用户名: 密码: 验证码:
辛时域多分辨率算法理论与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着计算机性能的飞速发展和计算数学、计算物理中各种新型算法的出现,计算电磁学呈现出空前繁荣的局面。经典的时域有限差分法(FDTD)以概念清晰、操作简单、通用性强、便于并行等优点,其在宽带分析、瞬态分析、全波分析中有着广泛的应用。然而,FDTD数值稳定性较低,数值色散误差较大,为了确保精度,需要细网格划分,空间步长至少取十分之一波长,同时,受数值稳定性的限制,时间步长也不能太大,使得在计算电大尺寸时,将耗费大量的内存和时间,效率极低。为了消除FDTD方法的缺陷,许多学者提出了改善方法,其中,1996年,Krumpholz提出的时域多分辨分析(MRTD)方法,把小波引入到时域电磁计算中,虽然很大的改善了色散误差,但是对稳定性要求更高。Zhizhang Chen提出ADI-MRTD来摆脱CFL稳定性条件的束缚,但ADI-MRTD方法的数值色散性较FDTD法差。曹群生把龙格库塔引入到MRTD计算中,提出了龙格库塔时域多分辨(RK-MRTD)方法,RK-MRTD在时间上有高阶精度和高稳定度的特点,但该算法有幅度误差,且耗费大量的计算机内存。随着人们对问题的物理本质认识的深入,意识到在追求算法高精度的同时,还应力求保持原系统的内在性质。由于电磁场方程可以转化为一无穷维Hamilton系统,而Hamilton系统具有一系列的内在性质,因而在对Hamilton系统的数值求解时,保持其内在性质就显得尤为重要。辛算法正是保持Hamilton系统内在性质的一种新型数值方法,该算法在长时间的数值计算中,具有常见数值方法无可比拟的计算优势。本文将辛算法引入到电磁计算中,结合传统MRTD的空间高阶特性,构造新型的具有高稳定度特性的高效的电磁计算方法—辛时域多分辨率算法。
     本文对辛时域多分辨率算法进行了系统研究。时间方向上,采用高阶辛积分,在长期仿真中保持麦克斯韦方程的辛结构;空间方向上,对电磁场分量用小波尺度函数展开,减小数值色散,提高数值精度;网格剖分上,基于多区域分解技术,结合等效电磁参数概念,解决材质不连续性问题,通过上述相互匹配的算法和技术,来建立快速度、低内存、高精度的时域算法。
     针对“辛时域多分辨率算法的理论和应用研究”这一课题,本文主要研究工作与贡献如下:
     (1)对基于Daubechies尺度函数的MRTD方法进行理论研究,详细推导了相应的电磁场计算的迭代公式。
     (2)探讨了自由空间麦克斯韦方程的辛性质,证明了其时间演化矩阵是辛矩阵,且该矩阵保持了电磁场的能量守恒性。将辛算法高稳定度特性和MRTD的空间高阶特性结合起来,构造了新型的高效的辛时域多分辨率算法的理论框架和迭代公式。
     (3)对比了各种时域高阶算法的数值稳定性和数值色散性,证明了辛时域多分辨率算法在长时间仿真、能量守恒、数值精度等方面的优势。
     (4)探讨了将辛时域多分辨率算法具体应用到时域电磁仿真中所必需的三大关键技术:平面波源引入技术、吸收边界条件、近远场变换技术。
     (5)基于辛时域多分辨率算法多区域分解技术,结合等效电磁参数概念,提出了针对介质目标的共形辛时域多分辨率算法,介质目标的电磁散射计算的数值结果表明这该方法能有效解决材质不连续问题以及Yee氏蛙跳式网格划分造成的阶梯近似误差问题,可以显著提高计算的效率和精度。
In recent years, with the rapid development of the computer performance and the emergence of various new algorithm in computational mathematics and computational physics, computational electromagnetics have shown a situation of unprecedented prosperity.The traditional FDTD method has been widely applied to broad-band, transient, and full-wave analyses owing to its simplicity, generality, and facility for parallel computing.Due to the constraints of the numerical dispersion and the numerical stability,the method is needed to consume much memory and computing time in the calculation of electrically large size of the electromagnetic problems.As a result, the FDTD method is restricted the computation of the electrically large problems.Many efforts have been made in relaxing or removing the above two constraints in order to reduce the computational expenditures. Among them,the multiresolution time-domain (MRTD) method,proposed in1996,has achieved low numerical dispersion with numerical grid resolutions as low as two points per wavelength. However,the CFL stability condition still remains. In order to further explore efficient methods for optimum electromagnetic simulation, other improved time strategies are proposed. For example, the high-order Runge-Kutta (R-K) approach was introduced in. However, the approach is dissipative and needs large amount of memory. Another alternative method is the alternating direction implicit (ADI) algorithm. Although it saves CPU time owing to unconditional stability, undesirable numerical precision and dispersion will happen once the high CFL number is adopted.
