用户名: 密码: 验证码:
U波段介质加载回旋行波管研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
回旋行波管在毫米波段具有高功率、宽频带等特点,在通信及电子对抗、受控核聚变、毫米波雷达、工业加工、等离子体加热等方面有着十分广阔的运用前景,近年来受到各国研究机构的高度重视。回旋行波管的发展过程中,其输出功率、效率和带宽受到对电子注速度零散的敏感性以及工作模式和竞争模式自激振荡等因素影响,长期以来其性能得不到提高。通过各研究机构的不断探索,出现了各种新型高频波导结构以克服这些因素对器件性能的影响。随着对回旋行波管稳定性理论的深入研究,一系列实验证实了采用分布式介质加载方案的回旋行波管能有效抑制工作模式和寄生模式的自激振荡,即在回旋行波管内一定长度的互作用段涂敷高损耗介质材料,抑制接近截止频率的工作模式和寄生返波模式产生的绝对不稳定性,提高输出功率和互作用效率、展宽频带,使器件性能取得重大突破。
     U波段也称为极高频段(Extremely High Frequency),定义为30GHz~300GHz,对应波长为1~10mm。与目前广泛使用的C、Ku及正在开发使用的Ka频段相比,U波段卫星通信可以获得相当宽的使用带宽(大于3GHz),适合高数据率、大容量的卫星通信;采用扩频技术可以得到较高的处理增益;在U波段,在波束一定情况下,天线尺寸大大减小,在卫星上可以采用具有波束调零功能的天线和相控阵天线或者采用点波束来防止干扰;在U波段,频率高,天线口径小,可以产生非常窄的波束,这种窄的波束难以阻塞,适合进行保密性很高的军事通信,并且具有较高的接收和发射增益;采用U波段进行卫星通信,业务不拥挤;国内外使用较少,干扰较少,同时波束窄,定向性好。由于具有上述频带宽、干扰少、设备体积小的优点,这一频段通信容量大,可以大大提高扩频、跳频等抗干扰、抗截获措施的性能,特别适合用于军用战略、战术卫星通信和大容量、高数据率的卫星通信。U波段的军事卫星通信系统可为战术用户提供实时、灵活、保密、抗干扰的通信支援,因此应及早进行U波段军事卫星通信对抗的研究,研制出相应的设备,在未来可能发生的局部战争中,夺取电磁空间信息的优势。使用地面干扰站干扰卫星通信EHF上行链路(转发器)时,目前大都仍然采用电真空器件来获得U波段的大功率输出,而回旋行波管放大器作为最具发展潜力的高功率微波源成为首选的器件。
     本论文对U波段TE_(01)模式分布式介质加载回旋行波管注-波互作用和输入输出系统进行了理论研究和数值计算和模拟,为研制稳定、高效的回旋行波管提供设计依据和计算程序。本论文的主要工作如下:
     1.阐述了工作模式为TE_(mn)圆波导模的回旋行波管线性理论。通过求解Vlasov-Maxwell方程并考虑引入介质对色散方程的影响,对光滑波导小信号色散方程进行修正,使用介质微扰法得到介质加载回旋行波管的色散方程。
     2.在小信号分析的基础上,通过自洽求解有源的Maxwell方程与电子运动方程,给出了回旋行波管注-波互作用自洽非线性模拟方程,并考虑了速度零散和介质加载对大信号自洽方程的影响。通过此方程结合回旋行波管的小信号理论,可以给出回旋行波管稳定工作条件下最优化的设计参数,为回旋行波的输出功率提高、带宽展宽和效率提高提供有效的分析与模拟手段。
     3.利用线性理论对回旋行波管放大器进行了稳定性分析。编制了小信号工作模式稳定性分析程序,小信号返波模式稳定性分析程序,对分布式介质加载互作用结构中工作和寄生模式的自激振荡作了理论分析及数值计算。数值求解了工作模式在不同趋肤深度和介质加载条件下的起振电流;介质加载条件下工作和寄生模式的传播损耗;对不同介质加载条件和工作电流,给出了主要寄生模式的起振长度;确定了介质加载厚度以及相对介电常数。对介质加载回旋行波管互作用系统进行了小信号增益分析,给出了小信号增益带宽曲线。在综合分析工作与寄生模式稳定性和小信号增益的基础上,确定了达到设计要求的分布式介质加载回旋行波管工作参数。
     4.编制了自洽非线性互作用模拟软件,对回旋行波管的大信号特性进行数值计算,讨论了回旋行波管克服模式竞争的机理和有关工作点及物理参数的选取,并结合用三维电磁仿真软件Magic对分布式介质加载互作用结构进行模拟,验证理论计算结果。通过理论分析和数值计算,分析电子注参量、高频输入功率及频率、外部磁场、高频结构等对互作用效率、输出功率及频带的影响,进行高频系统的整体优化。
     5.利用场匹配方法优化设计了输入耦合器,利用高频模拟软件HFSS分析了耦合器中的模式纯度。比较了耦合器各个结构参数对模式纯度的影响,最终设计出了高模式纯度宽频带输入耦合器。对回旋行波管输出渐变段与输出窗进行了理论分析和数值计算,设计出了与高频结构和收集极匹配很好的输出渐变段和低反射系数且吸收功率很低的输出窗。
     6.结合项目组大功率回旋管热测实验平台给出U波段回旋行波管注-波互作用和输入输出系统的基本参数,对介质加载方案对自激振荡的抑制进行了实验验证。理论分析与数值模拟为本课题组成功研制出峰值功率150kW、增益34dB和3dB带宽2GHz的回旋行波管提供了理论支撑和优化设计的工具。
The gyrotron traveling-wave tube amplifier (gyro-TWT) featuring high power and broad bandwidth is an ideal source for advanced radar, communication and radio-electronic warfare applications. Many institutions have been paid much attention to it. However, an actual gyro-TWT interaction system is highly susceptible to potential absolute instabilities and velocity spread of electron beam. The performance of early gyro-TWT experiments was severely limited by the oscillation problems for a long time. Therefore, kinds of high frequency structures come forth to suppress oscillations. Of these novel structures, distributed-loss loaded scheme has been successfully applied to beam-wave interaction system. The emphasis on the fundamental issues of stability in gyro-TWTs has lead to the recent series of experimental demonstrations of distributed wall loss gyro-TWTs which have efficiently suppressed oscillations of opration mode and parasitic modes and obtained exciting results. The distributed-loss scheme employs lossy material in considerable part of interaction section of gyro-TWT to suppress the absolute instability induced by opration mode and parasitic modes at cutoff frequency region which lead to enhancing of output power and widen of bandwidth.
