    Geller R J, Takeuchi N. Optimally accurate second-order time-domain finite difference scheme forthe elastic equation of motion: one-dimensional cases. Geophysical Journal International,1998,135(1):48-62.
    Graves R W. Simulating seismic wave propagation in3D elastic media using staggered-grid finitedifferences. Bulletin of the Seismological Society of America,1996,86(4):1091-1106.
    Groenenboom J, Falk J. Scattering by hydraulic fractures: Finite-difference modeling and laboratorydata. Geophysics,2000,65(2):612-622.
    Hesthaven J S. On the analysis and construction of perfectly matched layers for the linearized Eulerequations. Journal of computational Physics,1998,142(1):129-147.
    Higdon R L. Absorbing boundary conditions for elastic waves. Geophysics,1991,56(2):231-241.
    Hirono T, Lui W W, Yokoyama K. Time-domain simulation of electromagnetic field using asymplectic integrator. Microwave and Guided Wave Letters, IEEE,1997,7(9):279-281.
    Holberg O. Computational aspects of the choice of operator and sampling interval for numericaldifferentiation in large-scale simulation of wave phenomena. Geophysical prospecting,1987,35(6):629-655.
    Hu F Q. A stable, perfectly matched layer for linearized Euler equations in unsplit physical variables.Journal of Computational Physics,2001,173(2):455-480.
    Komatitsch D, Tromp J. A perfectly matched layer absorbing boundary condition for thesecond‐order seismic wave equation. Geophysical Journal International,2003,154(1):146-153.
    Komatitsch D, Martin R. An unsplit convolutional perfectly matched layer improved at grazingincidence for the seismic wave equation. Geophysics,2007,72(5):SM155-SM167.
    Kondoh Y, Hosaka Y, Ishii K. Kernel optimum nearly-analytical discretization (KOND) algorithmapplied to parabolic and hyperbolic equations. Computers&Mathematics with Applications,1994,27(3):59-90.
    Kosmanis T I, Yioultsis T V, Tsiboukis T D. Perfectly matched anisotropic layer for the numericalanalysis of unbounded eddy-current problems. Magnetics, IEEE Transactions on,1999,35(6):4452-4458.
    Kuzuoglu M, Mittra R. Frequency dependence of the constitutive parameters of causal perfectlymatched anisotropic absorbers. Microwave and Guided Wave Letters, IEEE,1996,6(12):447-449.
    Lasagni F M. Canonical runge-kutta methods. Zeitschrift für Angewandte Mathematik und Physik(ZAMP),1988,39(6):952-953.
    Li X, Wang W, Lu M, et al. Structure‐preserving modelling of elastic waves: a symplectic discretesingular convolution differentiator method. Geophysical Journal International,2012.
    Liu H Y. Multi-symplectic Runge-Kutta-type methods for Hamiltonian wave equations. Journal ofNumericalAnalysis,2006,26:252-271:
    Liu Q H, Tao J. The perfectly matched layer for acoustic waves in absorptive media. The Journal ofthe Acoustical Society of America,1997,102:2072.
    Liu Y, Sen M K. A practical implicit finite-difference method: Examples from seismic modelling.Journal of Geophysics and Engineering,2009,6(3):231.
    Liu Y, Sen M K. A hybrid scheme for absorbing edge reflections in numerical modeling of wavepropagation. Geophysics,2010,75(2): A1-A6.
    Liu Y, Sen M K. Finite-difference modeling with adaptive variable-length spatial operators.Geophysics,2011,76(4): T79-T89.
    Ma X, Yang D, Liu F. A nearly analytic symplectically partitioned Runge–Kutta method for2‐Dseismic wave equations. Geophysical Journal International,2011,187(1):480-496.
    Marsden J E, Patrick G W, Shkoller S. Multisymplectic geometry, variational integrators, andnonlinear PDEs. Communications in Mathematical Physics,1998,199(2):351-395.
    Martin R, Komatitsch D, Ezziani A. An unsplit convolutional perfectly matched layer improved atgrazing incidence for seismic wave propagation in poroelastic media. Geophysics,2008,73(4):T51-T61.
