用户名: 密码: 验证码:
多辛变分积分子及非标准有限差分方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
具有多辛几何结构的系统在自然界是广泛存在的,尤其是在力学、电磁学等物理范畴的系统中。多辛几何结构是多辛系统的内在结构,而能够保持原系统多辛结构的数值方法往往具有良好的数值表现,能够较好的保持定量定性上的数值特性。比如多辛数值方法具有长时间的稳定性及能较好的保持系统中的各种不变量。目前主要有两类构造多辛数值格式的方法,一类是对多辛Hamilton方程进行直接离散,再试图推导它的离散多辛结构,这种方法被称为多辛Hamilton数值方法;另一类就是基于Lagrange的角度使用变分原理,导出离散Euler–Lagrange方程,同时由变分原理得到其对应的离散多辛结构,这种方法被称为多辛离散变分积分子。后者的优势在于它的构造基于变分原理,而根据离散的变分原理一定可以导出它的离散多辛结构。所以离散变分积分子一定是保持多辛结构的。本文将基于Lagrange的角度使用变分原理研究离散变分积分子及其多辛几何结构,并结合非标准有限差分方法的思想和优势构造非标准有限差分变分积分子。本文还将非标准有限差分方法与复数时间步长复合方法结合起来研究两个生物模型及模型本身的守恒率。
     本文首先简要概述了辛和多辛系统的研究历程,介绍了Hamilton系统和Lagrange系统的关系及变分原理的基本思想,并回顾了多辛Hamilton数值方法和离散变分积分子的研究成果。
     其次,本文基于Lagrange的角度利用变分原理研究变分积分子及其保持的多辛结构。本文在前人研究Lagrange多辛几何的基础上考虑边界值空间,利用边界Lagrange函数和变分原理,建立了新的推导离散多辛结构——离散多辛形式公式的方法。鉴于Lagrange系统和Hamilton系统在非退化条件下的等价关系,本文也探求了Lagrange变分积分子和多辛Hamilton数值方法之间的关系。针对波动方程,在选择适当的离散下,本文建立了离散变分积分子和经典的多辛Hamilton数值方法之间的等价关系,构造了分别与Euler box数值格式和Preissman box数值格式等价的两个离散变分积分子。
     再次,本文结合非标准有限差分方法的思想和前面建立的离散变分积分子的理论,分别构造了线性波动方程和Klein–Gordon方程的非标准有限差分变分积分子。讨论了所构造方法的收敛性,并推导了所构造方法保持的多辛离散结构——离散多辛形式公式。在数值试验中,本文验证了方法的收敛阶,展现了所构造的方法可以很好反映原系统的数值特性。数值实验验证了非标准有限差分变分积分子数值求解多辛系统的可行性和有效性。
     接着,本文研究了非线性变系数Schro¨dinger方程。本文分别在三角离散和方形离散下构造了此方程的非标准有限差分变分积分子,讨论了变分积分子的收敛精度,并推导了其保持的多辛离散结构——离散多辛形式公式。数值试验验证了方法的收敛阶,考察了方法的数值稳定性。同时展示了所构造方法可以很好的保持非线性Schro¨dinger方程的模方守恒率,并分别将本文所构造的方法与标准有限差分方法和经典的Crank–Nicolson方法进行比较,展示了本文所构造方法的优势所在。
     最后,本文将结合非标准有限差分方法和具有复数时间步长的复合方法去研究浮游生物模型和百日咳传染病模型。针对这两个模型构造的非标准有限差分方法可以很好的保持原系统中的正性和总量守恒率。然后使用具有复数时间步长的复合方法改进了数值解的收敛精度并且继续保持了正性和总量守恒率。这也是首次将复数时间步长的复合方法应用于生物模型的数值求解。复合方法因其简单却有效的格式使得它比Richardson外推方法具有更好的计算效率。数值实验证明了本文对生物模型构造的方法是可行有效的。
The symplectic and multisymplectic systems widely exist in natural world, especial-ly in mechanics and electromagnetics systems etc. Multisymplectic geometric structure isa intrinsic structure of the multisymplectic system. The numerical methods which can p-reserve the multisymplectic structure of original system always perform well and they canpreserve quantitative and qualitative numerical characteristics. For example, multisym-plectic methods have long-time stability and preserve the invariants of original systemswell. There are two main ways to construct multisymplectic numerical schemes. One isto discrete the multisymplectic Hamilton’s equation directly, and try to derive its corre-sponding discrete multisymplectic structure. These methods are called multisymplecticHamiltonian method. The other way is based on variational principle of Lagrangian side.The discrete Euler–Lagrange equation is derived from discrete variational principle, andmeanwhile the corresponding multisymplectic structure is also produced from the dis-crete variational principle. These methods are called multisymplectic discrete variationalintegrators. A advantage of the latter one is that it’s based on the intrinsic variational prin-ciple, and it’s naturally multisymplectic. This dissertation will use the discrete variationalprinciple in Lagrangian field to study the discrete variational integrators and their corre-sponding discrete multisymplectic structures. Furthermore, the idea of nonstandard finitediference methods is applied to construct the nonstandard finite diference variational in-tegrators. This dissertation also combine the nonstandard finite diference methods andcomposition methods with complex time steps to study two population models and theirconservation laws.