     Along with the people to the understanding of the physical nature of the problem, to realize in the pursuit of the algorithm with high precision, also should strive to maintain the original system intrinsic properties.Due to the electromagnetic field equations can be transformed into an infinite dimensional Hamilton system, Hamilton system has the intrinsic properties of a series of, so in the numerical solution of the Hamilton system, it is particularly important to maintain its intrinsic properties.Symplectic method is a new numerical method to maintain the intrinsic nature of Hamilton system, the algorithm of numerical calculation in long time, has a computational advantage there is nothing comparable to this common numerical methods.In this paper, the symplectic algorithm is introduced to the electromagnetic calculations and combined with higher-order spatial characteristics of traditional MRTD.As a result, symplectic Multi-Resolution Time Domain scheme,a high efficient computational electromagnetic method.is developed.
     This dissertation systematically studies the symplectic Multi-Resolution Time Domain scheme. For temporal direction, the high-order symplectic integration scheme is used to keep the global symplectic structure of Maxwell's equations for long-term simulation. For spatial direction, the equations were evaluate with multi-resolution approximations to reduce numerical dispersion and improve numerical precision. For grid generation, the multi-region decomposition technology and the concept of effective dielectric constant are proposed to model material discontinuities. With the help of these matched schemes and techniques, we can build a fast, low-consumed, and accurate time-domain solver.
     Focusing on the "theoretical and applied study of symplectic Multi-Resolution Time Domain scheme", The main researches and contributions are made as follows:
     (1) The MRTD schemes based on Daubechies scaling functions" are studied theoretically.The iterative equations of the electromagnetic fields are derived in detail.
     (2) The symplectiness of Maxwell's equations in free space is discussed. It is verified that the time evolution matrix of Maxwell's equations is symplectic matrix and conserves the total energy of electromagnetic field. Then, the symplectic algorithm is combined with higher-order spatial characteristics of traditional MRTD.As a result, symplectic Multi-Resolution Time Domain scheme,a high efficient computational electromagnetic method,is developed. The iterative equations of the electromagnetic fields are derived in detail.
     (3) Numerical dispersion and stability are compared for a variety of high-order time-domain schemes. In particular, through numerical experiments on long-term simulation, energy conservation, and numerical precision, the advantages of the symplectic Multi-Resolution Time Domain scheme are demonstrated.
     (4) The key technology of symplectic multi-resolution time-domain algorithm in electromagnetic simulation is investigated,which includes:is introduction of plane wave source, absorbing boundary conditions, the near to far field transformation technique,etc.
     (5) According to the multi-region decomposition technology and the concept of effective dielectric constant,a conformal symplectic multi-resolution time-domain scheme based on Daubechies scaling functions used to dielectric targets is proposed.The numerical results of the electromagnetic scattering computation of dielectric targets show that out scheme can solve the discontinuous surface in dielectric case and the staircase error of Yee's leapfrog meshing,and also can improve computational efficiency and accuracy obviously.
引文
[1]Wiscombe W J.Improved Mie scattering algorithm[J].Applied Optics,1980,19(9):1505-1509.
    [2]Suzuki H,Lee 1 S. Calculation of the Mie scattering field inside and outside a coated spherical particle[J]. International Journal of Physical Sciences,2008,3(1):38-41.
    [3]Du H.Mie-scattering calculation[J].Applied Optics,2004,43(9):1951-1956.
    [4]W. T. Welford. Geometrical Optics[M]. Holland:North-Holland Publishing Company,1962.
    [5]M. Kline and I. W. Kay. Electromagnetic Theory and Geometrical Optics[M]. New York:Interscience Publishers,1965.
    [6]M. S. Narasimhan, P. Ramanujam, and K. Raghavan. GTD analysis of near-field and far-field patterns of a parabolic subreflector illuminated by a plane wave[J]. IEEE Transactions on Antennas and Propagation, 1981,AP-29(4):654-660.
