用户名: 密码: 验证码:
辛伐他汀及山莨菪碱对兔心肌缺血再灌注后心律失常的防治作用及心肌细胞电重构的逆转效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
经皮冠状动脉介入治疗(PCI)技术,是急性心肌梗死治疗史上里程碑式的进步,然而随之带来的再灌注损伤直接影响到患者的预后。心肌缺血后发生再灌注可产生再灌注心律失常,特别是室速、室颤是导致心源性猝死的主要危险因素,约占心血管死亡事件的50%左右。但关于再灌注心律失常发生的细胞学离子机制以及如何预防发生,研究尚少。急性心肌梗死后梗死及其边缘区缺血心肌细胞可发生一系列电生理变化,形成电重构,为心律失常发生的细胞学基质[2]。所以阻断或逆转这种电重构的形成,应当成为临床治疗心律失常的一个新的重要靶点。
     他汀类药物,3-羟基-3甲基戊二酰辅酶A(HMG-Co A)抑制剂,不仅能降低血脂水平,而且有独立于降脂作用之外的其它有益作用,称之为他汀的多效性。动物实验及临床研究,证实,他汀类药物预处理可明显降低缺血再灌注心律失常的发生率。所以,研究他汀类药物的抗心律失常效应具有重要的临床意义,但其抗心律失常作用的机理仍不明确。目前从离子通道水平研究他汀类药物的抗心律失常的细胞学离子机制作用国内外尚未见报道。
     山莨菪碱(Anisodamine)为我国从茄科植物唐古特莨菪中分离出的一种生物碱,具有改善微循环、减轻缺血/再灌注损伤的作用,临床上也发现山莨菪碱可减少各种心律失常的发生,但是山莨菪碱药物预处理是否可降低缺血再灌注心律失常的发生率,尚无研究报道,其抗心律失常作用的机理仍不明确。
     本文建立兔心肌缺血再灌注动物模型,研究辛伐他汀和山莨菪碱预处理对缺血再灌注期间心律失常的防治作用。采用全细胞膜片钳技术,记录缺血再灌注后兔心室肌细胞跨膜钠离子通道电流(sodium current ,INa)、L-钙通道电流(L-type calcium current, ICa-L)及瞬间外向钾通道电流(outward potassium current ,Ito)的变化,研究辛伐他汀和山莨菪碱预处理对兔心肌缺血再灌注动物模型心室肌细胞电重构的逆转效应,探讨他汀类药物和山莨菪碱抗心律失常的细胞学离子机制。
     本研究的内容分为以下四个部分:
     第一部分:辛伐他汀对血脂正常兔心肌缺血再灌注后心律失常的防治作用及电重构的逆转保护效应
     目的:已往研究发现他汀类药物可明显降低心律失常的发生率,但机理不明。本文建立兔心肌缺血再灌注动物模型,研究辛伐他汀预处理对缺血再灌注期间心律失常的防治作用,并采用全细胞膜片钳技术,记录缺血再灌注后兔心室肌细胞INa、ICa-L及Ito的变化,研究辛伐他汀预处理对兔心肌缺血再灌注动物模型的电重构的逆转效应,探讨他汀类药物抗心律失常的细胞学离子机制。
     方法:45只新西兰大耳白兔随机分为3组:缺血再灌注动物模型组(I-R组,结扎冠脉左前降支30min后再开放120min);辛伐他汀治疗组(他汀组,手术前给予辛伐他汀3天5 mg·kg-1·d-1);假手术对照组(只开胸不结扎血管)。观察缺血再灌注期间室性心律失常(室早、室速和室颤)的发生率及持续时间。采用酶解的方法分离缺血部位心室肌外膜单个心室肌细胞,采用全细胞膜片钳技术,记录跨膜钠离子通道电流(INa)、L-钙通道电流(ICa-L)及瞬间外向钾通道电流(Ito),同时检测各组血脂水平。
     结果:①血脂:各组动物血脂水平无显著差异。②心律失常的发生率:与I-R组比较,他汀组兔室速、室颤发生率及持续时间明显下降,其心律失常的评分明显低于I-R组(2.3±0.6 VS 3.6±0.8,P<0.05)。③INa:对照组、I-R组、他汀组INa电流密度峰值(-30mV)分别为–42.78±5.48 (n=16),–22.46±5.32 (n=12),–40.66±5.89 pA/pF (n=15),I-R组较对照组明显下降(P<0.01),他汀组较I-R组明显升高(P<0.01)。④ICa-L:对照组、I-R组、他汀组ICa-L电流密度峰值(0mV)分别为–3.13±1.22 pA/pF(n= 13),–4.34±0.92(n=15),–3.46±0.85 pA/pF(n= 16),I-R组较对照组明显升高(P<0.05),他汀组较I-R组明显下降(P<0.05)。⑤Ito:对照组、I-R组、他汀组Ito电流密度峰值(+60mV)分别为17.41±3.13 (n=15), 9.49±1.91 (n=11), 15.24±2.41 pA/pF (n=11) ,I-R组较对照组明显下降(P<0.01);他汀组较I-R组明显升高(P<0.01),但他汀组仍明显小于对照组(P<0.05)。
     结论:①辛伐他汀可增加心肌细胞膜稳定性,显著减少缺血再灌注期间室性心律失常的发生率。②缺血再灌注可导致缺血心肌细胞INa和Ito明显下降,ICa-L.明显增加,形成电重构,可引起心肌细胞动作电位延长,并且不同区域之间存在电生理异质性,为再灌注心律失常发生的机制。③辛伐他汀预处理可减轻这些离子通道的异常变化,逆转电重构,而不依赖于其降血脂效应,可能为他汀类药物降低心律失常发生率的细胞学离子机制。所以,阻断或逆转异常电重构的形成,应当成为临床治疗心律失常的一个新的重要靶点。并且本研究扩展了他汀类药物的多效性。
     第二部分辛伐他汀对血脂正常兔急性心肌梗死再灌注后梗死面积的影响
     目的:探讨辛伐他汀预处理对急性心肌梗死后再灌注后心肌梗死范围的影响及其作用机制。
     方法:采用结扎冠状动脉左前降支3 h后再开放60 min的方法建立兔急性心肌梗死再灌注模型, 20只兔随机分为4组:A组:急性心肌梗死再灌注组;B组:辛伐他汀+急性心肌梗死再灌注组;C组:格列苯脲+急性心肌梗死再灌注组;D组:格列苯脲+辛伐他汀+急性心肌梗死再灌注组。再灌注结束后测定各组血清CK-MB活性,并于再灌注结束后,再次原位结扎LAD阻断冠状动脉血流,注射20%伊文氏蓝20 ml进入左心室进行心肌染色,蓝染区为正常心肌,非蓝染区为缺血心肌。心室肌沿心脏纵轴切成约2 mm的薄片,置于1% TTC磷酸缓冲液内孵育20 min进行染色,并用10%甲醛溶液固定24 h,以确定梗死组织,白色为梗死心肌,计算心肌梗死面积。。
     结果:B组CK-MB活性较A组和C组显著减少(P<0.01), C组与A组相似(P>0.05),D组较A组显著减小(P<0.05),但仍明显高于B组(P<0.05)。各组间心肌缺血范围(AAR/LV)无明显统计学差异(P>0.05),即四组心肌缺血危险程度相似。B组心肌梗死范围为(23.6±2.8%),较A组(43.6±4.6%)显著减少(P<0.01), C组心肌梗死范围(45.1±4.5%)与A组相似(P>0.05),D组心肌梗死范围(36.8±3.4%)较A组显著减小(P<0.05),但仍明显高于B组(P<0.05)。
     结论:辛伐他汀可明显减小心肌梗死面积,对急性心肌梗死再灌注损伤具有保护作用,机制可能与辛伐他汀激活ATP敏感性钾通道有关。
     第三部分:山莨菪碱对正常及缺血再灌注后心室肌细胞离子通道电流的影响
     目的:山莨菪碱(Anisodamine)具有改善微循环、减轻缺血/再灌注损伤的作用,临床上也发现山莨菪碱可减少各种心律失常的发生,但是山莨菪碱药物预处理是否可降低缺血再灌注心律失常的发生率,尚无研究报道,其抗心律失常作用的机理仍不明确。本文建立兔心肌缺血再灌注动物模型,研究山莨菪碱对兔正常离体心室肌细胞及在体缺血再灌注后心室肌细胞INa、ICa-L及Ito的影响,探讨山莨菪碱抗再灌注心律失常的细胞学离子机制。
     方法:45只新西兰大耳白兔随机分为3组:缺血再灌注动物模型组(I-R组,结扎冠脉左前降支30min后再开放120min);山莨菪碱治疗组(Ani组,手术前1min给予动物耳缘静脉注射山莨菪碱5mg/Kg,);假手术对照组(只开胸不结扎血管)。观察缺血再灌注期间室性心律失常(室早、室速和室颤)的发生率及持续时间。采用酶解的方法分离缺血部位心室肌外膜单个心室肌细胞,采用全细胞膜片钳技术,研究不同浓度山莨菪碱对兔正常心室肌细胞INa、ICa-L及Ito的影响,并且记录在体缺血再灌注后各组动物心室肌细胞跨膜INa、ICa-L及Ito的变化。
     结果:①心律失常发生率:与I-R组比较,Ani组兔室速、室颤发生率及持续时间明显下降,其心律失常的评分明显低于I-R组(2.6±0.7VS 3.6±0.8,P<0.05)。②不同浓度山莨菪碱对正常心肌细胞ICa-L、INa及Ito的影响:山莨菪碱浓度为10nmol·L - 1时,对ICa-L无明显影响(p>0.05)。山莨菪碱浓度为100和1000 nmol/ L,分别使ICa-L电流密度由(–3.13±1.22 pA/pF, n= 16)减少到(–2.15±1.02 pA/pF,n = 12 , P <0.01)和(–1.82±0.86 pA/pF,n = 10 , P < 0.01),抑制率分别为31.3%和41.8%)。山莨菪碱浓度为10 nmol/L时,对INa无明显影响(n= 16,P >0.05)。山莨菪碱浓度为100和1000 nmol/ L,分别使INa电流密度(pA/ pF)由(–42.78±5.48, n=16)减少到(–33.25±4.46 pA/pF,n = 14, P <0.01)和(–29.32±3.55 pA/pF,n = 11 , P < 0.01),抑制率分别为22.3%和31.5%。山莨菪碱浓度为10、100和1000 nmol/ L时,分别使Ito电流密度(pA/ pF)由(17.41±3.13 pA/pF,n=15)减少到(16.13±2.93 pA/pF,n=14)、(15.11±2.88 pA/pF,n=11)和(14.96±2.82 pA/pF,n=11),抑制率分别为7.3%、13.2%和14.1%,但均无统计学差异(p>0.05)。③山莨菪碱对兔在体缺血再灌注后心肌细胞离子通道电流的影响: ICa-L:对照组ICa-L电流密度峰值(0mV)为–3.13±1.22 pA/pF(n= 16),I-R组(–4.34±0.92 pA/pF,n=15)较对照组显著升高(P<0.05),Ani组(–3.25±0.79 pA/pF,n= 12)较I-R组明显下降(P<0.05)。Ani组与对照组无明显差异(P>0.05)。INa:对照组、I-R组、Ani组INa电流密度峰值(-30mV)分别为–42.78±5.48 (n=16),–22.46±5.32 (n=12),–38.89±5.24 pA/pF (n=13),I-R组较对照组明显下降(P<0.01),Ani组较I-R组明显升高(P<0.01)。Ito:对照组、I-R组、Ani组Ito电流密度(+60mV时)分别为(17.41±3.13)pA/pF(n=15)、(9.49±1.91)pA/pF (n=11)、(16.55±2.86) pA/pF (n=10),I-R组与对照组相比显著下降(P<0.01)。Ani组与I-R组相比显著升高(P<0.01),Ani组与对照组相比,无明显差异。
