用户名: 密码: 验证码:
广域行波测距算法及其形式化验证
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
快速、准确地确定故障距离,可加快永久故障的修复,及时消除隐患避免大量瞬时性故障的再次发生,对保证电力系统的安全稳定和经济运行有十分重要的意义。行波测距技术是电力线路精确测距技术。现有的行波测距系统大都是以本线路双端测距原理进行配置,当线路一侧的行波测距装置异常时则会导致测距失败。为可靠记录线路的扰动,避免拒动而导致测距失败,行波采集设备的启动门槛比保护更灵敏,因此可以记录更多的线路扰动信息,而这些信息还缺乏有效的使用。对于未引起保护动作的扰动,其扰动点一般都是绝缘薄弱点,准确的定位该扰动点可以使电力部门在计划检修时重点检查扰动点,最大可能减少电力线路故障的可能性,变被动的故障检修为主动的计划检修。此外,随着行波测距装置应用数量的增加,行波测距系统开始组网使用,这为充分地利用全网的故障行波信息,进一步提高测距的可靠性和精度创造了条件。但由于不同厂家的行波测距装置开放性不足,还存在着互联互通不畅的问题。
     针对上述问题,本文在分析广域故障行波传播过程和测距原理的基础上,所做的工作如下:
     (1)提出仅使用行波记录信息的基于扰动初始行波到达时间的广域行波测距算法;该算法通过确定扰动点计算区域减小计算规模,使用计算区域内最短路径和变电站记录时间计算可能扰动点位置,通过建立的逻辑判断规则综合判断变电站记录时间的可信度和扰动线路,使用可信的变电站记录时间和最短路径获得可信、精确的扰动点距离。
     (2)对于现有单端行波测距方法故障点反射波难于识别的问题,提出了在网络有效区域内构造波形的故障点反射波识别算法。该算法通过引入在行波测距主站获取的电力网络实时拓扑信息,根据拓扑关系计算各阻抗不匹配点的折反射系数,通过小波变换获得模极大值点,并构造各可能故障点的行波传播波形。构造出的波形与实际记录的行波波形的线模分量进行比较后,匹配度最高的则为故障点。通过仿真和现场实际算例验证了所提方法可行、有效。
     (3)将形式化逻辑验证的方法引入行波测距领域;通过对基于扰动初始行波到达时间的广域行波测距算法数据集的判断逻辑和扰动线路判断逻辑进行形式化分析并使用SPIN工具建模验证,校验了算法的逻辑正确性。
     (4)首次进行行波测距信息的CIM模型的建立;使用IEC61850的建模技术,对行波测距功能进行定义、分解和分配,新建行波测距逻辑节点RTFL并定义其数据属性;定义其通信服务模型并确定其MMS的映射。
     (5)对广域行波测距算法的技术实现进行了研究,并在此基础上开发了广域行波测距主站。
     对广域行波测距算法形式化分析和验证方法有效地提高了广域行波测距系统的可靠性与正确性。现场实际算例验证了所提基于扰动初始行波到达时间的广域行波测距算法和基于动态网络信息的行波单端波形识别算法的可行性和有效性。研制出的广域行波测距系统已投入电力系统实际运行。
     广域行波测距算法由于使用整个网络的故障行波信息测距,可有效避免本线路双端行波原理的不足,因而具有更高的测距可靠性。不依赖于保护信息的广域行波测距算法可以对未引起保护动作的扰动进行定位,适用范围更宽。对这类扰动测距后获得的线路绝缘薄弱点,可为电力线路计划检修提供参考,防患于未然,进而提高线路供电可靠性。
Rapidly and accurately locating the fault distance can reduce therepairing time for the permanent fault, and eliminate potential risks to avoidtransient fault happening. It has important significance to ensure powersystem stability and economic operation. Travelling wave fault location(TWFL) method has been widely applied in the power system because of itswide applicability and high accuracy. However, the existing TWFL systememploys the double ends method and doesn’t make use of the neighboringsubstations data. If one of its data acquisition equipment at both ends of a linefails to capture the fault transient, it will fail to give out fault location result.To record the fault transient reliably, traveling wave fault location equipmentis usually set to be more sensitive than relays and so will record more thanjust fault transients. The source of disturbances that do not trigger the relay,can be determined using the recorded traveling wave data. These disturbancesare normally associated with defective insulators which utilities can focus onreplacing during routine maintenance to avoid future problems. With the rapidgrowth of travelling wave fault location equipments, the wide area travellingwave fault location (WA-TWFL) network is formed. The neighboringsubstations data can be used to increase the reliability and accuracy of TWFLsystem. But TWFL equipments installed at substations may be supplied bydifferent manufacturers using different data models and incompatiblecommunication protocols.