     Firstly, the research history of symplectic and multisymplectic systems is introduced.The Hamilton’s systems, Lagrange’s systems and the basic idea of variational principleare stated. Some research results of the multisymplectic numerical methods are presented.
     Secondly, based on Lagrangian side, variational principle is used to study the varia-tional integrators and corresponding multisymplectic structures. Considering the bound-ary value space, this paper gives a new way to derive the discrete multisymplectic formformula which is preserved by discrete variational integrators. In view of the equivalenceof Lagrangian systems and Hamiltonian systems under nondegenerate condition, this dis-sertation also try to establish equivalency between Lagrangian variational integrators and multisymplectic Hamiltonian numerical methods. For suitable choices of discretizationwhen applied to the wave equation, this paper shows two variational integrators which areequivalent to Euler box method and Preissman box methods respectively.
     Thirdly, this paper combines the idea of nonstandard finite diference methods andthe discrete variational integrators to construct nonstandard finite diference variationalintegrators for linear wave equation and Klein–Gordon equation. The convergence ofthe proposed methods are discussed and the discrete multisymplectic form formulas arederived. The numerical experiments proves the feasibility and efectiveness.
     Fourthly, nonlinear Schro¨dinger equations with variable coefcients are considered.Nonstandard finite diference variational integrators under triangle and square discretiza-tion are constructed. The convergence of these integrators are discussed, and the discretemultisymplectic structures are presented by discrete multisymplectic form formulas. Inthe numerical experiments, the convergence orders are tested and the stability are shown.Furthermore, the proposed methods could preserve the norm conservation law of nonlin-ear Schro¨dinger equation very well. The comparison between standard finite diferencemethods and the proposed methods, the classical Crank–Nicolson methods and the pro-posed methods in this paper are made.
     Finally, nonstandard finite diference methods and composition methods with com-plex time steps are combined together to derive the numerical solutions of two populationmodels. Nonstandard finite diference methods could preserve the positive solutions andthe total population conservation laws of these models. Composition methods with com-plex time steps improve the numerical solutions obtained by nonstandard finite diferencemethods, and continue to preserve the positive values and conservation laws. This is thefirst time to apply composition methods with complex time steps to the numerical biolog-ical systems. Because of the simple form, composition methods are better than Richard-son’s extrapolation method on computational efciency. The numerical experiments showthe feasibility and efectiveness of the proposed methods.
引文
[1] Arnold V I. Mathematics Methods of Classical Mechanics by V. I. Arnold[M].Berlin: Springer,1989:53–91,161–188.
    [2] Marsden J E, Ratiu T S. Introduction to Mechanics and Symmetry[M]. New York:Springer-Verlag,1999:1–80,103–156,177–256.
    [3]王健.多辛算法和守恒律误差分析[D].上海:上海交通大学,2007:1–10.
    [4] Hairer E, Lubich C, Wanner G. Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Diferential Equations[M]. Berlin: Springer,2005.
    [5] Vogelaere R D. Methods of Integration Which Preserve the Contact Transforma-tion Property of the Hamiltonian Equations[M]. Notre Dame: Technical Report4,University of Notre Dame,1956.
    [6] Ruth R. A Canonical Integration Technique[J]. IEEE Transactions on NuclearScience,1983,30(4):2669–2671.