     结论:①山莨菪碱可降低心肌缺血再灌注期间心律失常的发生率。②山莨菪碱对离体正常单个心肌细胞INa和ICa-L.具有剂量依赖性抑制作用。③心肌缺血再灌注后,其电生理特性发生改变,INa和Ito明显下降,ICa-L.明显增加,山莨菪碱预处理可减轻这些离子通道的异常变化,使下降的INa和Ito上调,增加的ICa-L.下调,恢复跨膜离子通道活性,逆转电重构。④山莨菪碱可能通过多个靶点起到综合调整作用,从而发挥抗心律失常效应,并且没有促心律失常的副作用。
     第四部分:山莨菪碱对兔心肌缺血再灌注后QT间期离散度及室颤阈值的影响
     目的:建立兔心肌缺血再灌注动物模型,研究山莨菪碱对兔心肌缺血再灌注后QT间期离散度(QTcd)及有效不应期(ERP)和室颤阈(VFT)的影响,探讨山莨菪碱抗心律失常的电生理机制。
     方法:45只新西兰大耳白兔随机分为3组:缺血再灌注动物模型组(I-R组,结扎冠脉左前降支30min后再开放120min);山莨菪碱治疗组(Ani组,手术前1min给予动物耳缘静脉注射山莨菪碱5mg/Kg,);假手术对照组(只开胸不结扎血管)。12导联同步心电图观察各组QTcd。S1-S2程控电刺激方法测定兔ERP和VFT。
     结果:①3组术前QTcd比较均无明显差异(36.3±3.5 VS 35.8±3.6 VS 36.5±3.4 ms,P>0.05)。I-R组在术后较术前QTcd明显增大(64.6±7.2 VS 35.8±3.6 ms,P<0.01)。术后I-R组较对照组QTcd也明显增大(64.6±7.2 VS 37.5±3.8 ms,P<0.01)。术后Ani组QTcd明显小于I-R组(40.3±5.3 VS 64.6±7.2 ms ,P<0.01)。②在缺血再灌注术后,I-R组ERP较对照组明显缩短(126.2±11.8 VS 154.6±13.2 ms,P<0.05)。Ani组ERP较I-R组明显延长(148.5±12.3 VS 126.2±11.8 ms,P<0.05),与对照组比较无明显差异(148.5±12.3 VS 154.6±13.2 ms,P>0.05)。③在缺血再灌注术后,I-R组VFT较对照组明显降低(0.26±0.11 VS 3.51±0.56 mJ,P<0.01)。Ani组VFT较I-R组明显增高(2.06±0.48 VS 0.26±0.11 mJ,P<0.01),但仍低于对照组(2.06±0.48 VS 3.51±0.56 mJ,P<0.05)。
     结论:①缺血再灌注后QTcd明显增大,ERP明显缩短,VFT明显降低,很容易诱发室速、室颤等致命性心律失常。②山莨菪碱治疗可明显缩短QTcd,延长ERP,增加室颤阈,从而可增加心电的稳定性,减少室速、室颤等致命性心律失常的发生。
Percutaneous coronary intervention (PCI) is frequently associated with the potential ischemic-reperfusion injury. Especially, ventricular tachyarrhythmias, including ventricular tachycardia (VT) and ventricular fibrillation (VF), induced by coronary artery occlusion / reperfusion, are the major direct causes of sudden cardiac death in patients with coronary artery disease, and sudden cardiac death is a leading cause in increasing cardiovascular mortality. However, there is little information regarding the ionic mechanism and prevention of reperfusion arrhythmia. After coronary artery occlusion / reperfusion, surviving myocardium in and around the infarct zone plays an important role in arrhythmogenesis , which is thought to be strongly associated with the alterations of electrophysiological characteristics ,called as“electrical remodeling”. So preventing or reversing electrical remodeling induced by ischemia and reperfusion should also be a clinical therapeutic target.
     Hydroxymethylglutary coenzyme A reductase inhibitors (statins) have been shown to have effects independent of their cholesterol- lowering effects, referred to as pleiotropic effects. It has been shown that pretreatment with statin is effective in preventing reperfusion arrhythmia after ischemia- reperfusion in the experimental model and clinical study. Therefore, it is important to investigate possible anti-arrhythmic effects of statins, but its electrophysiological mechanism is unclear.
     Anisodamine is a alkaloid isolated from nightshade henbane in China. Being a M-choline receptor blocker, anisodamine have been shown by previous studies that it can improve microcirculation and protect against myocardial damage by ischemia-reperfusion. Clinical studies have also suggested that anisodamine is effective in preventing arrhythmia, but its electrophysiological mechanism is unclear.
     Based on these observations, the present study was designed to examine the effect of pretreatment with simvastatin as well as anisodamine on the changes in membrane ionic currents, including sodium channel current (INa), L-type calcium channel current (ICa-L) and transient outward potassium channel current (Ito) in left ventricular myocytes of normocholesterolemic rabbits undergoing ischemia and reperfusion, by the whole cell patch-clamp recording technique, so as to explore the ionic mechanism responsible for the anti-arrhythmic effect of statin . The study is comprised of four parts described as follows:
     Part I:Cardioprotective effects of simvastatin on reversing electrical remodeling induced by myocardial ischemia-reperfusion in normocholesterolemic rabbits
     Objective: Recent studies have revealed that pretreatment with statin is effective in preventing arrhythmia, but its electrophysiological mechanism is unclear. This study was conducted to investigate the cardioprotective effects of simvastatin on reversing electrical remodeling in left ventricular myocytes of rabbit heart undergoing ischemia- reperfusion ,so as to explore the ionic mechanisms responsible for the anti-arrhythmic effect of statin .