    [7]阮颖铮.复射线理论及其应用[M].北京:电子工业出版社,1991.
    [8]M. Martinez-Burdalo, A. Martin, and R. Villar. Uniform PO and PTD solution for calculating plane wave backscattering from a finite cylindrical shell of arbitrary cross section[J]. IEEE Transactions on Antennas and Propagation,1993,41(9):1336-1339.
    [9]汪茂光.几何绕射理论[M].西安:西安电子科技大学出版社,1994.
    [10]阮颖铮.雷达散射截面与隐身技术[M].北京:国防工业出版社,1998.
    [11]F. Weinmann. Ray tracing with PO/PTD for RCS modeling of large complex objects[J]. IEEE Transactions on Antennas and Propagation,2006,54(6):1797-1806.
    [12]R. F. Harrington. Field Computation by Moment Methods[M]. New York:Macmillan,1968.
    [13]S. M. Rao, D. R. Wilton, and A. W. Glisson. Electromagnetic scattering by surface of arbitrary shape[J]. IEEE Transactions on Antennas and Propagation,1982, AP-30(3):409-418.
    [14]V. Rokhlin. Rapid solution of integral-equations of scattering-theory in 2 dimensions[J]. Journal of Computational Physics,1990,86(2):414-439.
    [15]N. Engheta, W. D. Murphy, V. Rokhlin, and M. S. Vassiliou. The fast multipole method (FMM) for electromagnetic scattering problems[J]. IEEE Transactions on Antennas and Propagation,1992, 40(6):634-641.
    [16]J. M. Song and W. C. Chew. Multilevel fast-multipole algorithm for solving combined field integral equations of electromagnetic scattering[J]. Microwave and Optical Technology Letters,1995, 10(1):14-19.
    [17]T. K. Sarkar, E. Arvas, and S. M. Rao. Application of FFT and the conjugate gradient method for the solution of electromagnetic radiation from electrically large and small conducting bodies[J]. IEEE Transactions on Antennas and Propagation,1986, AP-34(5):635-640.
    [18]Z. B. Steinberg and Y. Leviatan. On the use of wavelet expansions in the method of moments[J]. IEEE Transactions on Antennas and Propagation,1993,41(5):610-619.
    [19]R. L. Wagner and W. C. Chew. Study of wavelets for the solution of electromagnetic integral equations[J]. IEEE Transactions on Antennas and Propagation,1995,43(8):802-810.
    [20]C. H. Chan and L. Tsang. A sparse-matrix canonical-grid method for scattering by many scatterers[J]. Microwave and Optical Technology Letters,1995,8(2):114-118.
    [21]E. Bleszynski, M. Bleszynski, and T. Jaroszewicz. AIM:adaptive integral method for solving large-scale electromagnetic scattering and radiation problems[J]. Radio Science,1996,31(5):1225-1251.
    [22]S. M. Rao and T. K. Sarkar. An alternative version of the time-domain electric-field integral-equation for arbitrarily-shaped conductors[J]. IEEE Transactions on Antennas and Propagation,1993,41 (6):831-834.
    [23]S. M. Rao. Time Domain Electromagnetics[M], New York:Academic Press,1999.
    [24]K. S. Yee. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media[J]. IEEE Transactions on Antennas and Propagation,1966,14(3):302-307.
    [25]王长清,祝西里.电磁场计算中的时域有限差分方法[M].北京:北京大学出版社,1994.
    [26]A. Taflove. Computational Electrodynamics:the Finite-Difference Time-Domain Method[M]. Norwood, MA:Artech House,1995.
    [27]D. M. Sullivan. Electromagnetic Simulation Using the FDTD Method[M]. New York:IEEE Press,2000.
    [28]王秉中.计算电磁学[M].北京:科学出版社,2002.
    [29]葛德彪,闫玉波.电磁波时域有限差分方法[M].西安:西安电子科技大学,2005.
    [30]W. C. Chew and J. M. Jin. Fast and Efficient Algorithms in Computational Electromagnetics [M]. Boston: Artech House,2001.
    [31]M. F. Levy. Parabolic Equation Methods for Electromagnetic Wave Propagation[M]. London:IEE Press, 2000.
    [32]V. Shankar, A. H. Mohammadian, and W. F. Hall. A time-domain, finite-volume treatment for the Maxwell equations[J]. Electromagnetics,1990,10(1-2):127-145.
    [33]J. M. Jin. The Finite Element Method in Electromagnetics[M]. New York:Wiley-IEEE Press,1993.