     Based on the analysis of the wide area travelling wave propagation andthe travelling wave fault location methods, main achievements weresummarized as follows:
     (1) A WA-TWFL algorithm that only uses fault initial travelling wavearrival time and free from operation signal is proposed. The algorithm firstdetermines the valid calculation area of the monitored network to decreasecalculation scale and uses the shortest path and the extended double endsmethod to get possible fault point. Then, the faulty line and the distance tofault can be identified by using the judgment rules.
     (2) The single end travelling wave fault location method is usuallydifficult to discriminate the reflection wave of fault point. A reflection waverecognition algorithm based on construct fault waveform is presented. Thealgorithm employs wavelet transform to detect possible fault point in powersystem. Using the real time network topology and possible fault point, thetravelling wave propagation waveform can be constructed. By comparing theconstructed waveforms and real recorded waveform, the reflection wave offault point can be identified. The simulation verifies its correctness, and thefield application proves the feasibility of this method.
     (3) For the WA-TWFL algorithm that doesn’t use the operation signal,the preliminary selection of travelling wave arrival time and disturbance lineidentification are the key problems of the algorithm. The formal analysis andverification method was introduced. Applying linear temporal logic (LTL), thelogic of these two problems are analyzed and verified. The logic model ischecked by SPIN, which is a model verification tool. It ensures the logicalcompleteness of the WA-TWFL algorithm.
     (4) The travelling wave fault location equipment’s CIM model is firstbuilt. By using the modeling technique of IEC61850, the TWFL functions aredecomposed and defined. Based on the analysis of traveling wave faultlocation system’s communication interface and its data, the travelling wavefault location logic node RTFL is presented. The traveling wave fault locationequipment information model and mapping to MMS are studied to support theopen communication and interoperability.
     (5) Based on the analysis of the WA-TWFL master station’s architectureand functional requirements, the master station is developed.
     By using formal analysis and verification method, the reliability andcorrectness of the WA-TWFL system are effectively improved. The filedapplication results show the feasibility and effectiveness of the proposedWA-TWFL algorithm and the reflection wave recognition algorithm. Thedeveloped WA-TWFL system has been put into operation in the powersystem.
     The WA-TWFL algorithm makes use of the traveling-wave data ofvarious substations across the monitored network and therefore has betterreliability than the conventional double-end method. And the algorithm usesonly traveling-wave data, and does not require information from protectionrelays and so can be used not only to locate faults that cause replay operations,but also the location of incipient faults which only produce small disturbances.By analyzing the disturbance-traveling wave, utilities can focus on the weakpoints during routine maintenance to avoid problems, and thereby increase thereliability of power supply.
引文
[1]葛耀中.新型继电保护与故障测距的原理与技术[M].第二版,西安:西安交通大学出版社.2007:301-330.
    [2] Bingyin Xu, Zhihuai Shu, P. Gale.The Application of Travelling Wave Fault Locators in China [C].Developments in Power System Protection,2008DPSP2008IET9th International Conference,2008,pp:535-539.
    [3] P.F. Gale, J. Stokoe, P.A. Crossley.Practical experience with travelling wave fault locators onScottish Power's275&400kV transmission system [C]. Developments in Power System Protection,Sixth International Conference on (Conf Publ No434)1997, pp:192-196.
    [4] P. Crossley, M. Davidson, P. Gale.Fault location using travelling waves [C]. Instrumentation in theElectrical Supply Industry, IEE Colloquium,1993,pp:6/1-6/3.
    [5]徐丙垠.利用暂态行波的输电线路故障测距技术[D].西安:西安交通大学,1991.
    [6] P.F. Gale, P.A. Crossley, Bingyin Xu, et al.Fault location based on travelling waves [C].Developments in Power System Protection,1993, Fifth International Conference,1993, pp:54-59.
    [7]董新洲,葛耀中,徐丙垠.利用GPS的输电线路行波故障测距研究[J].电力系统自动化.1996,20(12):37-40.
    [8]覃剑,陈祥训,基于小波变换技术的新型输电线路故障测距系统[J].国际电力.2001(4):31-35.
    [9]董新洲,葛耀中,徐丙垠.利用暂态电流行波的输电线路故障测距研究[J].中国电机工程学报.1999,19(4):76-80.
    [10]董新洲,耿中行,葛耀中.小波变换应用于电力系统故障信号分析初探[J].中国电机工程学报.1997,17(6):421-424.
    [11]董新洲,贺家李,葛耀中.小波变换在行波故障检测中的应用[J].继电器.1998,26(5):1-4.
    [12] Lee H, Mousa A M. GPS traveling wave fault locator systems investigation into the anomalousmeasurements related to lightning strikes [J]. IEEE Trans on Power Delivery.1996,11(3):1214-1223.
    [13]曾祥君,邓丰,李泽文.基于信息融合的故障行波定位网络算法[J].电力科学与技术学报.2009,24(1):38-44.
    [14]曾祥君,陈楠,李泽文.基于网络的故障行波定位算法[J].中国电机工程学报.2009,28(31):48-53.
