用户名: 密码: 验证码:
海涂围垦区土壤高光谱特性与土地利用遥感调查研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海涂土壤是浙江省主要的后备土地资源,海涂土壤利用状况及其变化,不仅关系到围垦区社会经济的持续发展,而且还影响到海涂土壤资源的合理开发与利用。为此就必须要科学的、动态的掌握它们的分布、性质及其利用的变化。
     本文结合国家自然科学基金项目,选取围垦面积较大、围垦历史较长、在浙江省具有典型代表的上虞市海涂围垦区(杭州湾南岸)为例,综合应用多层次、多类型的遥感数据进行样区海涂土壤高光谱特性与评价研究,并开展围垦区土地利用遥感调查研究。
     主要研究内容及其结果如下:
     1.研究区内野外采集的土壤样品经自然烘干、过筛后,分别进行土壤理化性质分析和高光谱测试。土壤理化性质分析结果表明海涂土壤总体有机质含量低,电导率和含砂量高,并且随着围垦时间的增长呈现出规律性的变化。从土壤高光谱中选取9个吸收波段与土壤电导率、阳离子交换量和机械组成的Person相关分析表明,海涂土壤砂粒、粉粒含量与各波段相关性显著。
     2.依据不同围垦历史,对所有土样进行分组,并对选取的9个吸收波段进行逐步判别分析。判别结果表明,处于不同围垦区并具有不同改良程度的土样,其光谱数据具有很好的类可分性。
     3.对研究区系列历史数据预处理,提取围堤信息,根据地面的辅助调查和地方统计资料,统计出近三十年来海涂围垦面积的变化和范围。
     4.利用多时相陆地卫星影像进行研究区土地利用遥感调查。首先从ETM+图像中提取围垦坝和围垦范围变化信息,其次根据围垦年代不同对研究区进行空间分区,然后对不同子区采用不同分类方法。对分类后的各子区土地利用类型面积进行统计。研究结果表明,不同时期围垦区的主要农业土地利用类型有着明显的差异,从新围垦区裸露的未利用地和水产养殖塘为主,逐步过渡到棉花田及老围垦区的水稻田和果园。
     5.在没有光学遥感数据的辅助下,仅采用多时相的ERS-2 PRI雷达产品,经过雷达预处理、研究区分区后,针对不同子区土地利用类型的复杂程度,分别采用ISODATA非监督分类和BP神经网络分类器进行土地利用类型分类。分类总体精度为77.34%,总体Kappa系数为0.74。结果表明,在类似海涂围垦区,全天时、全天候的雷达遥感数据能够替代多光谱遥感数据进行土地利用遥感调查,并显示出巨大的应用潜力。
The coastal soils are the main land resource in support for Zhejiang province. The exploitation, utilization and its changes of the coastal soils not only relate with the sustained development of local economy, but also impact the subsequent exploitation and available land use plan. Thus, timely and reliable information with regard to the nature, extent and physic-chemical characteristics of the coastal soils is essential.
    Combined with a project supported by National Natural Science Foundation of China, a large, reclaimed with long time and representative area in Zhejiang province as the study area (located in Shangyu city and south of Hangzhou gulf), this thesis focused on the studies of hyperspectral characteristic of the coastal soils, estimating reclamation level of soil using laboratory hyperspectra and land use investigation by remote sensing with multi-type and multi-hiberarchy remote sensing data.
    The main study contents and corresponding results were as follow:
    1. After the natural drying and sieving of soil samples collected from field, physic-chemical property analysis and hyperspectral measurement were carried out in laboratory. The results showed that coastal soils had low organic matter, high electrical conductivity and sand content, and some soil properties changed with reclamation years. The Person correlation analysis showed that there exist good relationships between nine absorption bands and selected soil properties, such as soil sand and silt content.
    2. The study area was divided into four sub-zones with different historical years of reclamation. Stepwise Discrimination Analysis (SDA) was applied to estimate the reclamation levels of coastal soil using the nine absorption bands. The results showed that coastal soils with different reclamation years could be classified with satisfied accuracy using selected absorption bands from hyperspectra.