     Methods: Forty-five rabbits were randomly divided into three groups : ischemic-reperfusion group (I-R), simvastatin intervention group (Statin) and sham-operated control group (CON). Anesthetized rabbits were subjected to 30-min ischemia by ligating left anterior descending coronary artery and 60-min reperfusion after administration of oral simvastatin (5 mg·kg-1·d-1 ) (Statin group) or placebo (I-R group) for 3 days.The incidence of ventricular arrhythmia of premature ventricular contraction (PVC), ventricular tachycardia (VT) and ventricular fibrillation (VF) were observed. Single ventricular myocytes were isolated enzymatically from the epicardial zone of the infarcted region derived from the hearts in I-R , statin group and the same anatomy region in CON. Whole cell patch clamp technique was used to record membrane ionic currents, including sodium current (INa), L-type calcium current (ICa-L) and transient outward potassium current (Ito). Simultaneously, the level of serum cholesterol was examined.
     Results:①The concentration of serum cholesterol: there was not significant difference in serum cholesterol concentration among three groups.②The incidence of ventricular arrhythmia: compared with I-R group, Statin decreased the incidence and duration of ventricular arrhythmia by reperfusion, resulting in significant decrease of the scores of arrhythmia(2.3±0.6 VS 3.6±0.8,P<0.05).③Effect of simvastatin on INa in rabbit ischemic myocytes: the peak INa current density (at–30 mV) was significantly decreased in I-R(–22.46±5.32 pA/pF, n=12) compared with CON (–42.78±5.48 pA/pF ,n=16 ,P<0.01) and Statin (–40.66±5.89 pA/pF,n=15 ,P<0.01), while the peak INa current density in Statin group was no different from CON( P>0.05).④Effect of simvastatin on ICa-L in rabbit ischemic myocytes: the peak ICa-L current density (at 0 mV) was significantly increased in I-R (–4.34±0.92 pA/pF, n=15) compared with CON (–3.13±1.22 pA/pF, n= 16, P<0.05) and Statin (–3.46±0.85 pA/pF, n= 16,P<0.05), while the Peak ICa-L current density in Statin was no different from CON (P>0.05).⑤Effect of simvastatin on Ito in rabbit ischemic myocytes: the Ito current density (at +60 mV) was significantly decreased in I-R (9.49±1.91 pA/pF, n=11) compared with CON (17.41±3.13 pA/pF ,n=15 ,P<0.01) and Statin (15.24±2.41 pA/pF, n=11, P<0.01), although there was slight reduction in Statin group compared with CON( P<0.05).
     Conclusions: Our study showed that simvastatin has the ability to increase electrical stability of the cardiomyocytes and thereby reduce the occurrence of ventricular arrhythmia. Our study also showed that ischemia-reperfusion induced significant down-regulation of INa and Ito, and up-regulation of ICa-L, which may underlie the altered electrical activity and long abnormal transmembrane APD of the surviving ventricular myocytes, thus contributing to ventricular arrhythmias in the infarcted heart. Pretreatment with simvastatin could attenuate these changes, suggesting that simvastatin could reverse this electrical remodeling and attenuate inhomogeneity without lowering the serum cholesterol level, thus contributing to the ionic mechanism responsible for the anti-arrhythmic effect of statin. It might imply that the ionic mechanism of statin for anti-arrhythmia is a pharmacological effect independent on decreasing cholesterol. Accordingly, simvastatin, may contribute to reducing cardiovascular mortality, through its anti-arrhythmic effects. So preventing or reversing electrical remodeling induced by ischemia and reperfusion should also be a clinical therapeutic target. Our findings expand the pleiotropic spectrum of the statins’favorable effects on cardiovascular diseases.
     Part II: Effects of pretreatment with simvastatin on the area of myocardial infarction in reperfusion injury rabbits after acute myocardial infarction
     Objective: To investigate the effects and mechanism of the pretreatment with simvastatin on the area of myocardial infarction in reperfusion injury rabbits after acute myocardial infarction(AMI) .
     Method: Twenty New Zealand white rabbits were randomly divided into four groups : group A, AMI/ reperfusion; group B, pretreated with simvastatin( 5 mg/kg) for 3 days before AMI ;group C, treated with glibenclamide (KATP channel blocker) (5mg/Kg ) before AMI, group D, treated with glibenclamide and simvastatin before AMI . Models of AMI/ reperfusion were established by 180- minute of coronary occlusion and 60- minute of reperfusion. At the end of reperfusion,the coronary artery was reoccluded ,and the risk zone was delineated with Evan’blue. Hearts were sectioned (2mm) and incubated in 1% TTC in phosphate buffer for 20 min to define white necrotic tissue when fixed in 10% formalin for 24 h, and the level of plasma creatine kinase-MB (CK-MB) was assessed and evaluated.
     Result:①The content of CK-MB was significantly decreased in group B than that in group A and group C (P < 0. 01) , however, it was markedly decreased in group D than that of group A (P<0.05), and significantly increased than that of group B (P<0.05).②The risk zone sizes were similar among all the groups. The infarct size was (43.6±4.6)% in group A. Simvastatin treatment resulted in a significant limitation of infarct size in group B (23.6±2.8% VS group A, P<0.01), and the infarct size was similar in group C (45.1±4.5%) compared with that in group A (P>0.05). However, it was markedly decreased in group D (36.8±3.4%) than that of group A(P<0.05), and significantly increased than that of group B (P<0.05).
     Conclusion: Simvastatin significantly reduce myocardial infarct size and the level of of plasma myocardial enzyme during AMI and reperfusion in rabbits, which has protective action against ischemia-reperfusion injury , and the activation of ATP-sensitive K channels might be involved in this protective mechanism.
     Part III: Effects of anisodamine on multiple ion channels in isolated ventricular myocytes from normal and ischemia-reperfusion myocardium
     Objective :Previous studies have shown that anisodamine can protect myocardium against damage by ischemia-reperfusion. Clinical studies have also suggested that anisodamine is effective in preventing arrhythmia, but its electrophysiological mechanism is unclear. This study was conducted to investigate the cardioprotective effects of anisodamine on reversing electrical remodeling in left ventricular myocytes of rabbit heart undergoing ischemia-reperfusion , and to explore the ionic mechanism responsible for the anti-arrhythmic effect of anisodamine .
     Methods: Forty-five rabbits were randomly divided into three groups : ischemic-reperfusion group (I-R), anisodamine intervention group (Ani) and sham-operated control group (CON). Anesthetized rabbits were subjected to 30-min ischemia by ligation of the left anterior descending coronary artery and 60-min reperfusion . Ani group was injected with anisodamine at a dose of 5mg/kg via femoral vein 1 min before operation.The incidence of ventricular arrhythmia of premature ventricular contraction (PVC), ventricular tachycardia (VT) and ventricular fibrillation (VF) was observed. Single ventricular myocytes were isolated enzymatically from the epicardial zone of the infracted region derived from the hearts in I-R , Ani group and the same anatomy region in CON .Whole cell patch clamp technique was used to record membrane ionic currents, including sodium current (INa), L-type calcium current (ICa-L) and transient outward potassium current (Ito).
     Results:①The incidence of ventricular arrhythmia: compared with I-R group , Ani decreased the incidence and duration of ventricular arrhythmia by reperfusion, resulting in significant decrease the scores of arrhythmia (2.6±0.7 VS 3.6±0.8,P<0.05).②Effects of anisodamine on membrane ionic currents of normal rabbit ventricular myocytes: Ani of 10 nmol/L did not affect the ICa-L, Ani of 100, 1000 nmol/ L inhibited ICa-L by 31.3% and 41.8% respectively( borh P < 0.01). Ani of 10 nmol/L did not affect the INa, Ani of 100, 1000 nmol/ L inhibited INa by 22.3% and 31.5% respectively( borh P < 0.01). Ani of 10 , 100, 1000 nmol/ L inhibited Ito by 7.3%、13.2% and 14.1% respectively(P all >0.05).③Effect of Ani on membrane ionic currents (ICa-L ,INa and Ito)of rabbit ischemic/reperfusion myocytes : ICa-L—the peak ICa-L current density(at 0 mV) was significantly increased in I-R (–4.34±0.92 pA/pF, n=15) compared with CON (–3.13±1.22 pA/pF, n= 16, P<0.05),while it was significantly decreased in Ani group (–3.25±0.79 pA/pF,n= 12) compared with I-R group(P<0.05); INa—the peak INa current density (at–30 mV) was significantly decreased in I-R(–22.46±5.32 pA/pF, n=12) compared with CON (–42.78±5.48 pA/pF ,n=16 ,P<0.01), while it was significantly increased in Ani group(–38.89±5.24 pA/pF, n=13 ) compared with I-R group(P<0.01); Ito—the Ito current density (at +60 mV) was significantly decreased in I-R(9.49±1.91 pA/pF, n=11) compared with CON (17.41±3.13 pA/pF, n=15, P<0.01), while it was significantly increased in Ani group(16.55±2.86 pA/pF,n=10) compared with I-R group (P<0.01).