    [34]J. F. Lee, R. Lee, and A. Cangellaris. Time-domain finite-element methods[J]. IEEE Transactions on Antennas and Propagation,1997,45(3):430-442.
    [35]F. Edelvik and G. Ledfelt. A comparison of time-domain hybrid solvers for complex scattering problems[J]. International Journal of Numerical Modelling-Electronic Networks Devices and Fields,2002, 15(5-6):475-487.
    [36]T. Rylander and A. Bondeson. Stable FEM-FDTD hybrid method for Maxwell's equations[J]. Computer Physics Communications,2000,125(1-3):75-82.
    [37]盛新庆.计算电磁学要论[M].北京:中国科学出版社,2004.
    [38]A. Monorchio, A. R. Bretones, R. Mittra, G. Manara, and R. G. Martin. A hybrid time-domain technique that combines the finite element, finite difference and method of moment techniques to solve complex electromagnetic problems[J].IEEE Transactions on Antennas and Propagation,2004,52(10):2666-2674.
    [39]张玉.电磁场并行计算[M].西安:西安电子科技大学出版社,2006.
    [40]Liu Q.The PSTD algorithm:a time-domain method requiring only two cells per wavelength [J]. Microwave and Optical Technology Letters,1997,15(3):158-165.
    [41]Liu Q.PML and PSTD algorithm for arbitrary lossy anisotropic media[J].IEEE Microwave and Guided Wave Letters,1999,9(2):48-50.
    [42]Krumpholz M.Katehi L P B.MRTD:new time-domain schemes based on multiresolution analysis [J].IEEE Transactions on Microwave Theory and Techniques,1996,44(4):555-571.
    [43]Krumpholz M,Katehi L P B.New prospects for time domain analysis[J].IEEE Microwave and Guided Wave Letters,1995,5(11):382-384.
    [44]Namiki T. A new FDTD algorithm based on alternating-direction implicit method[J].IEEE Transactions on Microwave Theory and Techniques,1999,47(10):2003-2007.
    [45]Namiki T.3-D ADI-FDTD method-unconditionally stable time-domain algorithm for solving full vector Maxwell's equations[J].IEEE Transactions on Microwave Theory and Techniques,2000, 48(10):1743-1748.
    [46]郭汉伟,梁甸农,刘培国,尹家贤.电磁场计算中FDTD与MRTD[J]国防科技大学学报,
    [47]高本庆,刘波.电磁场时域数值技术新进展[J].北京理工大学学报,2002,22(4):401-406.
    [48]Zhizhang Chen, Jiazong Zhang,. An Unconditionally Stable 3-D ADI-MRTD Method Free of the CFL Stability Condition[J]. IEEE Microwave and wireless components letters,2001,11(8):349-351,
    [49]Qunsheng Cao, Ramdev Kanapady, and Fernando Reitich. High-Order Runge-Kutta Multiresolution Time Domain Methods for Computational Electromagnetics[J] IEEE Trans.Microwave Theory Tech.,2006,54(8):3316-3326,.
    [50]冯康,秦孟兆,哈密尔顿系统的辛几何算法,浙江科学技术出版社,2003.
    [51]文舸一.辛算法及其在电磁场方程中的应用[J],微波学报,1999,15(1):68-78,.
    [52]Z.J.Shang,. Construction of volume-preserving difference schemes for source-free systems via generating function[J].JCM.1994,12(3):265-272,.
    [53]X.S.Liu, X.Y.Liu,Z.Y.Zhou,P.Z.Ding and S.F.Pan.Numerical solution of one-dimensional time-independent Schrodinger equation by using symplectic schemes[J]. Int.J.Quantum Chen,2000,79(6):343-349,.
    154] E.Forest and R.D.Ruth. Fourth order symplectic integration[J]. Phys.D,1990,43:105-117.
    [55]H.Yoshida.Construction of higher order symplectic integrators[J]. Phys.Lett.A,1990,150(12):262-268.
    [56]J.M.Sanz-Serna and M.P.Calvo. Numerical Hamilton Problem,Chapman and Hall,London,1994.
    [57]T.Hirono,W.W.Lui,K.Yokoyama. Time-domain simulation of electromagnetic field using a symplectic Integrator[J]. IEEE Microwave and Guided Wave Letters,1997,7(9):279-281.