    3. Land use investigation by remote sensing were implemented with Multi-temporal Landsat TM and new generation Enhanced Thematic Mapper Plus (ETM+). First, dykes were extracted using a line feature enhanced and resolution sharpen ETM+ image. Basing on the extracted dykes, six sub-zones were defined according to different reclamation year, in order to facilitate subsequent classification of various land use types. Then, different classifiers were applied to the land use
    
    
    
    classification for different sub-zones. Finally, a detailed land use map based on a modified land use classification system was produced. The results showed that the dominant agricultural land use type of every sub-zone was changed with the reclamation years, from barren land to aqua-farm pond, to cotton field, and to paddy field and orchard.
    4. In the condition of no visible-light images, only multi-temporal ERS-2 PRI SAR images were applied for land use investigation. After the SAR pre-processing, pseudo-color synthesizing of three-temporal SAR images, extracting dykes and partitioning the study area into six sub-zones according to the reclamation years, an ISODATA unsupervised classifier and a BP neural network classifier were used for the land use classification for different sub-zones. The total classification accuracy was up to 77.34%. The study results showed that SAR remote sensing, instead of multi-optical remote sensing, has presented great potential on the agricultural land use investigation in such a coastal region.
引文
[1] 全国海岸带和海涂资源综合调查简明规程编写组.全国海岸带和海涂资源综合调查简明规程.北京:海洋出版社.1986.
    [2] 王遵亲.中国盐渍土.北京:科学出版社.1993.
    [3] 刘家明.中国海涂土壤资源系统分类探讨.资源科学.1998,20(4):77-84.
    [4] 俞仁培,陈德明.我国盐渍土资源及其开发利用.土壤通报.1999,30(4):158-59.
    [5] 浙江省土壤普查办公室.浙江土壤.杭州:浙江科学技术出版社.1994.
    [6] 胡芳丽,童曾,杨建华,陈永法.杭州湾海涂土壤资源及其开发利用.上海农业科技.1997,5:4-4.
    [7] 浙江省海岸带和海涂资源综合调查领导小组办公室.浙江省海岸带和海涂资源综合调查报告.北京:海洋出版社.1998.
    [8] 王人潮,史舟,黄敬峰等.论农业信息系统工程的建设.浙江大学学报(农业与生命科学版).1999,25(2):111-116.
    [9] 郑有飞.遥感技术在农业上应用及其研究综述.气象教育与科技.1998,1:9-13.
    [10] 徐彬彬等.土壤光谱反射特性研究及其应用.土壤学进展.1987,15(1):1-7.
    [11] 戴昌达等译.遥感技术在土壤和水资源研究中的应用.科学出版社.p.130-137,1981.
    [12] Shi, Z., Huang M. X., and Li Y., Physico-Chemical Properties and Laboratory Hyperspectral Reflectance of Coastal Saline Soil in Shangyu City of Zhejiang Province, China. Pedosphere, 2003,13(3): 193-198.
    [13] 明世乾等译.航空相片在土壤研究中的应用.北京:中国工业出版社.1963,p.134-159.
    [14] Stoner, E. R., et al., Atlas of soil reflectance properties. Purdue University, Indiana. 1980.
    [15] Stoner, E. R., et al., Soil spectral characterization. IGARSS, 1981, p. 1426-1437.
    [16] Gregory S. O., and Thomas H. P., Effect of grain size on remotely sensed spectral reflectance of sandy desert surfaces. Remote Sens. of Environ., 2004,89:272-280.
    [17] 朱震福等译.遥感定量方法.北京:科学出版社.1984,p.153-160.
    [18] 徐彬彬等.土壤光谱反射特性与理化性状的相关分析.科学出版社.1986,土壤专报,41号.
    [19] Hapke, B., and Wells, E., Bidirectional reflectance spectroscopy: 2. Experiments and observations. Journal of Geophysical Research, 1981,86(B4):3055-3060.