    Martin R, Komatitsch D. An unsplit convolutional perfectly matched layer technique improved atgrazing incidence for the viscoelastic wave equation. Geophysical Journal International,2009,179(1):333-344.
    Martin R, Komatitsch D, Gedney S D, et al. A high-order time and space formulation of the unsplitperfectly matched layer for the seismic wave equation using Auxiliary Differential Equations(ADE-PML). Computer Modeling in Engineering and Sciences (CMES),2010,56(1):17-40.
    Meza-Fajardo K C, Papageorgiou A S. A nonconvolutional, split-field, perfectly matched layer forwave propagation in isotropic and anisotropic elastic media: Stability analysis. Bulletin of theSeismological Society of America,2008,98(4):1811-1836.
    Moczo P, Kristek J, Halada L.3D fourth-order staggered-grid finite-difference schemes: Stabilityand grid dispersion. Bulletin of the Seismological Society of America,2000,90(3):587-603.
    Moczo P, Kristek J, Vavry uk V, et al.3D heterogeneous staggered-grid finite-difference modelingof seismic motion with volume harmonic and arithmetic averaging of elastic moduli anddensities[J]. Bulletin of the Seismological Society of America,2002,92(8):3042-3066.
    Moczo P, Robertsson J O A, Eisner L. The finite-difference time-domain method for modeling ofseismic wave propagation. Advances in Geophysics,2007,48:421-516.
    Moczo P, Kristek J, Galis M, et al. On accuracy of the finite‐difference and finite‐elementschemes with respect to P‐wave to S‐wave speed ratio. Geophysical Journal International,2010,182(1):493-510.
    Okunbor D, Skeel R D, Explicit Canonical methods for Hamiltonian Systems. Mathematics ofcomputation,1992,59:439-455:
    Peng C, Toks z M N. An optimal absorbing boundary condition for elastic wave modeling.Geophysics,1995,60(1):296-301.
    Qi Q, Geers T L. Evaluation of the perfectly matched layer for computational acoustics. Journal ofComputational Physics,1998,139(1):166-183.
    Qin M Z, Wang D L, Zhang M. Q. Explicit symplectic difference schemes for separableHamiltonian systems, Journal of Computational Mathematics,1991,9(3),211–221.
    Qin M Z, Zhang M Q. Multi-stage symplectic schemes of two kinds of Hamiltonian systems forwave equations. Computers&Mathematics with Applications,1990,19(10):51-62.
    Reich S. Finite volume methods for multi-symplectic PDEs. BIT Numerical Mathematics,2000a,40(3):559-582.
    Reich S. Multi-symplectic Runge–Kutta collocation methods for Hamiltonian wave equations.Journal of Computational Physics,2000b,157(2):473-499.
    Rieben R, White D, Rodrigue G. High-order symplectic integration methods for finite elementsolutions to time dependent Maxwell equations. Antennas and Propagation, IEEE Transactionson,2004,52(8):2190-2195.
    Roden J A, Gedney S D. Convolutional PML (CPML): An efficient FDTD implementation of theCFS-PML for arbitrary media. Microwave and optical technology letters,2000,27(5):334-338.
    Ruth R D. A canonical integration technique. IEEE Trans. Nucl. Sci,1983,30(4):2669-2671.
    Saenger E H, Gold N, Shapiro S A. Modeling the propagation of elastic waves using a modifiedfinite-difference grid. Wave motion,2000,31(1):77-92.
    Saitoh I, Suzuki Y, Takahashi N. The symplectic finite difference time domain method. Magnetics,IEEE Transactions on,2001,37(5):3251-3254.
    Sanz-Serna J M. Runge-Kutta schemes for Hamiltonian systems. BIT Numerical Mathematics,1988,28(4):877-883.
    Schmid R. Infinite dimensional Hamiltonian systems.Monographs and Textbooks in PhysicalSciences.1987.
    Sochacki J, Kubichek R, George J, et al. Absorbing boundary conditions and surface waves.Geophysics,1987,52(1):60-71.