     Conclusions:①Anisodamine have the ability to reduce the occurrence of ventricular arrhythmia.②Anisodamine can inhibit ICa-L and INa from isolated normal cardiac myocytes in a concentration dependent manner and has calcium antagonistic effect, so as to decrease the development of reperfusion arrhythmias .③Our study also showed that ischemia- reperfusion induced significant down-regulation of INa and Ito, and up-regulation of ICa-L, while pretreatment with anisodamine could attenuate this change, suggesting that anisodamine could reverse this electrical remodeling, which may be partly responsible for its antiarrhythmia effects.
     ④Anisodamine , may be expected to have a wide spectrum of antiarrhythmic effects through multiple target with fewer proarrhythmic side effects.
     Part IV:Influence of anisodamine on QT dispersion and ventricular fibrillation threshold in rabbits during ischemia-reperfusion
     Objective: This study was conducted to investigate the influence of anisodamine on QT dispersion(QTcd),effective refractory period (ERP) and ventricular fibrillation thr eshold (VFT) in rabbits during ischemia- reperfusion , and to explore the physiological mechanism responsible for the anti-arrhythmic effect of anisodamine .
     Methods: Forty-five rabbits were randomly divided into three groups : ischemic-reperfusion (I-R) group, anisodamine intervention (Ani) group and sham-operated control group (CON). Anesthetized rabbits were subjected to 30-min ischemia by ligation of the left anterior descending coronary artery and 60-min reperfusion . Ani group was injected with anisodamine at a dose of 5mg/Kg via femoral vein 1 minute before operation.Surface 12-lead ECG was recorded before and after operation to measure the QTd. ERP and VFT were measured simultaneously using S1-S2 programmed electrical stimulation method.
     Results:①There was not significant difference in QTcd among three groups before operation. After reperfusion ,QTcd was increased significantly in I-R group compared with CON (64.6±7.2 VS 37.5±3.8 ms,P<0.01), however , QTcd was decreased significantly in Ani group compared with I-R group (40.3±5.3 VS 64.6±7.2 ms ,P<0.01).②The ERP of I-R group was shortened compared with CON ( 126.2±11.8 VS 154.6±13.2 ms ,P<0.05),and it was prolonged in Ani group compared with I-R group(148.5±12.3 VS 126.2±11.8 ms,P<0.05).③VFT of I-R group was decreased compared with CON(0.26±0.11 VS 3.51±0.56 mJ , P<0.01),which increased significantly in Ani group compared with I-R group(2.06±0.48 VS 0.26±0.11 mJ,P<0.01)
     Conclusions: Anisodamine could reduce rabbit’s QTcd , prolong ERP and increase VFT, suggesting that anisodamine have the ability to increase electrical stability of the cardiac muscle and reduce the occurrence of ventricular arrhythmia.
引文
1 Mehta D, Curwin J, Gomes JA, et al. Sudden death in coronary artery disease: acute ischemia versus myocardial substrate. Circulation. 1997;96:3215–3223
    2丁超,何振山,崔俊玉,等.兔心肌梗死1周及2月后心室肌细胞瞬间外向钾电流的变化.中国病理生理杂志,2004, 20(8):1472-1475
    3 Chen J, Nagasawa Y, Zhu BM ,et al.Pravastatin prevents arrhythmias induced by coronary artery ischemia/reperfusion in anesthetized normocholesterolemic rats. J Pharmacol Sci 2003;93:87–94
    4 Chiu JH, Abdelhadi RH, Chung MK, et al. Effect of statin therapy on risk of ventricular arrhythmia among patients with coronary artery disease and an implantable cardioverter-defibrillator. Am J Cardiol, 2005;95: 490-49
    5 Fonarow GC,Wright RS, Spencer FA, et al. Effect of statin use within the first 24 hours of admission for acute myocardial infarction on early morbidity and mortality. Am J Cardiol, 2005; 96: 611-616
    6 Curtis MJ,Walker MJ. Quantification of arrhythmias using scoring systems: an examination of seven scores in an in vivo model of regional myocardial ischaemia. Cardiovasc Res, 1988, 22:656- 665
    7丁超,何振山,齐书英,等.急性心肌梗死后2月兔心室肌细胞钠离子通道活性的变化.中国心脏起搏与心电生理杂志,2003;17: 134-137
    8 Hamill OP,Marty A,Neher E, et al.Improved patch-clamp teachniques for high–resolution current recording from cells and cell-free membrane patches.Pflugers Arch, 1981 ,391:85-100
    9 Lefer AM, Campbell B, Shin YK, et al. Simvastatin preserves the ischemic- reperfused myocardium in normocholesterolemic rat hearts. Circulation. 1999;100:178– 184
    10 Sotiriou CG, Cheng JW. Beneficial effects of statins in coronary artery disease—beyond lowering cholesterol. Ann Pharmacother 2000;34:1432–1439
    11邹路芸,蒋文平.缺血/再灌注对心室肌细胞膜离子通道的影响.中国心脏起搏与心电生理杂志,1999,13(4):230-233
    12 Katra RP, Laurita KR. Cellular mechanism of calcium-mediated triggered activity in the heart. Circ Res 2005; 96: 535-542
    13 Yatani A, Shen YT, Yan L, et al. Down regulation of the L-type Ca2+ channel, GRK2, and phosphorylated phospholamban: protective mechanisms for the denervated failing heart. J Mol Cell Cardiol 2006; 40: 619-628
    14 Boyden PA,Albala A,Dresdner K.Electrophysiology and ultrastructure of canine subendocardal Pukinje cells isolated from control and 24 h infarcted hearts . Circ Res, 1989,65:955-970
    15 Argentieri TM,Frame LH,Colatsky TJ.Eletrical properties of canine subendocardial Purkinje fibers surviving in one-day old experimental myocardial infarction .Circ Res, 1990,66:123-134
    16 Pinto JMB,Boyden PA.Reduced inward rectifying and increased E4031 sensitive K+ channel functioin in arrhythmogenic subendocardial Purkinje myocytes from the infarcted heart .J Cardiovas Electrophysiol, 1998,9: 299-311
    17 Ursell PC,Gardner PI,Albala A,et al.Structural and electrophysi- ological changes in the epicardial border zone of canine myocardial infarctsduring infarct healing . Circ Res,1998,56:436-451
    18 Lue W-M,Boyden PA.Abnormal electrical proprties of myocytes from chronically infarcted cannine heart .Alterations in Vmax and the transient outward current . Circulation,1992,85:1175-1188
    19 Santons PEB,Barcellos LC.Ventricular action potential and L-type calcium channel in infarc-induced hypertrophy in rats.J Cardiovasc Electrophysiol, 1995,6: 1004-1014
    20 Litwin SE,Bridge JHB.Enhanced NaCa exchange in the infarcted heart .Implications for excitation contraction coupling .Circ Res, 1997,81:1083-1093
    21 Wong SS,Bassert AL,Cameron JS,et al.Dissimilarities in the electrophysiological abnormalities of lateral border and central infarct zone cells after healing of myocardial infarction in cats .Circ Res,1982,51:486-493
    22 Bers DM, Perez RE. Ca channels in cardiac myocytes: Structure and function in Ca influx and intracellular Ca release.Cardiovasc Res, 1999, 42 (2): 339-360
    23 Rossner KL, Ferese KJ. Bupivacaine inhibition of L type calcium current in ventricular cardiomyocytes of hamaster. Anesthesiology, 1997, 87 (4): 926-930