    [15]邓丰,曾祥君,陈楠.自适应网络结构的故障行波定位方法[J].电力系统自动化.2009,33(19):66-70.
    [16]邓丰,陈楠,曾祥君.基于图论的电网故障行波定位装置最优配置算法[J].电力系统自动化.2010,34(11):87-92.
    [17]陈平,牛燕雄,徐丙垠.现代行波故障测距系统的研制[J].电力系统自动化.2003,27(12):81-85.
    [18] Jian Qin, Xiangxun Chen, Jianchao Zheng.Travelling wave fault location of transmission line usingwavelet transform [C]. Proceedings POWERCON '98.1998,1:533-537.
    [19] IEC. IEC61850Communication networks and system in substations [S].2003.
    [20] IEEE C37.111-1999IEEE standards board. IEEE standard common format for transient dataexchange (COMTRADE) for power systems [S].1999.
    [21]陆岩,胡道徐,马文龙. IEC61850信息建模的反思与变通[J].电力自动化设备.2008,28(10):68-70.
    [22]杨桂松,牛志刚,张浩. IEC61850网关中典型抽象通信服务接口对象模型与MMS之间的映射方法[J].电网技术.2007,31(S2):248-251.
    [23]刘琳,胡道徐.500kV变电站遵循IEC61850标准统一建模[J].电力自动化设备.2009,29(7):113-117.
    [24]高湛军,陈青,程婷婷.应用于电网故障诊断的统一信息模型[J].电力系统自动化.2010,34(9):49-52.
    [25]古锋.继电保护及故障信息系统通信模型研究[J].电网技术.2007,31(7):73-77.
    [26]王林,王倩,郭汉桥.基于IEC61850的智能电能质量监测设备模型[J].电网技术.2007,31(S2):268-271.
    [27]贾清泉,石磊磊,田杰.数字化变电站中故障选线智能电子设备模型[J].电力系统自动化.2011,35(8):63-66.
    [28]王照,任雁铭. IEC61850数据集模型的应用[J].电力系统自动化.2005,29(2):61-63.
    [29]黄巍松,葛慧. IEC61850文件传输模型的应用[J].电力自动化设备.2008,28(6):111-114.
    [30] Li Guangyuan. Checking Timed B ü chi Automata Emptiness Using LU-Abstractions [C].Proceedings of the7th International Conference on Formal Modeling and Analysis of Timed Systems(FORMATS2009).2009, pp:228-242.
    [31] Li Guangyuan, Tang Zhisong. Translating a Continuous-Time Temporal Logic into TimedAutomata [C]. Proceedings of the first Asian Symposium on Programming Languages and Systems(APLAS2003).2003,pp:322-338.
    [32] Li Liang, Ma Huadong, Li Guangyuan. Formal Specification and Model Checking of CSMA/CAUsing Finite Precision Timed Automata [J]. The Journal of China Universities of Posts andTelecommunications.2005,12(3):33-38.
    [33] Yan Rongjie, Li Guangyuan, Zhang Wenliang. Improvements for the Symbolic Verification ofTimed Automata [C]. Proceedings of the27th IFIP WG6.1International Conference on FormalTechniques for Networked and Distributed Systems (FORTE2007).2007, pp:196-210.
    [34] Michael H, Mark R. Logic in computer science: modeling and reasoning about systems [M].2ndedtion. Cambridge University Press.2004.
    [35] John E H, Rajeev M, Jeffrey D U. Introduction to automata theory, languages, and computation[M].3rd edtion. Harlow: Addison-Wesley Press.2007.
    [36] Mordechai B A. Principles of the Spin Model Checker [M]. Springer-Verlag,2008.
    [37] Mordechai B A. Principles of Concurrent and Distributed Programming [M].2nd edtion. Harlow:Addison-Wesley.2006.
    [38] Lou van der Sluis著,王一宇,周于邦译.电力系统暂态[M].北京:中国电力出版社.2003:19-27.
    [39]张纬钹,何金良,高玉明.过电压防护及绝缘配合[M].北京:清华大学出版社.2007:1-40.
    [40]张德全,吴果林,刘登峰.最短路问题的Floyd加速算法和优化[J].计算机工程与应用.2009,45(17):41-43.
    [41] Xinzhou Dong, Yaozhong Ge, Bingyin Xu.Fault position relay based on current travelling wavesand wavelets [C]. Power Engineering Society Winter Meeting, IEEE.2000, pp:1997-2004.
    [42] Yanfeng Gong, Mynam M.,Guzman A.Real-time multiterminal fault location system fortransmission networks [C]. IEEE International Conference on Smart Grid Communications.2011,pp:558-563.
    [43] Quanyuan Jiang, Xingpeng Li, Bo Wang, Haijiao Wang. PMU-Based Fault Location Using VoltageMeasurements in Large Transmission Networks [J]. IEEE Transactions on Power Delivery.2012,27(3):1644-1652.