    [20] 季耿善等.土壤阳离子交换量与光谱反射率相关研究.土壤专报第41号,科学出版社.
    
    1986.
    [21] Obukhov, A.I., and Orlov, D. S., Spectral reflectivity of major soil groups and the possibility of using diffuse reflection in soil investigation. Soy. Soil Sci., 1964,2:174-184.
    [22] Bowers, S. A., and Hanks R. J., Reflection of radiant energy from soils. Soil science, 1965, 100(2):130-138.
    [23] Gerbermann, A. H., Reflectance of varying mixtures of clay soil and sand. Photogrammetric Engineering and Remote Sensing, 1979,45:1145-1150.
    [24] 孙毅,刘亚琴等.土壤光谱特性及光谱反射率与苏打盐渍土含盐量的相关.吉林农业科学.1992.1:53-56.
    [25] Szilagyi, A., and Baμmgardner, M. E, Salinity and spectral reflectance of soils. Proc Ann. Meeting ASPRS/ACSM, 1991 (USA: Baltimore, Maryland), pp. 430-437.
    [26] 季耿善等.土壤主要粘土矿物的近红外反射特性.土壤专报.第41号,科学出版社.1986.
    [27] Stone, E R., and Baμmgardner, M. E, Characteristic variations in reflectance of surface soils. Soil Sci. Soc. Am. J., 1981,45:1161-1165.
    [28] 戴昌达.中国主要土壤光谱反射特性分类与数据处理的初步研究.国家遥感中心篇的《遥感文选》,科学出版社.1981,p.315-323,
    [29] 王人潮等.浙江省主要土壤光谱反射特征及其模糊分类在土壤分类中的应用研究.浙江农业大学学报.1986,12(4):464-471.
    [30] 吴豪翔等.土壤光谱特征及其定量分析在土壤分类上的应用研究.土壤学报.1991,28(2):177-185
    [31] Palacios-Orueta, A., and Uatin, S. L., Remote sensing of soil properties in the Santa Monica Mountains I. Spectra Analysis. Remote Sens. Environ., 1998, 65:170-183.
    [32] Krishanan, E, Alexander, J. D., Butler, B. J. and Hμmmel J. W., Reflectance technique for predicting soil organic matter. Soil Sci. Soc. Am. J., 1980, 44:1282-1285.
    [33] Dalai R. C., Henry R. J., Simultaneous determination of moisture, organic carbon and total nitrogen by near infrared reflectance spectrophotometry. Soil Sci. Soc. Am. J., 1985,50:120-123.
    [34] Coleman, T. L. et al., Soil moisture, organic matter, and iron content effect on spectral characteristics of selected Vertisols and Alfisols in Alabama. PE&RS, 1987,12:1659-1663.
    
    
    [35] Ben-Dor E., Banin A., Near-infrared analysis as a rapid method to simultaneously evaluate several soil properties. Soil Sci. Soc. Am. J., 1995, 59:364-372.
    [36] 寇有观,萧术.卫星遥感在我国土地资源调查中的作用.Aerospace China,April 1998.p.7-9,11.
    [37] 陈习军,陈建杰.浙江省土地利用与土地覆被遥感综合调查研究.浙江地质2002.18(1):68-75
    [38] Hill, J. and Megier, J. Regional land cover and agricultural area statistics and mapping in the Departement Ardeche, France, by use of Thematic Mapper data. Int. J. Remote Sens., 1988,9(10): 1573-1595.
    [39] Wheeler, J. R., Jarvis, C., Mitchell, A. J. B., King, R. B., and White, R. J., Evaluation of Landsat and Spot imagery for agricultural land use planning in less developed country. Proceedings IGARSS'88, 1:471-472.
    [40] Salem, B. B., El-cibahy, A. and El-raey, M., Detection of land cover classes in agro-ecosyetems of northern Egypt by remote sensing. Int. J. Remote Sens., 1995, 16(14):2581-2594.
    [41] El-Khattib, H. M., El-Mowelhi, N. M., and Hawela, F., Motoring land cover of the desert friges of the eastern Nile Delta, Egypt. Proceedings IGARSS'96, 3:1756-1758.