    24 Aggarwal R,Boyden PA.Diminished calcium and barium currents in myocytes surviving in the epicardial border zone of the 5 day infarcted canine heart .Circ Res,1995, 77:1180-1191
    25 Pinto JMB,Yuan F,Wasserlauf BJ,et al.Regional graduation of L-type calcium currents in the feline heart with a healed myocardial infarct . J Cardiovasc Electrophysiol, 1997,8:548-560
    26 Katra RP, Laurita KR. Cellular mechanism of calcium-mediated triggered activity in the heart [J]. Circ Res, 2005, 96: 535
    27 Jeck C,Pinto JMB,Boyden PA,et al.Transient outward currents in subendocardial Purkinje myocytes surviving in the 24 and 48 h infarcted heart.Ciculation, 1995,92: 465-473
    28 Aimond F,Alvarez JL,Rauzier JM,et al.Ionic basis of ventricular arrhymias in remodled rat during long term myocardial infarction.Cardiovasc Res,1999,42:402-415
    29 Drowin E,Charpentier F,Gauthier C,et al. Electrophysiologic characteristics of cells spanning the left ventricular wall of human heart :evidence for presence of M cells.J Am Coll Cardiol, 1995,26:185
    30 Yao JA,Jiang M,Fan JS,et al.Heteroneous changes in K currents in rat ventricles three days after myocardial infarction. Cardiovasc Res, 1999,44:132-145
    31 Kaprielian R,Wickenden AD,Kassiri Z,et al. Relationship beween K+ channel down-regulation and [Ca]i in rat ventricular myocytes following myocardial infarction . Journal of Physiology,1999, 517:229-245
    32 Mitchell LB, Powell JL, Gillis AM, Kehl V, Hallstrom AP, AVID Investigators. Are lipid-lowering drugs also antiarrhythmic drugs? An analysis of the Antiarrhythmics versus Implantable Defibrillators (AVID) trial. J Am Coll Cardiol 2003;42:88-92
    33 Chan AW, Bhatt DL, Chew DP , et al.Relation of inflammation and benefit of statins after percutaneous coronary interventions. Circulation 2003; 107 :1750–1756
    34 Wassmann S, Laufs U, Baumer AT , et al.HMG-CoA reductase inhibitors improve endothelial dysfunction in normocholesterolemic hypertension via reduced production of reactive oxygen species. Hypertension 2001;37:1450–1457
    35 Rosenson RS, Tangney CC. Antiatherothrombotic properties of statins: implications for cardiovascular event reduction. JAMA 1998; 279:1643–1650
    36 Wan MX, Schramm R, Klintman D , et al. A statin-based inhibitor of lymphocyte function antigen-1 protects against ischemia/ reperfusion- induced leukocyte adhesion in the colon. Br J Pharmacol 2003;140:395–401
    37 Ray JG, Gong Y, Sykora K, et al. Statin use and survival outcomes in elderly patients with heart failure. Arch Intern Med 2005;165:62-67
    38 Zhao JL, Yang YJ, Cui CJ , et al. Pretreatment with simvastatin reduces myocardial no-reflow by opening mitochondrial K(ATP) channel. Br J Pharmacol 2006;149:243–249
    39 Pehlivanidis AN,Athyros VG,Demitriadis DS, et al. Heart rate variability after long-term treatment with atorvastatin in hypercholesterolaemic patients with or without coronary artery disease. Atherosclerosis 2001; 157: 463-469
    40 Papadopoulos CE, Karvounis HI, Parharidis GE , et al. Preconditioning reduces QTc value in patients with first non-ST -segment elevation myocardial infarction (NSTEMI). Ann Noninvasive Electrocardiol 2003;8:275–283
    41 Shiroshita-Takeshita A, Schram G,Lavoie J, et al. Effect of simvastatin and antioxidant vitamins on atrial fibrillation promotion by atrial-tachycardia remodeling in dogs. Circulation 2004;110: 2313-2319
    1 Morishima I, Sone T, Okumura K, et al. Angiographic slow-reflow phenomenon: as a predictor of adverse long-term outcome in patients treated with percutaneous transluminal coronary angioplasty for first acute myocardial infarction. J Am Coll Cardiol 2000;36:1202~ 1209
    2 Iwakura K, Ito H, Ikushima M, et al. Association between hyperglycemia and the no-reflow phenomenon in patients with acute myocardial infarction. J Am Coll Cardiol. 2003 Jan 1;41(1):1~7
    3 Krug A, de Rochemont WM, Korb G. Blood supply of the myocardiumafter temporary coronary occlusion. Circ Res, 1966,19:57~62
    4 Schofer J, Montz R, Mathey DG. Scintigraphic evidence of the“no reflow”phenomenon in human beings after coronary thrombolysis. J Am Coll Cardiol,1985,5:593~598
    5 Piana RN, Paik GY, Moscucci M, et al. Incidence and treatment of“no reflow”after percutaneous coronary intervention. Circulation,1994, 89:2514~2518
    6 Canbaz S, Duran E, Ege T, et al.The effects of intracoronary administration of vitamin E on myocardial ischemia-reperfusion injury during coronary artery surgery. Thorac Cardiovasc Surg,2003,51(2):57-61
    7 Lassning A, Punz A, Barker R, et al.Influence of intravenous vitamin E supplementation in cardiac surgery on oxidative stress : a double-blinded, randomized, controlled study[J].Br J Anaesth, 2003,90(2):148-154
    8 Kloner RA, Ganote CE, Jennings RB. The“no reflow”phenomenon after temporary coronary occlusion in the dog. J Clin Invest, 1974, 54:1496~1508
    9 Ito H, Tomooka T, Sakai N, et al. Lack of myocardial perfusion immediately after successful thrombolysis: a predictor of poor recovery of left ventricular function in anterior myocardial infarction. Circulation,1992,85,1699~1705
    10 Ito H, Iwakura K. Assessing the relation between coronary reflow and myocardial reflow. Am J Cardiol,1998,81(supply 12 A):8G~12G
    11 Engler R. Consequences of activation and adenosine-mediated inhibition of granulocytes during myocardial ischemia. Fed Proc,1987,46: 2407~2412
    12范卫泽,傅向华,谷新顺,等.冠脉内单用替罗非班与联合应用山莨菪碱对急性心肌梗死经皮冠状动脉介入治疗后无复流现象影响的对比研究.临床心血管病杂志,2007,23(6):423-427
    13 Fugit MD,Rubal BJ,Donovan KJ. Effects of intracoronary nicardipine, diltiazem and Dilarmil on coronary blood flow. J Invasive Cardiol,2000,12: 80~85
    14 Yamakuchi M,Greer JJ,Cameron SJ.HMG-CoA reductase inhibitors inhibit endothelial exocytosis and decrease myocardial infarct size.Circ Res[ J ],2005,96:1185-1192
    15 Lefer AM, Campbell B, Shin YK, et al. Simvastatin preserves the ischemic- reperfused myocardium in normocholesterolemic rat hearts [J]. Circulation, 1999, 100:178– 184
    16 Assali AR, Sdringola S, Ghani M, etal. Intracoronary adenosine administered during percutanous intervention in acute myocardial infarction and reduction in the incidence of“slow-reflow”phenomenon.Catheter Cardiovasc Interv, 2000,51:27~31
    17 Morishima I, Sone T, Okumura K, et al. Angiographic no-reflow phenomenon: as a predictor of adverse long-term outcome in patients treated with percutaneous transluminal coronary angioplasty for first acute myocardial infarction. J Am Coll Cardiol, 2000, 36:1202~1209
    18 Kloner RA, Ellis SG, Lange R,et al. Studies of experimental coronary artery reperfusion: effects on infarct size, myocardial function, biochemistry, ultrastructure and microvascular change. Circulation, 1983, 68(Suppl1):18~25