    [44] Xiangjun Zeng, K.K. Li, Zhengyi Liu.Fault location using traveling wave for power networks [C].Industry Applications Conference,200439th IAS Annual Meeting Conference Record of the2004IEEE,2004, pp:2426-2429.
    [45]董新洲,葛耀中,徐丙垠.输电线路暂态电流行波的故障特征及其小波分析[J].电工技术学报.1999,14(1):59-62.
    [46]董新洲,刘建政,余学文.输电线路暂态电压行波的故障特征及其小波分析[J].电工技术学报.2001,16(3):57-61.
    [47]葛耀中,徐丙垠,陈平.利用暂态行波测距的研究[J].电力系统及其自动化学报.1996(3):17-22.
    [48]董新洲,刘建政,张言苍.行波的小波表示[J].清华大学学报(自然科学版).2001,41(9):13-17.
    [49]覃剑.输电线路单端行波故障测距的研究[J].电网技术.2005,29(15):65-70.
    [50] Xinzhou Dong, Zheng Chen, Xuanzhou He.Optimizing solution of fault location [C]. PowerEngineering Society Summer Meeting, IEEE.2002, pp:1113-1117.
    [51]覃剑,陈祥讯,郑建超.利用小波变换的双端行波测距新方法[J].中国电机工程学报.2000,20(8):6-10.
    [52]徐丙垠,李京,陈平.现代行波测距技术及其应用[J].电力系统自动化.2001,25(23):62-65.
    [53]徐丙垠,朱锡贵,马长贵.行波特征鉴别式距离保护原理的研究[J].中国电机工程学报.1989,9(3):1-8.
    [54] O Ibe A, J Cory B.A Travelling Wave-Based Fault Locator for Two-and Three-Terminal Networks[J]. IEEE Transactions on Power Delivery.1986,1(2):283-288.
    [55] Nan Chen, Xiangjun Zeng, Zewen Li. A Novel Algorithm for Traveling Wave Fault Location Baseon Network [C]. IEEE International Conference on Industrial Technology.2008,pp:1-5.
    [56] Feng Deng, Xiangjun Zeng, Nan Chen. Research on Optimal Placement of Travelling Wave FaultLocators in Power Grid [C]. DPSP2008IET9th International Conference.2008,pp:573-578.
    [57] Feng Deng, Xiangjun Zeng, Chao Yuan. Novel Traveling Wave Location Algorithm forTransmission Network Based on Information Fusion Technology [C]. Intelligent ComputationTechnology and Automation (ICICTA),2008International Conference2008,(1):1091-1095.
    [58]杜林,陈宏业,陈伟根.基于网络通路的区域电网故障行波定位方法[J].电力系统自动化.2010,34(24):60-64.
    [59]黄绪勇,张文魁,刘沛.电网行波故障定位装置的最优化配置及其改进算法[J].电力自动化设备.2010,30(1):41-44.
    [60]董新洲,葛耀中,徐丙垠.新型输电线路故障测距装置的研制[J].电网技术.1998,22(1):17-21.
    [61]董新洲,贺家李,葛耀中.基于小波变换的行波故障选相研究第1部分理论基础[J].电力系统自动化.1998,22(12):24-26.
    [62] A. El Haffar, M. Lehtonen.Evaluation of Travelling Wave Fault Location Based on FieldMeasurements [C]. DPSP2008IET9th International Conference.2008,pp:601-605.
    [63]覃剑,彭莉萍,王和春.基于小波变换技术的输电线路单端行波故障测距[J].电力系统自动化.2005,29(19):62-65.
    [64] Olveczky P C, Thorvaldsen S. Formal modeling and analysis of wireless sensor network algorithmsin Real-Time Maude [C]. Parallel and Distributed Processing Symposium, IEEE.2006,pp:1-8.
    [65] Usman R, Umair S, Jamil A. Formal Modeling and Analysis of Biological Regulatory NetworksUsing SPIN [C]. Bioinformatics and Biomedicine (BIBM), IEEE.2011,pp:1-5.
    [66]李九虎,郑玉平,古世东.电子式互感器在数字化变电站的应用[J].电力系统自动化.2007,31(7):94-98.
    [67]陈玥云,覃剑,刘巍.影响输电线路长度的主要因素分析[J].电网技术.2007,31(14):41-44.
    [68] V. Faybisovich, M.I. Khoroshev. Frequency domain double-ended method of fault location fortransmission lines [C]. Transmission and Distribution Conference and Exposition,2008T&D IEEE/PES.2008,pp:1-6.
    [69] Tang Yong, Chen Heng, Wang Haifeng. Transmission line models used in travelling wave studies[C]. Transmission and Distribution Conference,1999IEEE,1999(2):797-803.
    [70] T.I.A.H. Mustafa, D.W.P. Thomas, C. Christopoulos. Comparison of simulated and recordedtransients for travelling wave fault location [C]. Power Tech Conference Proceedings,2003IEEEBologna.2003(3):4-8.