    [7] Feng K. On Diference Schemes and Symplectic Geometry[M]. Beijing: In Pro-ceedings of the5-th International Symposium on Diferential Geometry and Dif-ferential Equations. Computation of Partial Diferential Equations. Science Press,1984:42–58.
    [8] Lasagni F M. Canonical Runge–Kutta Methods[J]. Journal of Applied Mathemat-ics and Physics (ZAMP),1988,39(6):952–953.
    [9] Sanz-Serna J M. Runge-Kutta Schemes for Hamilton Systems[J]. BIT NumericalMathematics,1988,28:877–883.
    [10] Suris Y B. The Canonicity of Mappings Generated by Runge–Kutta Type MethodWhen Integrating the Systems[J]. USSR Computational Mathematics and Mathe-matical Physics,1989,29(1):138–144.
    [11]曾文平,孔令华.辛算法的发展和历史现状[J].华侨大学学报(自然科学版),2004,25(2):113–117.
    [12]冯康.冯康文集[M].北京:国防工业出版社,1995:12–103.
    [13] Sun G. Construction of High Order Symplectic Runge–Kutta Methods[J]. Journalof Computational Mathematics,1993,11(3):250–260.
    [14] Sun G. Symplectic PRK Methods[J]. Journal of Computer Mathematics,1993(4):365–372.
    [15] Tang Y. The Symplecticity of Multi-Step Methods[J]. Celestial Mechanics andDynamical Astronomy,1993(1):83–90.
    [16] Hairer E, Leone P. Order Barriers for Symplectic Multi-Step Methods[J]. Numer-ical Analysis,1997(1):53–85.
    [17] Jin J. Theory and Computation of Electromagnetic Fields[M]. New Jersey: JoneWiley and Sons,2011.
    [18] Bridges T J, Reich S. Multi-symplectic Integrators: Numerical Schemes for Hamil-tonian PDEs that Conserve Symplecticity[J]. Physics Letters A,2001,284(4-5):184–193.
    [19] Chen J, Qin M, Scherer R. Multisymplectic and Variational Integrators[J]. Inter-national Journal of Pure and Applied Mathematics,2008,44(4):509–536.
    [20] Moore B, Reich S. Backward Error Analysis for Multi-symplectic IntegrationMethods[J]. Numerische Mathematik,2003,95(4):625–652.
    [21] Hong J, Liu Y, Munthe-Kaas H, et al. Globally Conservative Properties and ErrorEstimation of a Multi-symplectic Scheme for Schro¨dingier Equations with VariableCoefcients[J]. Applied Numerical Mathematics,2006,56(6):814–843.
    [22] Marsden J E, Patrick G W, Shkoller S. Multisymplectic Geometry, VariationalIntegrators, and Nonlinear PDEs[J]. Communications in Mathematical Physics,1998,199(2):351–395.
    [23] Lew A, Marsden J E, Ortiz M, et al. Asynchronous Variational Integrators[J].Archive for Rational Mechanics and Analysis,2003,167(2):85–146.
    [24] Vankerschaver J, Liao C, Leok M. Generating Functionals and LagrangianPDEs[J]. Journal of Mathematical Physics,2012, http://arxiv.org/abs/1111.0280.
    [25] Kijowski J, Tulczyjew W M. A Symplectic Framework for Field Theories[M].Berlin: Springer-Verlag,1979.
    [26] Lawruk B,S′niatycki J, Tulczyjew W M. Special Symplectic Spaces[J]. Journal ofDiferential Equations,1975(17):477–497.
    [27] Rovelli C. Quantum Gravity[M]. Cambridge: Cambridge University Press,2004.
    [28]S′niatycki J, Tulczyjew W. Generating Forms of Lagrangian Submanifolds[J]. In-diana University Mathematics Journal,1973,22:267–275.
    [29] Chernof P R, Marsden J E. Properties of Infinite Dimensional Hamiltonian Sys-tems[J]. Lecture Notes in Mathematics,1974,425(2):281–354.
    [30] Gotay M, Isenberg J, Marsden J E. Momentum Maps and Classical RelativisticFields. Part I: Covariant Field Theory[M]. New York: Marcel Dekker Incorpora-tion,1997:35–182.