    [42] Hill, J. and Megier, J., The use of multi-temporal TM tasseled cap features for land use mapping in European marginal areas an operational approach. Proceedings IGARSS'89, 2: 798-801.
    [43] Pax-Lenney, M. and Woodcock, C. E., Monitoring agricultural lands in Egypt with multi temporal Landsat TM imagery: How many images are needed. Remote Sens. of Environ., 1997,59(3): 522-529.
    [44] Goetz, S. J., Prince, S. D., Thawley, M. M., Smith, A. J., Wright, R., and Weiner, M., Application of multi-temporal land cover information in the mid-atlantic region: a RESAC initiative. Proceedings IGARSS'2000 [C], 3:357-359.
    [45] Anderson, J. R., E. T. Hardy, J. T. Roach, and R. E. Witmer. A land use and land cover classification system for use with remote sensor data. Geological Survey Professional Paper 964. US Government Printing Office, Washington DC. 1976.
    [46] Chae, H.S., Kim, S.J. and Ryu, J. A., A classification ofmultitemporal landsat TM data using principal component analysis & artificial neural network. Geoscience and Remote Sensing,
    
    1997. IGARSS '97. 'Remote Sensing-A Scientific Vision for Sustainable Development, 1997 IEEE International, 3-8 Aug 1997,1:517-520.
    [47] Sheikho K. M., Abu Mouti A. M., Yoshie T. and AI-Qumas F. S., Crops classification using multiple landsat data: A case study in arid lands. Geoscience and Remote Sensing Symposiμm Proceedings, 1998. IGARSS'98. 1998 IEEE International, 6-10 Jul 1998, 2:794-797.
    [48] 周斌,杨柏林.运用多时相直接分类法对土地利用进行遥感动态监测的研究.自然资源学报.2001,16(3):263-268.
    [49] 郭华东等.雷达对地观测理论与应用.北京:科学出版社.2000.
    [50] Ulaby, F., Kouyate, F., Brisco, B. and Willianms, T. L., Textural information in SAR images. IEEE Trans. Geosci. Remote Sensing., 1986, GE-24, pp. 235-245.
    [51] Dellepiane, S., Giusto, D., Serpico, S., and Vernazza, G., SAR image recognition by integration of intensity an textural information. Int. J. Remote Sens., 1991,12(9): 1915-1932.
    [52] Kurvonen, L., and Hallikainen, M. T., Textural information of multitemporal ERS-1 and Jers-1 SAR images with applications to land and forest type classification in boreal zone. IEEE Trans. on Geoscience and Remote Sensing, 1999, 37(2):680-689.
    [53] 邵芸,范湘涛,刘浩.基于目标时域散射特性的土地覆盖类型分类研究.国土资源遥感.2001,4:40-49.
    [54] Slak,S.R.,吴明敏.光学和雷达卫星图像融合技术及其在监视自然资源与土地使用变化方面的应用.电子工程信息.1996,(7):12-17.
    [55] 李新武,郭华东,李震,杨虎.干涉雷达地表相干特性分析及土地类型分类.高技术通讯.2002,5:1-4.
    [56] 谭衢霖,邵芸.雷达遥感图像分类新技术发展研究.国土资源遥感.2001.3:1-7.
    [57] 鲍士旦.土壤农化分析(面向21世纪课程教材).中国农业出版社.1999.
    [58] Leone, A. P, and Sommer, S., Multivariate analysis of laboratory spectra for the assessment of soil development and soil degradation in the Southern Apennines (Italy). Remote Sens. Environ., 2000, 2:346—359.
    [59] Hill J., and Sch(?)tt, B., Mapping complex patterns of erosion and stability in dry Mediterranean ecosystems. Remote Sens. of Environ., 2000, 74:577-569.
    [60] Csillag, F., P(?)sztor, L., Biehl, L. L., Spectral band selection for the characterization of salinity Status of Soils. Remote Sens. Environ., 1993, 43:231-242.