    [71]覃剑,陈祥训,郑健超.行波在输电线上传播的色散研究[J].中国电机工程学报.1999,19(9):27-30.
    [72]覃剑,陈祥训,郑健超.利用小波变换的双端行波测距新方法[J].中国电机工程学报.2000,20(8):6-10.
    [73]覃剑,葛维春,邱金辉.输电线路单端行波测距法和双端行波测距法的对比[J].电力系统自动化.2006,30(6):92-95.
    [74]覃剑,葛维春,邱金辉.影响输电线路行波故障测距精度的主要因素分析[J].电网技术.2007,31(2):28-35.
    [75]覃剑,黄震,邱宇峰.基于小波变换的同杆并架双回线双端行波故障测距[J].电力系统自动化.2004,8(5):51-55.
    [76]覃剑,黄震,杨华.同杆并架双回线路行波传播特性的研究[J].中国电机工程学报.2004,24(5):30-34.
    [77]曾祥君,尹项根,陈德树.基于整个输电网GPS行波故障定位系统的研究[J].电力系统自动化.1999,23(10):8-10.
    [78]曾祥君,尹项根,林福昌.基于行波传感器的输电线路故障定位方法研究[J].中国电机工程学报.2002,22(6):42-46.
    [79] ChenNan, Xiangjun Zeng, Xin Tang. Software for Power Grid Fault Location with Traveling-wave[C]. International Conference on Power System Technology.2006,pp:1-5.
    [80]曾祥君,尹项根,林福昌.输电线路故障GPS行波定位装置实验测试研究[J].中国电机工程学报.2002,22(8):31-34.
    [81]陈楠,曾祥君,马洪江.基于网络的行波故障定位软件设计[J].电力系统自动化.2008,32(7):44-47.
    [82]李泽文,曾祥君,徐晓蔷.输电线路双端行波故障定位新算法[J].电力系统自动化.2006,39(15):40-43.
    [83]李泽文,姚建刚,曾祥君.基于整个电网行波时差的故障定位方法[J].中国电机工程学报.2009,29(4):60-64.
    [84]李泽文,姚建刚,曾祥君.基于整个输电网的电压行波故障定位算法[J].电力系统自动化.2008,32(1):66-69.
    [85]李泽文,姚建刚,曾祥君.电网行波故障定位装置的优化配置[J].电力系统自动化.2009,33(3):64-68.
    [86]黄绪勇,张文魁,刘\沛.电网行波故障定位装置的最优化配置及其改进算法[J].电力自动化设备.2010,30(1):41-44.
    [87] Zou Guibin, Gao Houlei. Algorithm for ultra high speed travelling wave protection with accuratefault location [C]. Power and Energy Society General Meeting-Conversion and Delivery of ElectricalEnergy in the21st Century, IEEE.2008,pp:1-5.
    [88]陈平,葛耀中,索南加乐.输电线路故障开断暂态行波的传播特性研究[J].中国电机工程学报.2000,20(7):75-78.
    [89]陈平,葛耀中,索南加乐.基于故障开断暂态行波信息的输电线路故障测距研究[J].中国电机工程学报.2000,20(8):56-59.
    [90]陈平,葛耀中,徐丙垠.利用故障线路分闸暂态行波的故障测距研究[J].电力系统自动化.2004,28(1):53-58.
    [91]陈平,徐丙垠,葛耀中.一种利用暂态电流行波的输电线路故障测距方法[J].电力系统自动化.1999,23(14):29-32.
    [92]陈平,徐丙垠,李京.现代行波故障测距装置及其运行经验[J].电力系统自动化.2003,27(6):66-69.
    [93]陈平,朱瑾,徐丙垠.利用重合闸暂态行波的输电线路故障测距[J].电力系统自动化.2009,33(11):76-80.
    [94] Chen Ping, Xu Bingyin, Li Jing. A Traveling Wave Based Fault Locating System for HVDCTransmission Lines [C]. International Conference on Power System Technology.2006,pp:1-4.
    [95]邹贵彬,高厚磊,许明.一种高压电网电压行波信号的提取方法[J].电力系统自动化.2009,33(2):71-74.
    [96] Wang Kit Po, K. Lee. Visualizing wavelet transformed travelling waves on power transmission lineusing JAVA [C]. Advances in Power System Control, Operation and Management InternationalConference,2000, pp:349-353.
    [97] S. Jamali, A. Ghezeljeh. Fault location on transmission line using high frequency travelling waves[C]. Developments in Power System Protection, IEE International Conference,2004, pp:220-223.
    [98]M.M. Tawfik, M.M. Morcos. ANN-based techniques for estimating fault location on transmissionlines using Prony method [J]. IEEE Transactions on Power Delivery.2001,16(2):219-224.