    [58]T.Hirono,W.W.Lui,K.Yokoyama,S.Seki. Stability and numerical dispersion of symplectic fourth-order time-domain schemes for optical field simulation[J].Journal of Lightwave Technology [J]. 1998,16(10):1915-1920.
    [59]I.Saitoh,Y.Suzuki,N.Takahashi. The symplectic finite difference time domain method[J].IEEE Transactions on Magnetics,2001,37(5):3251-3254.
    [60]T.Hirono,W.Lui,S.Seki and Y.Yoshikuni. A three-dimensional fourth-order finite-difference time-domain scheme using a symplectic integrator propagator[J].IEEE Transactions on Microwave Theory and Techniques,2001,49(9):1640-1648,.
    [61]Yan Shi,Chang-Hong Liang. Multidomain pseudospectral time domain algorithm using a symplectic Integrator[J].IEEE Transactions on Antennas and Propagation,2007,55(2):433-439.
    [62]Z.X.Huang, W.Sha, X.L.Wu. M.S.Chen. Optimal symplectic integrators for numerical solution of time-domain Maxwell's equations[J].Microwave and Optical Technology Letters.,2007,49(3):545-547,.
    [63]黄志祥,吴先良.辛算法的稳定性及数值色散性分析[J].电子学报,2006,34(3):535-538.
    [1]李弼程,罗建书.小波分析及其应用[M].北京:电子工业出版社,2003.
    [2]孙延奎.小波分析及其应用[M].北京:机械工业出版社,2005.
    [3]高成,董长虹,郭磊等Matlab小波分析与应用[M].北京:国防上业出版社,2007
    [4]樊启斌.小波分析[M].武汉:武汉大学出版社,2008.
    [5]Daubechies I.Ten Lectures on Wavelets[M].PA:SIAM,1992.
    [6]Harrington R F.Field Computation by Moment Method(2nd edition)[M].New York:IEEE Press,1993.
    [7]M.Fujii, W.J.R.Hoefer.A Three-Dimensional Harr-Wavelet-Based Multire-solution Analysis Similar to the FDTD Method-Derivation and Application[J]. IEEE Transaction on Microwave Theory and Techniques,1998,46(12):2463-2475
    [8]Taflove A. Hagness S C.Computational Electrodynamics-The Finite-Difference Time-Domain Method(Third Edition)[M].MA:Artech House,2005.
    [9]Yee K S. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media[J].IEEE Transactions on Antennas and Propagation,1966,AP-14(3):302-307.
    [10]孔繁敏,郭毅峰,李康,刘新,MRTD算法在集成平面光波导组件分析中的应用[J],光子学报,2004,133(9):1068-1071
    [11]Fujii M.Hoefer W J R.Dispersion of time domain wavelet Galerkin method based on Daubechies'compactly supported scaling functions with three and four vanishing moments[J].IEEE Microwave and Guided Wave Letters,2000,10(4):125-127.
    [12]Krumpholz M.Katehi L P B.MRTD:new time-domain schemes based on multiresolution analysis [J].IEEE Transactions on Microwave Theory and Techniques,1996,44(4):555-571.
    [13]Cheong Y W,Lee Y M,Ra K H,Kang J G,Shin C C.Wavelet-Galerkin scheme of time-dependent inhomogeneous electromagnetic problems[J].IEEE Microwave and Guided Wave Letters,1999, 9(8):297-299.
    [I]K. Feng. Difference-schemes for Hamiltonian-formalism and symplectic-geometry[J]. Journal of Computational Mathematics,1986,4(3):279-289.
    [2]冯康,秦孟兆.哈密尔顿系统的辛几何算法[M].杭州:浙江科学技术出版社,2003.
    [3]J. M. Sanzsema. Runge-Kutta schemes for Hamiltonian-systems[J]. Bit Foundation,1988, 28(4):877-883.
    [4]J. M. Sanz-Serna and M. P. Calvo. Numerical Hamiltonian Problems[M]. London, U.K.: Chapman & Hall,1994.
    [5]李世雄.波动方程的高频近似与辛几何[M].北京:科学出版社,2001.
    [6]I. Marshall and S. Wojciechowski. When is a Hamiltonian system separable[J], Journal of Mathematical Physics,1988,29(6):1338-1346.
    [7]J. Candy and W. Rozmus. A symplectic integration algorithm for separable Hamiltonian functions[J]. Journal of Computational Physics,1991,92(1):230-256.