    19 Johnson WB, Malone SA, Pantely GA, et al. Slow-reflow and extent of infarction during maximal vasodilation in the porcine heart. Circulation, 1988, 78:462~472
    20 Tamargo J,Caballero,Gomez R, et al. Lipid-lowering therapy with statins, a new approach to antiarrhythmic therapy. Pharmacol Ther, 2007, 114:107
    21 DING C,FU XH, HE ZS , et al.Cardioprotective effects of simvastatin on reversing electrical remodeling induced by myocardial ischemia-reperfusion in normocholesterolemic rabbits. Chin Med J ,2008;121(6): 551-556
    22 Chan AW, Bhatt DL, Chew DP ,Reginelli J,Schneider JP,Topol EJ.Relation of inflammation and benefit of statins after percutaneouscoronary interventions. Circulation 2003; 107 :1750–1756
    23 Wassmann S, Laufs U, Baumer AT ,Muller K,Ahlbory K,Linz W.HMG-CoA reductase inhibitors improve endothelial dysfunction in normocholesterolemic hypertension via reduced production of reactive oxygen species. Hypertension 2001;37:1450–1457
    24 Rosenson RS, Tangney CC. Antiatherothrombotic properties of statins: implications for cardiovascular event reduction. JAMA 1998;279:1643–1650
    25 Wan MX, Schramm R, Klintman D ,Welzenbach K,Weitz-Schmidt G,Thorlacius H. A statin-based inhibitor of lymphocyte function antigen-1 protects against ischemia/ reperfusion-induced leukocyte adhesion in the colon. Br J Pharmacol 2003;140:395–401
    26 Ray JG, Gong Y, Sykora K, Tu JV. Statin use and survival outcomes in elderly patients with heart failure. Arch Intern Med 2005;165:62-67
    27 Jones SP,Gibson MF,Rimmer DM,et al. Direct vascular and cardioprotective effects of rosuvastatin ,a new HMG-CoA reductase inhibitor.J Am Coll Cardiol,2002,40(6):1172
    28 Tiefenbacher CP,Kapitza J,Dietaz V,et al.Reduction of myocardial infarct size by fluvastatin.Am J Physiol Heart Circ Physiol, 2003,285 (1):59
    29 Tavackoli S,Ashitkov T,Hu ZY,et al.Simvastatin-induced myocardial protection against ischemia-reperfusion injury is mediated by activation of ATP-sensitive K+ channels. Coron Artery Dis,2004, 15(1):53-58
    30 Light PE, Kanji HD, Fox JE, et al. Distinct myop rotective roles of cardiac sarcolemmal and mitochondrial KATP channels during metabolic inhibition and recovery. FASEB,2001, 15: 2586~2594
    31 Liu Y, Sato T, O’Rourke B, et al. Mitochondrial ATP-dependent potassium channels: novel effectors of cardiop rotection ? Circulation, 1998, 97: 2463~2469
    32 Fish FA,Prakash C,Roden DM.Supression of repolarization-related arrhythmias in vitro and vivo by lower-dose potassiumchannelactivators.Circulation,1990,82:1362
    33 Spinelli W,Sorota S,Siegal M,et al.Antiarrhythmic actions of the ATP-regulated K+current activated by pinacidil.Circulation,1991, 68:1127
    34 Rezkalla SH, Kloner RA. No-reflow phenomenon. Circulation,2002, 105: 656-662
    42 Mehta D, Curwin J, Gomes JA, et al. Sudden death in coronary artery disease: acute ischemia versus myocardial substrate. Circulation. 1997;96:3215–3223
    43《全国中草药汇编》编写组,全国中草药汇编.上册.第一版.北京:人民卫生出版社,1983,113
    44 Luo ZY, Tang Y, You JI , et al. Protective effect of anisodamine on cultured bovine pulmonary endothelial cell injury induced by oxygen free radicals.Arch Surg 1992,127:1204~1208
    45姚秀娟,谭月华,许自超.山莨菪碱对心肌缺血再灌注损伤的作用与脂质过氧化,中国药理学报,1995,16(2):152-154
    46 Pang YH ,Chen JW. Anisodamine Causes the Changes of Structure and Function in the Transmembrane Domain of the Ca2+ATPase from Sarcoplasmic Reticulum Biosci Biotechnol Biochem 2004, 68:126~131
    47王相海.山莨菪碱治疗室性心律失常3例.临床内科杂志,1991:8:48
    48杨巍,李雪斌,潘征. 654-2对冠脉造影时心律失常的预防,广西医学,2008,30(3):359-360
    49温治安,王希钟.大剂量山莨菪碱加复方丹参注射液治疗急性心肌梗死并严重心律失常2例,中西医结合实用临床急救,1998,5(9):430
    50陈江斌黄从新唐其柱,等.山莨菪碱对家兔心室肌细胞L-型钙通道的影响,中国药理学通报,2000,16 (2) :162~4
    51刘耀春.山莨菪碱对正常和缺氧离体心室肌跨膜电位的影响,中国病理生理杂志,1992,8(6): 572
    52侯建平,刘跃春,陆洪英,等.山莨菪碱对离体兔心脏冠状动脉流量和室颤阈的影响.潍坊医学院学报,1997,19(1):27-28
    53 Curtis MJ,Walker MJ. Quantification of arrhythmias using scoring systems: an examination of seven scores in an in vivo model of regional myocardial ischaemia. Cardiovasc Res, 1988, 22:656- 665
    54丁超,何振山,齐书英,等.急性心肌梗死后2月兔心室肌细胞钠离子通道活性的变化.中国心脏起搏与心电生理杂志,2003;17: 134-137
    55 Hamill OP,Marty A,Neher E, et al.Improved patch-clamp teachniques for high–resolution current recording from cells and cell-free membrane patches.Pflugers Arch, 1981 ,391:85-100
    56 Boyden PA,Albala A,Dresdner K.Electrophysiology and ultrastructure of canine subendocardal Pukinje cells isolated from control and 24 h infarcted hearts . Circ Res, 1989,65:955-970
    57 Aimond F,Alvarez JL,Rauzier JM,et al.Ionic basis of ventricular arrhymias in remodled rat during long term myocardial infarction.Cardiovasc Res,1999,42:402-415
    58 Drowin E,Charpentier F,Gauthier C,et al. Electrophysiologic characteristics of cells spanning the left ventricular wall of human heart :evidence for presence of M cells.J Am Coll Cardiol,1995,26:185
    59 Yao JA,Jiang M,Fan JS,et al.Heteroneous changes in K currents in rat ventricles three days after myocardial infarction. Cardiovasc Res,1999,44:132-145
    60 Katra RP, Laurita KR. Cellular mechanism of calcium-mediated triggered activity in the heart . Circ Res, 2005, 96: 535
    61邹路芸,蒋文平.缺血/再灌注对心室肌细胞膜离子通道的影响.中国心脏起搏与心电生理杂志,1999,13(4):230-233
    62 Katra RP, Laurita KR. Cellular mechanism of calcium-mediated triggered activity in the heart. Circ Res 2005; 96: 535-542
    63修瑞娟.微循环—微妙的生命泉源.微循环杂志,1997,7:1~3
    64刘振国,姚秀娟,李小强,等.山莨菪碱抑制成年大鼠离体心室肌细胞钙瞬变和收缩及其机制.中国临床药理学与治疗学,2005,10(6):646-649
    65丁超,傅向华,陈会校,等.山莨菪碱对兔急性心肌梗死再灌注后梗死面积的影响.华北国防医药,2008,20(6):12-14
    66蔚永运,傅向华,刘君,等.冠脉内注射山莨菪碱对急性心肌梗死介入治疗后缓再血流现象的作用.临床心血管病杂志,2006,22:21~24
    67范卫泽,傅向华,谷新顺,等.冠脉内单用替罗非班与联合应用山莨菪碱对急性心肌梗死经皮冠状动脉介入治疗后无复流现象影响的对比研究.临床心血管病杂志,2007,23(6):423-427
    1. Morishima I, Sone T, Okumura K, et al. Angiographic slow-reflow phenomenon: as a predictor of adverse long-term outcome in patients treated with percutaneous transluminal coronary angioplasty for first acute myocardial infarction. J Am Coll Cardiol 2000;36:1202~ 1209
    2. Iwakura K, Ito H, Ikushima M, et al. Association between hyperglycemia and the no-reflow phenomenon in patients with acute myocardial infarction. J Am Coll Cardiol. 2003 Jan 1;41(1):1~71
    3. Mehta D, Curwin J, Gomes JA, Fuster V. Sudden death in coronary artery disease: acute ischemia versus myocardial substrate. Circulation. 1997;96:3215–3223
    4.沈成兴,梁春,陈良龙,等.山莨菪碱改善大鼠冠状动脉微循环及其机制的研究.东南大学学报(医学版),2003,22:369~372
    5.蔚永运,傅向华,刘君,等.冠脉内注射山莨菪碱对急性心肌梗死介入治疗后缓再血流现象的作用.临床心血管病杂志,2006,22:21~24
    6.姚秀娟,谭月华,许自超.山莨菪碱对心肌缺血再灌注损伤的作用与脂质过氧化.中国药理学报,1995,16(2):152-154
    7.杨军.山莨菪碱对缺血心肌保护作用中国,病理生理杂志,1992,8:330
    8. Pang YH ,Chen JW. Anisodamine Causes the Changes of Structure and Function in the Transmembrane Domain of the Ca2+ATPase from Sarcoplasmic Reticulum Biosci Biotechnol Biochem 2004, 68:126~131