    Tang Y F, Vázquez L, Zhang F, et al. Symplectic methods for the nonlinear Schr dinger equation.Computers&Mathematics with Applications,1996,32(5):73-83.
    Tong P, Yang D, Hua B. High accuracy wave simulation–Revised derivation, numerical analysis andtesting of a nearly analytic integration discrete method for solving acoustic wave equation.International Journal of Solids and Structures,2011,48(1):56-70.
    Vilasi G. Hamiltonian Dynamics, World Scientific Publishing Co. Pte. Ltd., Singapore.2001
    Virieux J. Wave propagation in heterogeneous media: velocity-stress finite-difference method.Geophysics,1984,49(11):1933-1957.
    Virieux J. P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method.Geophysics,1986,51(4):889-901.
    von Neumann J, and Richtmyer R D. A method for the numerical calculation of hydrodynamicshocks, Journal of Applied Physics,1950,21,232-237.
    Wu C, Harris J M, Nihei K T, et al. Two-dimensional finite-difference seismic modeling of an openfluid-filled fracture: Comparison of thin-layer and linear-slip models. Geophysics,2005,70(4):T57-T62.
    Yang D H, Liu E, Zhang Z J, et al. Finite‐difference modelling in two‐dimensional anisotropicmedia using a flux‐corrected transport technique. Geophysical Journal International,2002,148(2):320-328.
    Yang D, Teng J, Zhang Z, et al. A nearly analytic discrete method for acoustic and elastic waveequations in anisotropic media. Bulletin of the Seismological Society of America,2003a,93(2):882-890.
    Yang D, Wang S, Zhang Z, et al. n-Times absorbing boundary conditions for compactfinite-difference modeling of acoustic and elastic wave propagation in the2D TI medium.Bulletin of the Seismological Society of America,2003b,93(6):2389-2401.
    Yang D, Peng J, Lu M, et al. Optimal nearly analytic discrete approximation to the scalar waveequation. Bulletin of the Seismological Society of America,2006,96(3):1114-1130.
    Yang D, Song G, Lu M. Optimally accurate nearly analytic discrete scheme for wave-fieldsimulation in3D anisotropic media. Bulletin of the Seismological Society of America,2007,97(5):1557-1569.
    Yang D, Wang L, Deng X. An explicit split‐step algorithm of the implicit Adams method forsolving2‐D acoustic and elastic wave equations. Geophysical Journal International,2009a,180(1):291-310.
    Yang D, Wang N, Chen S, et al. An explicit method based on the implicit Runge–Kutta algorithmfor solving wave equations[J]. Bulletin of the Seismological Society of America,2009b,99(6):3340-3354.
    Yang D, Song G, Hua B, et al. Simulation of acoustic wavefields in heterogeneous media: A robustmethod for automatic suppression of numerical dispersion. Geophysics,2010a,75(3):T99-T110.
    Yang D, Wang L. A split-step algorithm for effectively suppressing the numerical dispersion for3Dseismic propagation modeling. Bulletin of the Seismological Society of America,2010b,100(4):1470-1484.
    Yoshida H. Construction of higher order symplectic integrators. Physics Letters A,1990,150(5):262-268.
    Yoshida H. Recent progress in the theory and application of symplectic integrators. CelestialMechanics and Dynamical Astronomy,1993,56(1):27-43.
    Zeng Y Q, He J Q, Liu Q H. The application of the perfectly matched layer in numerical modeling ofwave propagation in poroelastic media. Geophysics,2001,66(4):1258-1266.
    Zhang J. Elastic wave modeling in fractured media with an explicit approach. Geophysics,2005,70(5): T75-T85.
    Zhang Y, Zhang H, Zhang G. A stable TTI reverse time migration and its implementation.Geophysics,2011,76(3): WA3-WA11.
    Zhao D P, Lei J S, Liu L. Seismic tomography of the Moon. Chinese Science Bulletin,2008,53(24):3897-3907.