    
    
    [61] 彭望(王录).土壤盐渍化量化的遥感与GIS实验.遥感学报.1997,1(3):237—240.
    [62] Palacios-Orueta, A., and Uatin, S. L., Remote sensing of soil properties in the Santa Monica Mountains I. spectra analysis. Remote Sens. Environ., 1998, 65:170-183.
    [63] 徐彬彬.我国土壤光谱曲线之研究.环境遥感.1991,6(1):61—71.1
    [64] Baμmgardner, M. F., Kristof S, Johansen, C. J., and Zachary, A., Effects of organic matter on the multispectral properties of soils. LARS Information Note 030570, Purdue Univ., Lafayette, Ind., 1970.
    [65] 季耿善,徐彬彬.土壤粘土矿物反射特性及其在土壤学上的应用.土壤学报.1987,24(1):67-76.8
    [66] 卢纹岱,朱一力,沙捷等.SPSS for Windows从入门到精通.北京:电子工业出版社.1997,pp.358—359.
    [67] Shi, Z., Wang, R. C., Huang, M. X., Detection of coastal saline land uses with multi-temporal landsat images in Shangyu city, China. Environmental Management. 2002, 30(1):142-150.
    [68] Erdas, INC. Erdas Field Guild. Fourth Edition. Atlanta, Geogia, USA, 1997.
    [69] Erdas, INC. Erdas Imagine Tour Book. Atlanta, Geogia, USA, 1999.
    [70] 沈润平.土地利用遥感监测的关键技术及其应用研究—以江西鄱阳湖地区为例.浙江大学博士学位论文.2002.
    [71] 刘勇,贺雪梅译.遥感精解.北京:测绘出版社.1993.
    [72] Chavez, P. S., An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Remote Sens. of the Environ., 1988, 24:459-479.
    [73] 张永生.遥感图像信息系统.北京:科学出版社.2000.
    [74] 许殿元,丁树柏.遥感图像信息处理.北京:宇航出版社.1990.
    [75] 娄纯柱,邢少杰,宋拥军.遥感图像几何纠正的若干问题分析.测绘技术装备.2003,5(4).-36-37.
    [76] 林辉,李际平,叶光华.多项式法航空相片几何纠正.北京林业大学学报.2003,25(2).-58-62.
    [77] 赵帮元,荆小峰.TM卫星影像几何纠正技术方法浅探.中国水土保持.2000(6).-30-32.
    [78] 任留成,朱重光等.TM图像的SOMP几何纠正法.遥感学报.2001,5(4):295-299
    [79] 谷峰霞.关于图像的几何纠正.山西科技.2001,(6).-42-43
    
    
    [80] Anne, H., and Anil, K., A marlkov random field model for classification of multisource satellite imagery. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(1):100-113.
    [81] Benediktsson, J. A., and Arnason, K., Decision level fusion of multitype data. Geoscience and Remote Sensing Symposium. IGARSS'99, Proceedings, IEEE 1999 International. 1999, 1:74-76.
    [82] Ranchin, T., and Wald, L., Fusion of high spatial images: The ARSIS concept and its implementation. Photogrammetric Engineering & Remote Sensing, 2000, 66(1):49-61.
    [83] Garzelli, A., Possibilities and limitations of the use of wavelets in image fusion. Geoscience and Remote Sensing Symposium. IGARSS'02, Proceedings. IEEE 2002 International, 2002, 1:66-68.
    [84] 吕同富,刘宝军,毕秀芝.图像边缘提取的简单算法及应用.计算机仿真.2003,20(4):99-101.
    [85] 王瑶琨,郭志芬.实时图像的伪中值滤波和Sobel边缘增强.电子学报.1989,17(3):120-122.
    [86] 赵英吋等.遥感应用分析原理与方法.北京:科学出版社.2003.
    [87] 万建,王继成.基于ISODATA算法的彩色图像分割.计算机工程.2002,28(5):135-136,157.
    [88] 骆玉霞.在GIS支持下利用TM影像进行盐渍化程度等级分类研究.中国农业大学土壤学专业硕士学位论文.1999.