    [31] Ohsawa T, Bloch A M, Leok M. Discrete Hamilton–Jacobi Theory[J]. SIAMJournal on Control and Optimization,2011,49(4):1829–1856.
    [32] Leok M, Shingel T. Prolongation-Collocation Variational Integrators[J]. IMA Jour-nal of Numerical Analysis,2012,32(3):1194–1216.
    [33] West M. Variational Integrators[D]. California: California Institute of Technology,2004.
    [34] Bloch A M, Leok M, Marsden J E, et al. Controlled Lagrangians and Stabilizationof Discrete Mechanical Systems[J]. Discrete and Continuous Dynamical SystemsSeries S,2010,3:19–36.
    [35] Jacobs H, Nair S, Marsden J E. Multiscale surveillance of Riemannian Manifold-s[J]. American Control Conference,2010:5732–5737.
    [36] Du Toit P, Mezic I, Marsden J E. Coupled Oscillator Models with No Scale Sepa-ration[J]. Physica D: Nonlinear Phenomena,2009,238:490–501.
    [37] Leyendecker S, Ober-Blo¨baum S, Marsden J E, et al. Coupled Oscillator Modelswith No Scale Separation[J]. Optimal Control Applications and Methods,2010,31(6):505–528.
    [38] Bou-Rabee N, Marsden J E. Hamilton–Pontryagin Integrators on Lie Groups PartI: Introduction and Structure–Preserving Properties[J]. Foundations of Computa-tional Mathematics,2009,9:197–219.
    [39] T L, Leok M, McClamroch N. Nonlinear Robust Tracking Control of a QuadrotorUAV on SE(3)[J]. Asian Journal of Control,2013,15(3):391–408.
    [40] Lee T, Leok M, McClamroch N. Computational Dynamics of a3D Elastic StringPendulum Attached to a Rigid Body and an Inertially Fixed Reel Mechanism[J].Nonlinear Dynamics,2011,64(1-2):97–115.
    [41] Mickens R E. Application of Nonstandard Finite Diference Schemes[M]. Singa-pore: World Scientific Publishing Company,2000.
    [42] Mickens R E. Nonstandard Finite Diference Schemes for Diferential Equation-s[J]. Journal of Diference Equations and Applications,2002,8(9):823–847.
    [43] Mickens R E. A Nonstandard Finite Diference Scheme for the Difusionless Burg-ers Equation with Logistic Reaction[J]. Mathematics and Computers in Simulation,2003,62(1-2):117–124.
    [44] Mickens R E. Dynamic Consistency: a Fundamental Principle for ConstructingNonstandard Finite Diference Schemes for Diferential Equations[J]. Journal ofDiference Equations and Applications,2005,11(7):645–653.
    [45] Mickens R E. A Numerical Integration Technique for Conservative OscillatorsCombining Nonstandard Finite diference Methods with a Hamilton’s Principle[J].Journal of Sound and Vibration,2005,285:477–482.
    [46] Mickens R E, Smith A. Finite Diference Models of Ordinary Diferential Equa-tions: Influence of Denominator Functions[J]. Journal of the Franklin Institute,1990,327(1):143–149.
    [47] Mickens R E, Ramadhani I. Finite Diference Scheme for the Numerical Solutionof the Schro¨dinger Equation[J]. Physical Review A,1992,45(3):2074–2075.
    [48] Mickens R E. Relation Between the Time and Space Step-Sizes for Fisher PartialDiferential Equation[J]. Journal of Applied Mathematics and Computing,1996,2:423–424.
    [49] Cole J B. A High Accuracy FDTD Algorithm to Solve Microwave Propagation andScattering Problems on A Coarse Grid[J]. IEEE Transactions Microwave Theoryand Technology,1995,43(9):2053–2058.
    [50] Cole J B. A High Accuracy Realization of the Yee Algorithm Using Nonstan-dard Finite Diferences[J]. IEEE Transactions Microwave Theory and Technology,1997,45(6):991–996.
    [51] Wu Roeger L. Diferential and diference equations[J]. American MathematicalMonthly,1982,82:402–407.
    [52] Jordan P M. A Nonstandard Finite Diference Scheme for Nonlinear Heat Transferin a Thin Finite Rod[J]. Journal of Diference Equations and Applications,2003,9(11):1015–1021.