    9. Luo ZY, Tang Y, You JI , et al. Protective effect of anisodamine on cultured bovine pulmonary endothelial cell injury induced by oxygen free radicals.Arch Surg 1992,127:1204~1208
    10. Fu XH, Fan WZ, Gu XS, Wei YY, Jiang YF, Wu WL, et al. Effect of intracoronary administration of anisodamine on slow reflow phenomenon following primary percutaneous coronary intervention in patients with acute myocardial infarction. Chin Med J 2007; 120: 1226-1231
    11.陈江斌黄从新唐其柱,等.山莨菪碱对家兔心室肌细胞L-型钙通道的影响.中国药理学通报,2000,16 (2) :162~4
    12.刘耀春.山莨菪碱对正常和缺氧离体心室肌跨膜电位的影响。中国病理生理杂志,1992,8(6): 572
    13.侯建平,刘跃春,陆洪英,等.山莨菪碱对离体兔心脏冠状动脉流量和室颤阈的影响.潍坊医学院学报,1997,19(1):27-28
    14.王相海.山莨菪碱治疗室性心律失常3例.临床内科杂志,1991:8:48
    15.杨巍,李雪斌,潘征. 654-2对冠脉造影时心律失常的预防.广西医学,2008,30(3):359-360
    16.温治安,王希钟.大剂量山莨菪碱加复方丹参注射液治疗急性心肌梗死并严重心律失常2例.中西医结合实用临床急救,1998,5(9):430
    17. Hii JT,Wyse DG,Gillis AM,et al. Precardial Q-T interval dispersion as a marker of a torsade depointes: disparate effects of class Ia anti-arrhythmic drug and amiodarone. Circulation,1992, 86:1376-1379
    18.陈江斌,江洪,唐其柱,等.卡托普利对兔急性心肌梗塞早期再灌注心室肌易损性的影响.中国病理生理杂志,2002,18(3):302-304
    19. Corr PB, Witkowski FX。Arrhythmias associated with reperfusion: basic insights and clinical relevance J Cardiovasc Pharmacol. 1984;6 Suppl 6:S903-9
    20.刘泰摓.复极早期的电刺激触发黄鼠心室肌的非躯动性动作电位.科学通报,1985,30(11):736-741
    21.丁超,何振山,崔俊玉,等.兔心肌梗死1周及2月后心室肌细胞瞬间外向钾电流的变化,中国病理生理杂志,2004, 20:1472- 1475
    22.丁超,何振山,齐书英,等.急性心肌梗死后2月兔心室肌细胞钠离子通道活性的变化.中国心脏起搏与心电生理杂志,2003, 17:134-137
    23. Cascio WE, Yang H, Johnson TA, et al.Electrical properties and condunction in reperfused papillary muscle.Circ Res,2000, 89:807-814
    24. Szárszoi O, Asemu G, Vanecek J, et al.Effects of melatonin on ischemia and reperfusion injury of the rat heart , Cardiovasc DrugsTher ,2001 ,15(3) :251-257
    25. Tan DX ,Manchester LC ,Reiter RJ, et al. Ischemia/reperfusion-induced arrhythmias in the isolated rat heart: prevention by melatonin. [J ], J Pineal Res ,1998 ,25 (3) :184-191
    26. Yatani A, Shen YT, Yan L, Chen W, Kim SJ, Sano K, et al. Down regulation of the L-type Ca2+ channel, GRK2, and phosphorylated phospholamban: protective mechanisms for the denervated failing heart. J Mol Cell Cardiol 2006; 40: 619-628
    27. Yoshida Y,Hirai M,Yamada T,et al.Antiarrhythmic efficacy of dipyridamole in treatmen of reperfusion arrthymias:evidence for cAMP-mediated triggered activity as a mechanism responsible for reperfusion arrhythmias.Circulation,2000,101(6):624
    28. Ferrier GR,Moffat MP,Lukas A.possible mechanism of ventricular arrhythmias elicited by ischemia followed by reperfusion :studies on isolated canine ventricular tissues .Circ Res,1985,56:184-194
    29. Wit AL ,Rosen MR。The Heart and Cardiovascular System。New York , NY∶Raven Press Publishers,1986 , 1449-1490
    30. Nabauer M,Beuckelmann DJ,Uberfuhr P,et al.Regional differences in current density and rate-dependent properties of the transient outward current in subepicardial and subendocardial myocytes of human left ventricle. Circulation,1996,93:168-177
    31. Aimond F,Alvarez JL,Rauzier JM,et al.Ionic basis of ventricular arrhymias in remodled rat during long term myocardial infarction.Cardiovasc Res,1999, 42(2):402-415
    32. HU S,SHENG Z Y. The effects of anisodamine and dobutamine on gut mucosal blood flow during gut ischemia/reperfusion. World J Gastroenterol, 2002,8:555~557
    33. FRINK R J, ROONEY P A, TROWBRIDGE J O, et al. Coronary thrombosis and platelet/fibrin microemboli in death associated with acute myocardial infarction. Br Heart J, 1988. 59:196~200
    34.修瑞娟.微循环——微妙的生命泉源.微循环杂志,1997,7:1~3
    35.阮秋蓉.山莨菪碱抗血栓形成的机制研究.中华病理学杂志,2000, 29:207~210
    36.刘耀春,侯建平,刘桂英,等.山莨菪碱对缺血心肌电生理的影响.潍坊医学院学报,1995,17(2):110-112
    37.杨国栋,主编.微循环障碍与莨菪碱类药物的临床应用[M],第2版,北京:人民卫生出版社,1999:169-217
    38.唐朝枢内毒素和山莨菪碱对Ca2+引起的脂质体聚集的影响.北京医科大学学报,1998;20:19
    39.何琦,黄芬.山莨菪碱与神经鞘磷脂脂质体的相互作用——荧光偏振和自旋标记顺磁共振的研究.生物物理学报,1986;2:15
    40.杨国栋,周文华,徐飞,等.山莨菪碱对细胞流动性和膜内源荧光的影响.现代应用药学,1993,10:4~6
    41.王苏民,傅亚珍,李跃贞,等.莨菪类药物对人工膜相变行为的影响.中国药理学报,1986,7:114
    42.刘振国,姚秀娟,李小强,等。山莨菪碱抑制成年大鼠离体心室肌细胞钙瞬变和收缩及其机制.中国临床药理学与治疗学,2005,10(6):646-649
    43.唐朝枢,杨晓红,王宪.山莨菪碱的钙拮抗作用.北京医学院学报,1985,17(3):165-167
    1 Chan AW, Bhatt DL, Chew DP ,Reginelli J,Schneider JP,Topol EJ.Relation of inflammation and benefit of statins after percutaneous coronary interventions. Circulation 2003; 107 :1750–1756
    2 Wassmann S, Laufs U, Baumer AT ,Muller K,Ahlbory K,Linz W.HMG-CoA reductase inhibitors improve endothelial dysfunction in normocholesterolemic hypertension via reduced production of reactive oxygen species. Hypertension 2001;37:1450–1457
    3 Rosenson RS, Tangney CC. Antiatherothrombotic properties of statins: implications for cardiovascular event reduction. JAMA 1998;279: 1643–1650
    4 Wan MX, Schramm R, Klintman D ,Welzenbach K,Weitz-Schmidt G,Thorlacius H. A statin-based inhibitor of lymphocyte function antigen-1 protects against ischemia/ reperfusion-induced leukocyte adhesion in the colon. Br J Pharmacol 2003;140:395–401
    5 Ray JG, Gong Y, Sykora K, Tu JV. Statin use and survival outcomes in elderly patients with heart failure. Arch Intern Med 2005;165:62-67
    6 Kumagai K,Nakashima H, Saku K. The HMG2CoA reductase inhibitor atorvastatin prevents atrial fibrillation by inhibiting inflammation in a canine sterile pericarditismodel. Cadiovasc Res, 2004, 62: 105-111
    7 Siu CW,Lau CP, Tse HF. Prevention of atrial fibrillation recurrence by statin therapy in patientswith lone atrial fibrillation after successful cardioversion. Am J Cardiol, 2003, 92: 1343-1345
    8 Marín F, Pascual DA, Roldán V, et al. Statins and postoperative risk of atrial fibrillation following coronary artery bypass grafting. Journal of Molecular and Cellular Cardiology,2003,35(12):1449-1459
    9 Young Xu Y, Jabbour S, Goldberg R, et al. Usefulness of statin drugs in protecting against atrial fibrillation in patients with coronary arterydisease. Am J Cardiol, 2003, 92: 1379-1383
    10 Hanna IR, Heeke B,Bush H,et al.Lipid-lowering drug use is associated with reduced prevalence of atrial fibrillation in patients with left ventricular systolic dysfunction.Heart Rhythm 2006.3(8): 881-886
    11 Bruins P. Activation of the complement system during and after cardiopulmonary bypass surgery :postsurgery activation involves C - reactive protein and is associated with postoperative arrhythmia. Circulaction ,1997 ,96 :3542 - 3548
    12 Chung MK,Martin DO,Sprecher D,et al.C-reaction protein elevation in patients with atrial arrhythmias: inflammatory mechanisms and persistence of atrial fibrillation 2001.104(24); 2886-2991
    13商丽华,胡大一,赵秀丽,等.普伐他汀对快速起搏心房肌结构重构的影响.中华心律失常学杂志, 2004, 8: 172-176
    14 Chen J,Nagasawa Y, Zhu BM, et al. Pravastatin p revents arrhythmias induced by coronary artery ischemia reperfusion in anesthetized normolcholesterolemic rats. J Pharmacol Sci, 2003, 93: 87-9.