    [8]X. H. Liao. Symplectic integrator for general near-integrable Hamiltonian system[J]. Celestial Mechanics & Dynamical Astronomy,1997,66(3):243-253.
    [9]M. Antonowicz and S. Rauchwojciechowski. How to construct finite-dimensional Bi-Hamiltonian systems from Soliton-Equations-Jacobi integrable potentials[J]. Journal of Mathematical Physics,1992,33(6):2115-2125.
    [10]F. Magri, C. Morosi, and O. Ragnisco. Reduction techniques for infinite-dimensional Hamiltonian-systems—ome ideas and applications[J]. Communications in Mathematical Physics,1985,99(1):115-140.
    [11]S. B. Kuksin. Infinite-dimensional symplectic capacities and a squeezing theorem for Hamiltonian PDEs[J]. Communications in Mathematical Physics,1995,167(3):531-552.
    [12]B. Leimkuhler and S. Reich. Symplectic integration of constrained Hamiltonian-systems[J]. Mathematics of Computation,1994,63(208):589-605.
    [13]W. N. Everitt and L. Markus. Complex symplectic geometry with applications to ordinary differential operators[J]. Transactions of the American Mathematical Society,1999, 351(12):4905-4945.
    [14]G. Sun. Construction of high-order symplectic Runge-Kutta methods[J]. Journal of Computational Mathematics,1993, 11(3):250-260.
    [15]L. Jay. Symplectic partitioned Runge-Kutta methods for constrained Hamiltonian systems[J]. SI AM Journal on Numerical Analysis,1996,33(1):368.
    [16]H. Yoshida. Construction of higher order symplectic integrators[J]. Physica D:Nonlinear Phenomena,1990,46(3):262-268.
    [17]M. Suzuki. General theory of higher-order decomposition of exponential operators and symplectic integrators[J]. Physics Letters A,1992,165(5-6):387-395.
    [18]M. P. Calvo and J. M. Sanzsema. The development of variable-step symplectic integrators with application to the 2-body problem[J]. SIAM Journal on Scientific Computing,1993, 14(4):936-952.
    [19]S. A. Chin. Symplectic integrators from composite operator factorizations[J]. Physics Letters A,1997,226(6):344-348.
    [20]S. Reich. Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations[J]. Journal of Computational Physics,2000,157(2):473-499.
    [21]T. J. Bridges and S. Reich. Multi-symplectic integrators:numerical schemes for Hamiltonian PDEs that conserve symplecticity[J]. Physics Letters A,2001,284(4-5):184-193.
    [22]T. Hirono, W. Lui, S. Seki, and Y. Yoshikuni. A three-dimensional fourth-order finite-difference time-domain scheme using a symplectic integrator propagator[J]. IEEE Transactions on Microwave Theory and Techniques,2001,49(9):1640-1648.
    [23]R. Rieben, D. White, and G. Rodrigue. High-order symplectic integration methods for finite element solutions to time dependent Maxwell equations[J]. IEEE Transactions on Antennas and propagation,2004,52(8):2190-2195.
    [24]傅平.辛紧致格式FDTD方法的研究[D].苏州:苏州大学,2005.
    [25]Y. Shi and C. H. Liang. Multidomain pseudospectral time domain algorithm using a symplectic integrator[J]. IEEE Transactions on Antennas and Propagation,2007, 55(2):433-439.
    [26]S. Wang, Z. H. Shao, and G. J. Wen. A modified high order FDTD method based on wave equation[J]. IEEE Microwave and Wireless Components Letters,2007,17(5):316-318.
    [27]L. H. Kong, R. X. Liu, and X. H. Zheng. A survey on symplectic and multi-symplectic algorithms [J]. Applied Mathematics and Computation,2007,186(1):670-684.
    [28]F. M. Dopico and C. R. Johnson. Complementary bases in symplectic matrices and a proof that their determinant is one[J]. Linear Algebra and Its Applications,2006,419(2-3):772-778.
    [29]刘凤华,苟长义.复辛群与复线性Hamilton系统基本解的关系[J].天津理工学院学报,1999,15:9-11.
    [30]N. Anderson and A. M. Arthurs. Helicity and variational principles for Maxwell's equations[J]. International Journal of Electronics,1983,54(6):861-864.
    [31]Qunsheng Cao, Ramdev Kanapady, and Fernando Reitich. High-Order Runge-Kutta Multiresolution Time Domain Methods for Computational Electromagnetics [J]. IEEE Trans.Microwave Theory Tech.,2006,54(8):3316-3326,.