    [53] Malek A. Applications of Nonstandard Finite Diference Methods to NonlinearHeat Transfer Problems[J]. Heat Transfer Mathematical Modelling, NumericalMethods and Information Technology,2011,8:186–202.
    [54] Mickens R E. A Numerical Integration Technique for Conservative OscillatorsCombining Nonstandard Finite diference Methods with a Hamilton’s Principle[J].Journal of Sound and Vibration,2005,285(1–2):477–482.
    [55]马强.几类随机微分方程的保结构数值方法[D].哈尔滨:哈尔滨工业大学,2012:1–12,54–67.
    [56] Gonzalez-Parra G, Arenas A, Chen-Charpentier B. Combination of NonstandardSchemes and Richardson’s Extrapolation to Improve the Numerical Solution ofPopulation Models[J]. Mathematical and Computer Modelling,2010,58(1):415–416.
    [57] Arenas A J, Gonza′lez-Parra G, Chen-Charpentier B M. A Nonstandard Numeri-cal Scheme of Predictor–Corrector Type for Epidemic Models[J]. Computers andMathematics with Applications archive,2010,59(12):3740–3749.
    [58] Gonza′lez-Parra G, Arenas A J, Chen-Charpentier B M. Combination of Nonstan-dard Schemes and Richardson’s Extrapolation to Improve the Numerical Solutionof Population Models[J]. Mathematical and Computer Modeling: An InternationalJournal archive,2010,52(7-8):1030–1036.
    [59] Leok M, Zhang J. Discrete Hamiltonian Variational Integrators[J]. IMA Journal ofNumerical Analysis,2011,31(4):1497–1532.
    [60] Pekarasky S, Marsden J E. Abstract Mechanical Connection and Abelian Recon-struction For Almost Ka¨hler Manifolds[J]. Journal of Applied Mathematics,2001,1(1):1–28.
    [61] Marsden J E, West M. Discrete Mechanics and Variational Integrators[J]. ActaNumerica,2001,10(5):357–514.
    [62] Arnold D N, Falk R S, Winther R. Finite Element Exterior Calculus: From HodgeTheory to Numerical Stability[J]. Bulletin of the American Mathematical Society,2010,47(2):281–354.
    [63] Binz E,S′niatycki J, Fischer H. Geometry of Classical Fields[M]. Dover: DoverPubns,1988:1–80.
    [64] Carin ena J F, Crampin M M, Ibort L A. On the Multisymplectic Formalism forFirst Order Field Theories[J]. Diferential Geometry and its Applications,1991,1(4):345–374.
    [65] Gotay M, Isenberg J, Marsden J E. Momentum Maps and Classical RelativisticFields. Part II: Canonical Analysis of Field Theories[J]. Nonlinear Analysis: The-ory, Methods&Applications,1999,74(17):6601–6616.
    [66] Betounes D E. Extension of the classical Cartan Form[J]. Physical Review D,1984,29(4):599–606.
    [67] Kouranbaeva S, Shkoller S. A Variational Approach to Second-order Multisym-plectic Field Theory[J]. Journal of Geometry and Physics,2000,35(4):333–366.
    [68] Wald R M. General Relativity[M]. Chicago: University of Chicago Press,1984:18–57.
    [69] Bridges T J. Multi-symplectic Structures and Wave Propagation[J]. MathematicalProceedings of the Cambridge Philosophical Society,1997,121(1):147–190.
    [70] Abraham R, Marsden J E. Foundations of Mechanics[M]. Cambridge: Ben-jamin/Cummings Publishing Company,1978.
    [71] Chen J. Variational Integrators and the Finite Element Method[J]. Applied Mathe-matics and Computation,2008,196(2):941–958.
    [72] Ciarlet P G, Iserles A, Kohn R V, et al. Simulating Hamltonian Dynamics[M].Cambridge: Cambridge university press,2004.
    [73] Ma Q, Ding D, Ding X. A Nonstandard Finite Diference Method for a LinearOscillator with Additive Noise[J]. Applied Mathematics and Information Science,2012,9:43–55.
    [74] Manning P M, Margrave G F. Introduction to Nonstandard Finite Diference Mod-eling[J]. CREWES Research Report,2006,18(1):1–10.