    15 Chiu JH, Abdelhadi RH, Chung MK, et al. Effect of statin therapy on risk of ventricular arrhythmia among patients with coronary artery disease and an implantable cardioverter- defibrillator. Am J Cardiol, 2005,95: 490-491
    16 The AVID investigators.Causes of death in the Antiarrhythmics Versus Implantable Defibrillators (AVID) Trial. J Am Coll Cardiol, 1999,34(5):1552-1559
    17 Fonarow GC,Wright RS, Spencer FA, et al. Effect of statin use within the first 24 hours of admission for acute myocardial infarction on early morbidity and mortality. Am J Cardiol, 2005, 96: 611-616
    18丁超,何振山,崔俊玉,等.兔心肌梗死1周及2月后心室肌细胞瞬间外向钾电流的变化.中国病理生理杂志,2004, 20(8):1472-1475
    19 Hayashidani S, Tsutsui H, Shiomi T, et al. Fluvastatin, a 3-hydroxy-3- methylglutaryl coenzyme a reductase inhabitor, attenuates left ventricular remodeling and failure after experimental myocardial infarction. Circulation, 2002, 105: 868-873
    20 Sheng-Fang S, Chia-Ling Hsiao, Chia-Wei Chu, et al. Effect with hyperlip idemia and essential hypertension. Am J Cardiol, 2000, 86: 514-518
    21张繁之,王琳,等.阿托伐他汀对肥厚心肌缝隙连接重构的影响.中国现代医学杂志,2006.16(8):1145-1148
    22 Mark L, Katona A. Effect of fluvastatin on QT dispersion: a new pleitropic effect? Am J Cardiol, 2000, 85: 919-920
    23 Vrtovec B,Okrajseck R,Golienik A,et al.Atorvastatin therapy increase heart rate variability,decreases QT variability, and shortens QTc interval duration in patients with advanced chronic heart failure.J Cardail,2005.11(9);684-669
    24 Kayikcioglu M,Can L,Evrengul H et al.The effect of statin therapy on ventricular late potentials in acute myocardiak infarction.Int J cardiol,2003;90(1):63-73
    25 Pliquent RD,Cornish KG,Peuler JD. Simvastatin normalizes autonomic neural control in experimental heart failure. 2003. 107 (19). 2493-2498
    26 Riahi S,Christensen JH,TOft E,et al.HMG-CoA reductase inhibitors improve heart rate variability in patients with a previous myocardial infarction[J].Pharmacol Res,2002,45(6):479-483
    27 Pelat M,Dessy C.Massion P.et a1.Rosuvastalin Decreases Caveolin—l and Improves Nitric Oxide-Dependent Heart Rate and Blood PressureVariability jnApolipoprotein E-/-Mice In Vivo.Circulation.2003;107:2480-2487
    28 Weinberg EO,Scherrer-Crosbie M,Picard MH,et al.Rosuvastatin reduces experimental left ventricular infarct size after ischemia-reperfusion injury but not total coronary occlusion .Am J Physiol Heart Circ Physiol ,2005,288(4):H1802-1809
    29 Bimbaum Y,Ashitkov T,Uresky BF,et al.Reduction of infarct size by short-term pretreatment with atorvastatin .Cardiovasc Drugs Ther, 2003,17(1):25-30
    30 Shiroshita-Takeshita A, Schram G,Lavoie J, Nattel S. Effect of simvastatin and antioxidant vitamins on atrial fibrillation promotion by atrial-tachycardia remodeling in dogs. Circulation 2004;110: 2313- 2319
    1 Hackman A, Yasunori Abe. Levels of soluble cell adhesion molecules in patients with dyslipidemia.Circulation.1996, 93(7): 1334~1338
    2 Christian Weber, Wolfgang Erl, Kim S.C. Weber, et al. Effects of oxidized low density lipoprotein, lipid mediators and statins on vascular cell interaction. Clin Chem Lab Med.1999, 37(3): 243~251
    3 Bickel C, Rupprecht HJ, Blankenberg S, et al. Influence of HMG-Co A Reductase inhibitors on markers of coagulation, systemic inflammation and soluble cell adhesion. Int J Cardilo, 2002,82(1): 25~31
    4 Yoshida M, Sawada T, Ishii H, et al. HMG-Co A Reductase inhibitor modulates monocyte-endothelial cell interaction under physiological flow conditions in vitro. Arterioscler Thromb Vasc Biol.2001, 21 (7): 1165~1171
    5 Meroni PL, Raschi E, Testoni C, et al. Statins prevent endothelial cell activation induced by antiphospholipid (anti-beta2-glycoprotein 1) antibodies: effect on the proadhesive and proinflammatory phenotype. Arthritis Rheum.2001, 44(12): 2870~2878
    6 Rasmussen LM, Hansen PR, Nabipour MT, et al. Diverse effects of inhibition of HMG-CoA reductase on the expression of VCAM-1 and E-selectin in endothelial cells. Biochem J.2001, 360(pt2): 363~370
    7 Dalhoff K , Kothe H. Hydroxymethylglutaryl coenzyme a reductase inhibitors modify the inflammatary response of human macrophages and endothelial cells infected with chlamydia neumoniae. Circulation.2000,101(15):1760~1763
    8 Martin X, Da-silva, et al. Protective effect of an anti-LFA-1 monoclonal antibody on renal damage due to ischmia and kidney autotransplantation. Transplant Proc.2000, 32(2): 481
    9 Kallen J, Welazenbach,k, et al. Structural basis for LFA-1 inhibition upon lovastatin binding to the CD11 a I-domain. J Mol Biol.1999, 292(1): 1~9
    10 Rover C, Netea MG, de Bont N, et al. LPS-induced cytokine production and expression of beta2-integrins and CD14 by peripherial blood mononuclear cell of patients with homozygous familial hypercholesterolemia. Atherosclerosis.1998, 141(1): 99~105
    11刘永铭,严祥,张征,等.他汀类调脂药物对高脂血症患者黏附分子的影响.中华心血管杂志. 2001,29(3):140-143
    12 Mueck AO, Seeger H, Wallwiener D. Further evidence for directvascular actions of statins: Effects on endothelial nitric oxide synthase and anhesion molecules. Exp Clin Endocrinol Diabetes.2001, 109(3): 181~183
    13 Libby P. Current concepts of the pathogenesis of the acute coronary syndromes.Circulation.2001, 104(3): 365~372
    14 Pasceri V, Wu HD, Willerson JT, et al. Modulation of vascular inflammation in vivo and in vitro by peroxisome proliferator- activated receptor-gamm activators.Circulation.2000,101 (3):235~238
    15 Inoue I, Goto S, Mizotani K, et al. Lipophilic HMG-CoA reductase inhibitor as an anti-inflammatory effect: reduction of m RNA levels for interleukin-1 beta, interleukin-6, cyclooxygenase-2 and p22phox by regulation of peroxisome proliferators-activated receptor-alpha (PPAR-alpha)in primary endothelial cells. Life Sci. 2000, 67(8): 863-876
    16 Ishibashi M, Egashira K, Hiasa K, et al. Antiinflammatory and antiarteriosclerotic effects of pioglitazone.Hypertension. 2002,40(5): 687~693
    17 Rosenson RS, Tangney CC, Casey LC, et al. Inhibition of proinflammatory cytokine production by pravastatin.Lancet. 1999, 353(91): 983~984
    18 Diomede L, Albani D, Sottocorno M, et al. In vivo anti-inflammatory effect of statins is mediated by nonsterol mevalonate products. Arterioscler Thromb Vasc Biol.2001, 21(8): 1327~1332.
    19 Ikeda U, Ito T, Shimada K. Statins and C-reactiveprotein.Lanc -et.1999, 353(9160): 1274~5
    20颜邵莎,李全忠.辛伐他汀对高血压病人外周血单个核细胞白细胞介素-1B表达的影响. 2004,15(5):2~4
    21 Ortego M, Bustos C, Hernandez-Presa MA, er al. Atorvastatin reduces NF-kappaB activation and chemokine expression in vascular smooth muscle cells and mononuclear cells.Atheroscl -erosis.1999, 147(2): 253~261
    22 Pahan K, Sheikh FG, Namboodiri AM, et al. Lovastatin and phenylacetate inhibit the induction of nitric oxide synthase and cytokines in rat primary astrocytes, microglia, and macrophage -s.J Clin Invest.1997,100(11):2671~2679
    23 Poligone B, Baldwin AS. Positive and negative regulation of NF-kappa B by COX-2: roles of different prostaglandins. J Biol Chem, 2001, 276 (42): 38658~64
    24 Hernandez Presa MA, Martin-Ventura JL, Ortego M, Gomez-Hernandez A, et al. Atorvastatin reduces the expression of cyclooxygenase-2 in a rabbit model of atherosclersis and in cultured vascular smooth muscle cells.Athrosclerosis.2002, 160(1): 49~58
    25 Inoue H, Tanabe T, Umesono K. Feedback control of cyclooxygenase-2 expression through PPAR gamma. J Biol Chem. 2000, 275(36): 28028~032
    26 Salam AM. Intensive lipid-lowering therapy in coronary artery disease: implications of the REVERSAL and PROVE-IT trials.Expert Opin Investig Drugs, 2004, 13: 707-713

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700