    [99]M. Sneddom, P. Gale.Fault location on transmission lines [C]. Distribution and TransmissionSystems (Digest No1997/050), IEE Colloquium on Operational Monitoring1997(2):1-3.
    [100]M. Silva, M. Oleskovicz, D.V. Coury. A fault locator for transmission lines using traveling wavesand wavelet transform theory [C]. Developments in Power System Protection, IEE InternationalConference.2004,(1):212-215.
    [101] Jie Liang, S. Elangovan, J.B.X. Devotta. Adaptive travelling wave protection algorithm using twocorrelation functions [J]. IEEE Transactions on Power Delivery.1999,14(1):126-131.
    [102] Haihong Bian, Qingshan Xu. Study of fault location for parallel transmissions lines using oneterminal current traveling waves [C]. Electric Utility Deregulation and Restructuring and PowerTechnologies,2008DRPT.2008,pp:2296-2301.
    [103] Feng Zhang, Ju Liang, Li Zhang.A new fault location method avoiding wave speed and based ontraveling waves for EHV transmission line [C]. Electric Utility Deregulation and Restructuring andPower Technologies,2008DRPT.2008,pp:1753-1757.
    [104] F.H. Magnago, A. Abur. Fault location using wavelets [J]. IEEE Transactions on Power Delivery.1998,13(4):1475-1480.
    [105] Elhaffar A., N.I. Elkalashy, Lehtonen M..Experimental Investigations on Multi-end FaultLocation System based on Current Traveling Waves [C]. Power Tech,2007IEEE Lausanne.2007,pp:1141-1146.
    [106] D.J. Spoor, J. Zhu. Frequency considerations when employing travelling wave fault locationalgorithms [C]. Universities Power Engineering Conference.2004(3):1116-1120.
    [107] D.J. Spoor, J Zhu, P. Nichols. Filtering effects of substation secondary circuits on power systemtraveling wave transients. Electrical Machines and Systems [C], Proceedings of the Eighth InternationalConference.2005(3):2360-2365.
    [108] A. Elhaffar, M. Lehtonen. High Frequency Current Transformer Modeling for Traveling WavesDetection [C]. Power Engineering Society General Meeting,2007IEEE.2007,pp:1-6.
    [109] A. Elhaffar, M. Lehtonen. An improved GPS current traveling-wave fault locator in EHVtransmission networks using few recordings [C]. Future Power Systems,2005InternationalConference.2005,pp:1-5.
    [110] A. Elhaffar, M. Lehtonen. Travelling waves based earth fault location in400kV transmissionnetwork using single end measurement [C]. Large Engineering systems Conference on PowerEngineering.2004,pp:53-56.
    [111]郭宁明,覃剑,输电线路雷击故障情况下的短路点定位方法[J].电力系统自动化.2009,33(10):74-77.
    [112]郭宁明,覃剑,陈祥训.雷击对行波故障测距的影响及识别[J].电力系统自动化.2008,32(5):76-79.
    [113]雷莉,曾祥君,刘建华.考虑输电线路阻抗频率特性的高精度行波定位方法[J].长沙理工大学学报(自然科学版).2007,4(1):48-52.
    [114] Wang Bin, Ge Zheng, Dong Xinzhou. Performance of process bus communication of transienttraveling waves data in smart substation [C]. Electricity Distribution (CICED),2010China InternationalConference on.2010,pp:1-4.
    [115]曾祥君,伍智华,冯凯辉.基于行波传输时差的输电线路覆冰厚度测量方法[J].电力系统自动化.2010,34(10):81-83.
    [116]夏璐璐,何正友,李小鹏.基于行波固有频率和经验模态分解的混合线路故障测距方法[J].电力系统自动化.2010,34(18):67-73.
    [117]杜林,陈宏业,陈伟根.采用双端电压行波法的输电线路故障定位系统设计[J].高电压技术.2011,37(02):304-309.
    [118]李泽文,郑盾,曾祥君.基于极性比较原理的广域行波保护方法[J].电力系统自动化.2011,35(3):49-53.
    [119] Yan Rongjie, Li Guangyuan, Tang Zhisong. Symobolic Model Checking of Finite Precision TimedAutomata [C]. Proceedings of the Second International Colloquium on Theoretical Aspects ofComputing(ICTAC’05).2005, pp:272-287.
    [120]包铁,刘淑芬.基于通信顺序进程的网络故障管理形式化描述[J].吉林大学学报(工学版).2007,37(1):117-120.
    [121]吴芳美,陈邦兴.铁路信号联锁逻辑形式化建模研究[J].铁道学报.2002,24(6):50-54.
    [122]陈书义,闻英友,赵宏.基于条件谓词逻辑的可信计算形式化分析[J].华南理工大学学报(自然科学版).2009,37(5):106-110.
    [123]薛钧义,茹峰,贾立新.采用模糊Petri网的形式化推理算法及其应用[J].西安交通大学学报.2003,37(12):1263-1266.