    [75] Bridges T J, Reich S. Numerical Methods for Hamiltonian PDEs[J]. Journal ofPhysics A: Mathematical and General,2006,39(19):5287–5320.
    [76] Hong J, Liu Y. A Novel Numerical Approach to Simulating Nonlinear Schro¨dingerEquations with Varying Coefcients[J]. Applied Mathematics Letters,2003,16(5):759–765.
    [77] Meis T, Marcowitz U. Numerical Solution of Partial Diferential Equations[M].Berlin: Springer-Verlag,1981.
    [78] Chen J. A Multisymplectic Integrator for the Periodic Nonlinear Schro¨dinger E-quation[J]. Applied Mathematics and Computation,2005,170(2005):1394–1417.
    [79] Chen J. Symplectic and Multisymplectic Methods for the Nonlinear Schro¨dingerEquation[J]. Computers&Mathematics with Applications,2002,43(2002):1095–1196.
    [80] Leok M, Shingel T. General Techniques for Constructing Variational Integrators[J].Frontiers of Mathematics in China,2012,7(2):273–303.
    [81] Zhou S, Cheng X. Numerical Solution to Coupled Nonlinear Schro¨inger Equationson Unbounded Domains[J]. Mathematics and Computers in Simulation,2010,80(12):2362–2373.
    [82] Zhou S, Cheng X. A Linearly Semi-implicit Compact Scheme for the Burgers–Huxley Equation[J]. International Journal of Computer Mathematics,2010,88(4):795–804.
    [83] Zakharov V, Manakov S. On the Complete Integrability of a Nonlinear Schro¨dingerEquation[J]. Journal of Theoretical and Mathematical Physics,1974,19(3):551–559.
    [84] Korepin V, Bogoliubov N, Izergin A. Quantum Inverse Scattering Method andCorrelation Functions[M]. Cambridge: Cambridge University Press,1993.
    [85] Karakashian O, Makridakis C. A Space-time Finite Element Method for the Non-linear Schro¨dinger Equation: the Discontinuous Galerkin Method[J]. Mathematicsof Computation,1998,67(222):479–499.
    [86] Delfour M, Fortin M, Payr G. Finite Diference Solutions of a Non-linearSchro¨dinger equation[J]. Journal of Computational Physics,1981,44(2):277–288.
    [87] Feit M D, Fleck J A, Steiger A. Solution of the Schro¨dinger Equation by a SpectralMethod[J]. Journal of Computational Physics,1982,47(3):412–433.
    [88] Reich S. Multi-symplectic Runge–Kutta Collocation Methods for HamiltonianWave Equation[J]. Journal of Computational Physics,2000,157(2):473–499.
    [89] Chen J. A Multisymplectic Integrator For the Periodic Nonlinear Schro¨dinger E-quation[J]. Applied Mathematics and Computation,2005,2005(170):1394–1417.
    [90] Chen J, Qin M. Multi-Symplectic Fourier Pseudospectral Method for the Mon-linear Schro¨dinger Equation[J]. Electronic Transactions on Numercial Analysis,2001,2001(12):193–204.
    [91] Chen J, Qin M. A Multisymplectic Variational Integrator for the NonlinearSchro¨dinger Equation[J]. Numerical Methods for Partial Diferential Equations,2002,18(4):523–536.
    [92] Chen J, Qin M, Tang Y. Symplectic and Multi-symplectic Methods for the Non-linear Schro¨dinger Equation[J]. Computers and Mathematics with Applications,2002(43):1095–1106.
    [93] Courant R, Friedrichs K, Lewy H. On the Partial Diference Equations of Math-ematical Physics[J]. IBM Journal of Research and Development Archive,1967,11(2):215–234.
    [94] Lambert J D. Computational Methods in Ordinary Diferential Equations[M]. Lon-don: John Wiley,1973.
    [95] Bruggenman J, Burchard H, Bob W, et al. Second-Order, Unconditionally Positive,Mass-Conserving Integration Scheme Biochemical Systems[J]. Applied Numeri-cal Mathematics,2007,57(1):36–58.
    [96] Mickens R. Nonstandard Finite Diference Models of Diferential Equations[M].Singapore: World Scientific,1994.