    Zhao P F, Qin M Z. Multisymplectic geometry and multisymplectic Preissmann scheme for the KdVequation. Journal of Physics A: Mathematical and General,2000,33(18):3613.
    陈浩,王秀明,赵海波.旋转交错网格有限差分及其完全匹配层吸收边界条件.科学通报,2006,51(17):1985-1994.
    陈可洋.声波完全匹配层吸收边界条件的改进算法.石油物探,2009,48(1):76-79.
    陈可洋.完全匹配层吸收边界条件研究.石油物探,2010,49(5):472-477.
    陈山.求解波动方程的龙格-库塔方法及其地震波传播模拟,2010年[博士学位论文]
    丁亮,韩波,刘润泽,等.基于探地雷达的混凝土无损检测反演成像方法.地球物理学报,2012,55(1):317-326.
    冯康,秦孟兆.哈密尔顿系统的辛几何算法.浙江科技出版社,2003.
    李庆扬,关治.数值计算原理.清华大学出版社有限公司,2000.
    李荣华,偏微分方程数值解法.高等教育出版社,2005.
    李一琼,李小凡,朱童.基于辛格式奇异核褶积微分算子的地震标量波场模拟.地球物理学报,2011,54(7):1827-1834.
    陆基孟,王永刚.地震勘探原理.石油大学出版社,2009.
    罗明秋,刘洪,李幼铭.地震波传播的哈密顿表述及辛几何算法.地球物理学报,2001,44:120-127.
    牟永光,裴正林.三维复杂介质地震数值模拟.北京:石油工业出版社,2005.
    秦孟兆.波动方程两种哈密顿型蛙跳格式.计算数学,1988,3:272-281.
    丘维声.高等代数.高等教育出版社,2003.
    宋国杰.三维弹性波方程的改进近似解析离散化方法及波场模拟,2008年[硕士学位论文]
    宋国杰.并行WNAD算法及其波场模拟,2011年[博士学位论文]
    宋国杰,杨顶辉,童平,等.求解3D弹性波方程的并行WNAD方法及其TI介质中的波场模拟.地球物理学报,2012,55(2):547-559.
    宋海斌,张关泉.层状介质弹性参数反演问题研究综述.地球物理学进展,1998,13(4):67-78.
    孙耿.波动方程的一类显式辛格式.计算数学,1997,1:1-l0.
    童平,地震层析成像方法及其应用研究,2012年[博士学位论文]
    汪文帅,李小凡,鲁明文,等.基于多辛结构谱元法的保结构地震波场模拟.地球物理学报,2012,55(10):3427-3439.
    王磊,求解波动方程的多步法及其数值模拟,2009年[硕士学位论文]
    王磊,杨顶辉,邓小英.非均匀介质中地震波应力场的WNAD方法及其数值模拟.地球物理学报,2009,52(6):1526-1535:
    王美霞,杨顶辉,宋国杰.二维SH波方程的半解析解及其数值模拟.地球物理学报,2012,55(3):914-924.
    王美霞,双相及黏弹性介质中波传播方程的保辛算法及其波场模拟,2012年[硕士学位论文]
    王念,隐式Runge-Kutta方法的显式化算法及波场模拟,2009年[硕士学位论文]
    王彦飞.反演问题的计算方法及其应用.高等教育出版社,2007.
    邢誉峰,冯伟.李级数算法和显式辛算法的相位分析.计算力学学报,2009,26(2):167-171.
    颜娜.辛算法及其相位飘移性质的研究[D].上海交通大学,2010.[硕士学位论文]
    杨晓春,李小凡,张美根.地震波反演方法研究的某些进展及其数学基础.地球物理学进展,2001,16(4):96-109.
    张宏,建筑研究.灌注桩检测与处理.人民交通出版社,2001.
    张鲁新,符力耘,裴正林.不分裂卷积完全匹配层与旋转交错网格有限差分在孔隙弹性介质模拟中的应用.地球物理学报,2010,53(10):2470-2488.
    赵海波,王秀明,王东,等.完全匹配层吸收边界在孔隙介质弹性波模拟中的应用.地球物理学报,2007,50(2):581-591.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700