    [124]吴芳美,徐中伟.形式化故障树分析建模和软件安全性测试[J].同济大学学报(自然科学版).2001,29(11):1299-1302.
    [125]晏荣杰,李广元,徐雨波.有限精度时间自动机的可达性检测[J].软件学报.2006,17(1):1-10.
    [126]康凤举,马裕民,蔡斌,杨惠珍.基于时态逻辑的形式化联邦校核方法[J].西北工业大学学报.2005,23(4):516-519.
    [127]张天兵,彭启伟.基于形式化预案的电力应急辅助决策规则生成方法[J].电力系统自动化.2010,34(22):67-69.
    [128]朱丹,李暾,李思昆.形式化等价性检查指导的软错误敏感点筛选[J].计算机辅助设计与图形学学报.2011,23(3):465-470.
    [129] Junbeom Yoo, Eunkyoung Jee, Sungdeok Cha. Formal Modeling and Verification ofSafety-Critical Software [J]. IEEE Software.2009,26(3):42-49.
    [130] Fei Yan, Tao Tang. Formal modeling and verification of real-time concurrent systems [C].Vehicular Electronics and Safety, ICVES, IEEE,2007,pp:1-6.
    [131]施围,郭洁.电力系统过电压计算[M].第二版,北京:高等教育出版社.2006:10-46.
    [132]王宾,董新洲,薄志谦.数字化变电站全频带故障信息利用可行性分析初探[J].电力系统保护与控制.2010,38(13):17-21.
    [133]韩国政,徐丙垠.基于IEC61850标准的智能配电终端建模[J].电力自动化设备.2011,31(2):104-107.
    [134]李惠宇,于盛林,季侃.平台化的变电站自动化系统建模方案[J].电力系统自动化.2008,32(2):101-105.
    [135]童晓阳,李映川,章力.基于IEC61850的保护功能交互模型[J].电力系统自动化.2008,32(21):41-45.
    [136]童晓阳,王晓茹,丁力.采用IEC61850构造变电站广域保护代理的信息模型[J].电力系统自动化.2008,32(5):63-67.
    [137] J. Rodrigues, L. Soldani, G. Wong. First Substation with IEC61850Commissioned in theAmericas [C]. Transmission&Distribution Conference and Exposition: Latin America,2006. TDC '06.IEEE/PES.2006,pp:1-5
    [138]范建忠,战学牛,王海玲.基于IEC61850动态建立IED模型的构想[J].电力系统自动化.2006,30(9):76-79.
    [139] J. Holbach, J. Rodriguez, C. Wester. Status on the first IEC61850based protection and control,multi-vendor project in the United States [C]. Power Systems Conference: Advanced Metering,Protection, Control, Communication, and Distributed Resources.2007,pp:254-277.
    [140] M. Ingram, R. Ehlers. Toward effective substation automation [J]. Power and Energy Magazine,IEEE.2007,5(3):67-73.
    [141] T. Bower, G. Topham, A. Dierks. Implementing New Generation Protective Relay Schemes basedon IEC61850Standard for Substation Communication in the Eskom765kV Transmission Network [C].IET9th International Conference on DPSP.2008,pp:30-34.
    [142] Zhang Jinjiang, Guo Chuangxin, Xu Lizhong. The design of an Object-Oriented EmbeddedPlatform for Substation Data Integration [C]. Power and Energy Society General Meeting-Conversionand Delivery of Electrical Energy in the21st Century,2008IEEE.2008,pp:1-6.
    [143] Chen Jiongcong, Ren Yanming, Gao Xinhua. The research on conformance testing platform ofnumerical substation [C]. Electricity Distribution, China International Conference on CICED.2008,pp:1-5.
    [144] Tong Xiaoyang, Wang Xiaoru, Ding Li. Study of information model for wide-area backupprotection agent in substation based on IEC61850[C]. Electric Utility Deregulation and Restructuringand Power Technologies.2008,pp:2212-2216.
    [145] Wang Zhao, Jing Lei, Ma Wenxiao. Feeder Automation modeling in IEC61850[C]. ElectricityDistribution, China International Conference on CICED.2008,pp:1-4.
    [146] Marcin Gurbiel, Joerg Blumschein, Cezary Dzienis. Digital interface for IEC61850[C].Requirements and accuracy definitions, Electricity Distribution-Part1, CIRED2009. pp:1-4.
    [147] R. Kowalik, M. Januszewski, Distance protections coordination using the exchange of binarysignals in the IEC61850protocol [C]. PowerTech,2009IEEE Bucharest.2009,pp:1-5.
    [148] Feng Pan, Yan Xu, Xia Xiao. A Novel Electronic Current Transformer [C].Symposium onPhotonics and Optoelectronics.2009,pp:1-3.