    [32]N. Anderson and A. M. Arthurs. Helicity and variational principles for Maxwell's equations[J]. International Journal of Electronics,1983,54(6):861-864.
    [1]Krumpholz M,Katehi L P B.MRTD:new time-domain schemes based on multiresolution analysis[J].IEEE Transactions on Microwave Theory and Techniques,1996,44(4):555-571.
    [2]Tentzeris E M,Robertson R L.Harvey J F,Katehi L P B.Stability and dispersion analysis of Battle-Lemarie-based MRTD schemes[J].IEEE Transactions on Microwave Theory and Techniques,1999,47(7):1004-1012.
    [3]Dogaru T,Carin L.Multiresolution time-domain using CDF biorthogonal wavelets[J].IEEE Transactions on Microwave Theory and Techniques,2001,49(5):902-912.
    [4]郭汉伟,梁甸农,刘培国,尹家贤.电磁场计算中FDTD与MRTD[J]国防科技大学学报,2001,23(5):84-88.
    [5]F. M. Dopico and C. R. Johnson. Complementary bases in symplectic matrices and a proof that their determinant is one[J]. Linear Algebra and Its Applications,2006,419(2-3):772-778.
    [6]W. C. Chew. Waves and Fields in Inhomogenous Media[M]. New York:Van Nostrand Reinhold,1990.
    [7]S. Zhao and G. W. Wei. High-order FDTD methods via derivative matching for Maxwell's equations with material interfaces[J]. Journal of Computational Physics,2004,200(1):60-103.
    [8]Zhizhang Chen, Jiazong Zhang,. An Unconditionally Stable 3-D ADI-MRTD Method Free of the CFL Stability Condition[J]. IEEE Microwave and wireless components letters, 2001,11(8):349-351.
    [9]Qunsheng Cao, Ramdev Kanapady, and Fernando Reitich. High-Order Runge-Kutta Multiresolution Time Domain Methods for Computational Electromagnetics[J]. IEEE Trans.Microwave Theory Tech.,2006,54(8):3316-3326.
    [10]黄志祥,吴先良.辛算法的稳定性及数值色散性分析[J].电子学报,2006.34(3):535-538.
    [11]T.Hirono,W.W.Lui,K.Yokoyama,S.Seki. Stability and numerical dispersion of symplectic fourth-order time-domain schemes for optical field simulation[J].Journal of Lightwave Technology,1998,16(10):1915-1920.
    [1]Zhu X,Carin L.Multiresolution time-domain analysis of plane-wave scattering from general three-dimensional surface and subsurface dielectric targets[J].IEEE Transactions on Antennas and Propagation,2001,49(11):1568-1578.
    [2]Dogaru T.Carin L.Application of Haar-wavelet-based mutiresolution time-domain schemes to electromagnetic scattering problems[J].IEEE Transactions on Antennas and Propagation,2002, 50(6):774-784.
    [3]Wei X, Li E, Liang C.A. new MRTD scheme based on Coifman scaling functions for the solution of scattering problems[J].IEEE Microwave and Wireless Components Letters.2002,12(10):392-394.
    [4]Taflove A, Hagness S C. Computational Electrodynamics-The Finite-Difference Time-Domain Method(Third Edition)[M]. MA:Artech House,2005.
    [5]Chen Y, Cao Q, Mittra R. Multiresolution Time Domain Scheme for Electromagnetic Engineering [M].NJ:Wiley,2005.
    [6]B. Engquist and A. Majda. Absorbing boundary conditions for numerical simulation of waves[J]. Mathematics of Computation,1977,31(139):629-651.
    [7]G. Mur. Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic field equations[J]. IEEE Transactions on Electromagnetic Compatibility,1981,23(4):377-382.
    [8]J. Fang and K. K. Mei. A super-absorbing boundary algorithm for solving electromagnetic problems by time-domain finite-difference method[C]. Antennas and Propagation Society International Symposium:1988.
    [9]J. P. Berenger. Three-dimensional perfectly matched layer for the absorption of electromagnetic waves[J]. Journal of Computational Physics,1996,127(2):363-379.
    [10]W. C. Chew, J. M. Jin, and E. Michielssen. Complex coordinate stretching as a generalized absorbing boundary condition[J]. Microwave and Optical Technology Letters,1997, 15(6):363-369.
    [11]S. D. Gedney. An anisotropic PML absorbing media for the FDTD simulation of fields in lossy and dispersive media[J]. Electromagnetics,1996,16(4):399-415.