    [97] Jankovic′S, Ilic′D. Nonstandard Finite Diference Schemes for Diferential Equa-tions[J]. Journal of Diference Equations and Applications,2002,8(9):823–847.
    [98] Riley G, Stommel H, Bumpus D. Quantitative Ecology of the Plankton of theWestern North Atlantic[J]. Bull Bingham Oceanographic Collection,1949,12:1–169.
    [99] Evans G, Parslow J. A Model of Annual Plankton Cycles[J]. Biological Oceanog-raphy,1985,3:327–427.
    [100] Ruan S. Persistence and Coexistence in Zooplankton–Qhytoplankton–NutrientModels with Instantaneous Nutrient Recycling[J]. Journal of Mathematics Biol-ogy,1993,31:633–654.
    [101] Nogueira E, Woods J, Harris C, et al. Phytoplanton Coexistence: Results From anIndividual Based Simulation Model[J]. Ecological Modelling,2006,198(1-2):1–22.
    [102] James H P. A Numerical Method for Simulating Plankton Transport[J]. EcologicalModelling,1984,23(1-2):53–66.
    [103] Dobromir T, Dimitrov D, Hristo V. Analysis and Numerical Simulation ofPhytoplankton–Nutrient Systems with Nutrient Loss[J]. Mathematics and Com-puters in Simulation,2005,70:33–43.
    [104] Britton N. Essential Mathematical Mathematical Biology[M]. Berlin: Springer,2003.
    [105] Liu H, Xu H, Zhu G. Stability on Coupling SIR Epidemic Model with Vaccina-tion[J]. Journal of Applied Mathematics,2005,2005(4):301–319.
    [106] Duncan C, Duncan S, Scott S. Whooping Cough Epidemic in London,1701-1812:Infection Dynamics Seasonal Forcing and the Efects of Malnutrition[J]. Proceed-ings the Royal of Society B,1996,263:445–450.
    [107] Mickens R E. A Numerical Integration Technique for Conservation OscilatorsCombining Nonstandard Finite Diference Methods with a Hamilton’s Principle[J].Journal of Sound and Vibration,2005,285:477–482.
    [108] Wu L I. General Nonstandard Finite Diference Schemes for Diferential Equationswith Three Fixed Points[J]. Computers and Mathematics with Applications,2009,57:379–383.
    [109] Wu L I. Nonstandard Finite Diference Schemes for Diferential Equations withn+1Distinct Fixed Points[J]. Journal of Diference Equations and Applications,2009,15:133–151.
    [110] Wu L I, Mickens R E. Exact Finite Diference Schemes for First Order Diferen-tial Equations Having Three Fixed Points[J]. Journal of Diference Equations andApplications,2007,13:1179–1185.
    [111] Blanes S, Casas F, Murua A. Splitting and Composition Methods in the Numer-ical Integration of Diferential Equations[J]. Boletin de la Sciedad espanola deMatematica Aplicada,2008,45:89–145.
    [112] Suzuki M. Fractal Decomposition of Exponential Operators with Applications toMany-Body Theories and Monte Carlo Simulations[J]. Physical Letters A,1990,146:319–323.
    [113] Yoshida H. Construction of Higher Order Symplectic Integrators[J]. Physical Let-ters A,1990,150:262–268.
    [114] McLachlan R. On the Numerical Integration of Ordinary Diferential Equationsby Symmetric Composition Methods[J]. SIAM Journal on Scientific Computing,1995,16(1):151–168.
    [115] Setter H. Analysis of Discretization Methods for Ordinary Diferential Equation-s[M]. Berlin: Springer,1973.
    [116] Iserles A. Solving Linear Ordinary Diferential Equations by Exponentials of Iter-ated Commutators[J]. Numerische Mathematik,1984,45:183–199.
    [117] Yoshida H. Recent Progress in the Theory and Application of Symplectic Integra-tors[J]. Celestial Mechanics and Dynamical Astronomy,1993,56:27–43.
    [118] Chambers J. Symplectic Integrators With Complex Time Steps[J]. The Astronom-ical Journal,2003,126:1119–1126.
    [119] Crnkovic′Cˇ, Witten E. Covariant Description of Canonical Formalism in Geomet-rical Theories[M]. Cambridge: Cambridge University Press,1987:676–684.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700