    [149] Tingting Cheng, Qing Chen, Zhanjun Gao. The fault diagnosis system based on IEC61850andIEC61970[C]. Developments in Power System Protection (DPSP2010). Managing the Change,10thIET International Conference on.2010,pp:1-4.
    [150] Rick Kuffel, Dean Ouellette, Paul Forsyth. Real time simulation and testing using IEC61850[C].Modern Electric Power Systems (MEPS),2010Proceedings of the International Symposium.2010,pp:1-8.
    [151] Daniel Otto, Ray Zhang, Li Haiyu. IEC61850configuration strategy for substation control andprotection [C]. Developments in Power System Protection (DPSP2010). Managing the Change,10thIET International Conference on.2010,pp:1-4.
    [152] U. Premaratne, J. Samarabandu, T. Sidhu. Security Analysis and Auditing of IEC61850-BasedAutomated Substations [J]. IEEE Transactions on Power Delivery.2010,25(4):2346-2355.
    [153] U. K. Premaratne, J. Samarabandu, T. S. Sidhu. An Intrusion Detection System for IEC61850Automated Substations [J]. IEEE Transactions on Power Delivery.2010,25(4):2376-2383.
    [154] M. A. Redfern, X. Sun, Wen An. IEC61850and designs for future relays [C].10th IETInternational Conference on Developments in Power System Protection.2010, pp:1-5.
    [155] M. P. Sanders. Object modeling for pilot channel equipment in IEC61850based devices [C].Protective,63rd Annual Conference for Relay Engineers.2010,pp:1-12.
    [156] T. S. Sidhu, S. Injeti, M. G. Kanabar. Packet scheduling of GOOSE messages in IEC61850basedsubstation intelligent electronic devices (IEDs)[C]. Power and Energy Society General Meeting,IEEE.2010,pp:1-8.
    [157] P. E. K. Tang. Design and implementation of IEC61850for power generating plant protection,control and automation [C].International Conference on Power System Technology (POWERCON).2010, pp:1-7.
    [158] I. Xyngi, M. Popov. Integrated busbar protection scheme based on IEC61850-9-2process busconcept [C]. Power and Energy Society General Meeting,2010IEEE.2010,pp:1-6.
    [159] I. Xyngi, M. Popov. IEC61850overview-where protection meets communication [C].10th IETInternational Conference on Developments in Power System Protection.2010, pp:1-5.
    [160] Wang Ying, Wang Jun. Harmonic Analysis of Power Quality Monitoring Device Based onIEC61850[C].2010International Conference on Electrical and Control Engineering (ICECE).2010,pp:1117-1120.
    [161] Xue Chen, Huang Xiaoqing, Zhang Zhenfu. The information integration scheme of intelligentsubstation [C].IEEE International Conference on Computer Science and Automation Engineering(CSAE).2011,pp:361-365.
    [162] V. Pallares-Lopez, A. Moreno-Munoz, M. Gonzalez-Redondo. Synchrophasor integration in IEC61850standard for SmartGrid and synchronism with PTP-base system [C].20116th IEEE Conferenceon Industrial Electronics and Applications (ICIEA).2011,pp:1507-1512.
    [163] Lijun Qin, Lei Wang, Ying Wang. IEC61850based distribution terminal unit [C].20114thInternational Conference on Electric Utility Deregulation and Restructuring and Power Technologies(DRPT).2011,pp:842-846.
    [164] Zhang Shujian, Sun Ming, Ge Gaofei. The research based on IEC61850intelligent terminal ofsubstation [C].2011IEEE3rd International Conference on Communication Software and Networks(ICCSN).2011,pp:304-307.
    [165] Yu Song, Wang Qian, Wang De-wen. Condition monitoring information model based on61850and61970[C].20113rd International Conference on Computer Research and Development(ICCRD).2011, pp:189-191.
    [166] C. Wester, M. Adamiak. Practical applications of Ethernet in substations and industrial facilities[C]. Pulp and Paper Industry Technical Conference (PPIC).2011,pp:55-66.
    [167] Zhichao Xu, Xiaoming Li, Huan Wang. Study on Integration and Compatibility of IED in DigitalSubstation [C]. Power and Energy Engineering Conference (APPEEC),2011Asia-Pacific.2011,pp:1-4.
    [168] M. R. D. Zadeh, T. S. Sidhu. A. Klimek,Implementation and Testing of Directional ComparisonBus Protection Based on IEC61850Process Bus [J].IEEE Transactions on Power Delivery.2011,26(3):1530-1537.
    [169] M. R. D. Zadeh, T. S. Sidhu, A. Klimek. Suitability analysis of practical directional algorithms foruse in directional comparison bus protection based on IEC61850process bus [J]. Generation,Transmission&Distribution, IET.2011,5(2):199-208.
    [170] Kezunovic, M.,Luo, S., Sevcik, D.R. A novel method for transmission network fault locationusing genetic algorithms and sparse field recordings [C]. Power Engineering Society SummerMeeting.2002,pp:1101-1106.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700