    [12]J. A. Roden and S. D. Gedney. Convolution PML (CPML):an efficient FDTD implementation of the CFS-PML for arbitrary media[J]. Microwave and Optical Technology Letters,2000, 27(5):334-339.
    [13]王秉中.计算电磁学[M].北京:科学出版社,2002.
    [14]葛德彪,闫玉波.电磁波时域有限差分方法[M].西安:西安电子科技大学,2005.
    [15]A. Taflove. Review of the formulation and applications of the finite-difference time-domain method for numerical modeling of electromagnetic-wave interactions with arbitrary structures[J]. Wave Motion,1988,10(6):547-582.
    [16]K. S. Yee, D. Ingham, and K. Shlager. Time-domain extrapolation to the far field based on FDTD calculations[J]. IEEE Transactions on Antennas and Propagation,1991,39(3):410-413.
    [17]R. Luebbers, D. Ryan, and J. Beggs. A 2-dimensional time-domain near-zone to far-zone transformation[J]. IEEE Transactions on Antennas and Propagation,1992,40(7):848-851.
    [18]. Knockaert L,Olyslager F.PML-PEC and PML-PMC grounded Green's functions[C].IEEE AP-S,2005,4B:360-363.
    [19]聂在平,方大纲.目标与环境电磁散射特性建模(基础篇)[M].北京:国防工业出版社,2009.
    [20]Krumpholz M,Katehi L P B.MRTD:new time-domain schemes based on multiresolution analysis [J].IEEE Transactions on Microwave Theory and Techniques,1996,44(4):555-571.
    [21]T.Hirono,W.Lui,S.Seki and Y.Yoshikuni. A three-dimensional fourth-order finite-difference time-domain scheme using a symplectic integrator propagator[J].IEEE Transactions on Microwave Theory and Techniques,2001,49(9):1640-1648.
    [22]W.Sha, Z.Huang,X.Wu and M.Chen. Application of the symplecti finite-difference time-domain scheme to electromagnetic simulation[J].Journal of Computational Physics,2007,225(1):33-50.
    [1]M. Okoniewski, E. Okoniewska, and M. A. Stuchly. Three-dimensional subgridding algorithm for FDTD[J]. IEEE Transactions on Antennas and Propagation,1997,45(3):422-429.
    [2]T. G. Jurgens, A. Taflove, K. Umashankar, and T. G. Moore. Finite-difference time-domain modeling of curved surfaces[J]. IEEE Transactions on Antennas and Propagation,1992, 40(4):357-366.
    [3]I. A. Zagorodnov, R. Schuhmann, and T. Weiland. A uniformly stable conformal FDTD-method in Cartesian grids[J]. International Journal of Numerical Modelling-Electronic Networks Devices and Fields,2003, 16(2):127-141.
    [4]余文华,苏涛,刘永峻,R. Mittra并行时域有限差分[M].北京:中国传媒大学出版社,2005.
    [5]Dey S,Mittra R.A conformal finite-difference time-domain technique for modeling cylindrical dielectric resonators[J].IEEE Transactions on Microwave Theory and Techniques,1999, 47(9):1737-1739.
    [6]Liang X,Zakim K.Modeling of cylindrical dielectric resonators in rectangular waveguides and cavity[J].IEEE Transactions on Microwave Theory and Techniques,1993,41 (12):2174-2181.
    [7]Kaneda N, Houshmand B, Itoh T.FDTD analysis of dielectric resonators with curved surfaces[J]. IEEE Transactions on Microwave Theory and Techniques,1997,45(9):1645-1649.
    [8]Yu W,Mittra R.A conformal finite difference time domain technique for modeling curved dielectric surfaces[J].IEEE Microwave and Wireless Components Letters,2001,11(1):25-27.
    [9]胡晓娟.复杂目标电磁散射的FDTD及FDTD算法研究,博士学位论文[D].西安:西安电子科技大学,2007.
    [10]Wang J,Yin W,Liu Q.FDTD(2,4)-compatible conformal technique for treatment of dielectric surfaces[J].EIectronics Letters,2009,45(3):146-147.
    [11]Daubechies I.Ten Lectures on Wavelets[M].PA:SIAM,1992.
    [12]Taflove A,Hagness SC.Computational Electrodynamics—the Finite-Difference Time-Domain Method(Third Edition)[M].MA:Artech House,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700