    [89] 杨凯等.遥感图像处理的原理与方法.北京:测绘出版社.1988.
    [90] 陈述彭,赵英吋.遥感地学分析.北京:测绘出版社.1990.
    [91] 张友静等.K-T变换的林学意义及其在森林蓄积量估算中的应用.环境遥感.1992,3:163-166.
    [92] 黄建文,鞠洪波.利用航天遥感数据进行植被分类的研究.林业科技通讯.1998,10:9-11.
    [93] 林培.农业遥感.北京:北京农业大学出版社.1990.
    [94] 黄敬峰.基于GIS的大面积水稻遥感估产方法的研究.浙江大学博士学位论文.1999
    [95] Anderson, J. R., Hardy, E. T. J., Roach, T. and Witmer, R. E., A land use and land cover classification system for use with remote sensor data. Geological Survey Professional Paper
    
    964. US Government Printing Office, Washington DC. 1976
    [96] Rhoades, J. D. and Miyamoto, S., Testing soils for salinity and sodicity. Soil testing and plant analysis. Edited by Westerman, R. L. Soil Science Society of Amercian, Inc. Madison, Wisconsin, USA. 1990. p.299-366.
    [97] 严泰来,张玮.SAR与TM影像几何模式比较分析,见《星载雷达应用研究》,郭华东等主编,中国科学技术出版社.1996.
    [98] 辛景峰.水稻的农学—微波散射模型方法研究.中国农业大学硕士论文.1996.
    [99] 殷克善.机载侧视雷达遥感应用于土地利用监测的初步研究.北京农业大学硕士论文.1995.
    [100] 杨凯等.遥感图像处理的原理于方法.北京:测绘出版社.1988.
    [101] 曾琪明等.合成孔径雷达遥感原理及应用简介(三).遥感信息.1998,2:43-47.
    [102] http://earth.esa.int/applications/ data_util/SARDOCS/spacebome/Radar_Courses/Radar_Cour se_Ⅲ/shadow.htm
    [103] 袁志龙.多时相ERS-2 SAR图像在棉花识别中的应用.中国农业大学硕士学位论文.1999.
    [104] Laur, H., Bally, P., Meadows, P., S(?)nchez, J., Sch(?)ttler, B., Lopinto, E. and Esteban, D., 'ERS SAR calibration: derivation of the backscattering coefficient so ESA ERS SAR PRI products', ESA/ESRIN, ES-TN-RS-PMHL09, Issue 2, Rev. 5b, September 1998 (available via http://earthl.esrin.esa.it/ESC2).
    [105] ENVI 4.0 Online Guide. Research Systems, Inc. USA.
    [106] Frost, V. S., Stiles, S. A., Shanmugan, K. S., Holtzman, J. C., A model for radar images and its application to adaptive digital filtering of multiplicative noise. IEEE Trans. Pattern Anal. Machine Intel., 1982,4:157-165.
    [107] Kuan, D. T., Sawehuck, A. A., Strand, T. C., and Chavel, P., Adaptive noise smoothing filter for images with signal-dependent noise. IEEE Trans. Pattern Anal. Machine Intel., 1985, 7:165-177.
    [108] Lee, J. S., Digital image enhancement and noise filtering by use of local statistics. IEEE Trans. Pattern Anal. Machine Intel., 1980, 2:165-168.
    [109] Lopes, A., Touzi, R., and Nezry, E., Adaptive speckle filters and scene heterogeneity. IEEE Trans. Geosci. Remote Sens., 1990, 28:992-1000.
    [110] Shi Z., and Fung, K. B., A comparision of digital speckle filters. In Proc. IEEE Symp. Geosci
    
    Remote Sens.(IGARSS), IEEE, New York, 1994,p.2129-2132.
    [111] 戴欣明.SAR图像处理与应用的初步研究.浙江大学硕士学位论文.2003.
    [112] 王三明,蒋军成,姜慧.基于人工神经网络理论的系统安全评价.工业安全与防尘.2001,27(2):27-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700