     U band, which also known as Extremely High Frequency Band, is defined as 30GHz~300GHz and corresponding wavelength is 1~10mm. Comparing with C, Ku and Ka band, which is under applying, U band satellite communications could attain considerable band-width(more than 3GHz), applicable for high data rate and large capacity satellite communications.Taking advantage of frequency-expanding technology, high disposing gain could be achieved. With certain beam, U band antenna size could be greatly decreased and interference could be prevented by means of applying antenna with zero beam function and phased array antenna or spot beam. At U band, frequency is high enough and antenna caliber size is small, therefore, very narrow beam could be produced. Such narrow beam is hard to block and suit for military communication for safety purpose. Meanwhile, high reception and radiation gain could also be met. Due to its good directional property, narrow beam, as well as interference is less for few countries using it, operation crowd could be avoided if satellite communications applying at U band. Due to advantages such as wide band-width, less interference, small equipment volume etc. as mentioned above, communications at this band has large capacity, properties of anti-disturbing and anti-capture techniques such as frequency-expand, frequency-leap, can also be greatly enhanced, therefore, it’s very suitable for strategic, tactic and high data rate, large capacity satellite communications. U band military satellite communication system provides tactic user’s real time, flexible, safe and anti-interference communication support. We must carry out studies on oppositional U band military satellite communication system as soon as possible and develop corresponding equipment to take up dominance of special electromagnetism communication in possible local war in the future. At present, electro-vacuum instruments are mostly used to produce U band high output power to interfere satellite communication uplink in ground interference station, as the most potential evolution microwave source, Gyro-TWT is the preferred instruments.
     Supporting by the“Momentous Technic Item”and“863 Plan”, this thesis has analyzed and simulated a u-band, TE_(01) mode gyro-TWT distributed-loss loaded interaction section and input/output coupler. Calculation programs and design criterion of a stable and high efficiency gyro-TWT are presented. The main works of this dissertation are listed as following:
     1. The linear small signal theory of TE_(mn) mode gyro-TWT is expatiated. With the help of Vlasov-Maxwell equation and taking the dielectric loss into consideration, the small signal dispersion equation of gyro-TWT is modified by perturbation-method.
     2. Based on analysis of the linear small signal theory, self-consistent nonlinear simulation code of gyro-TWT beam-wave interaction is obtained by solving Maxwell equation taking source into consideration, effection on nonlinear self-consistent equations caused by velocity spread and dielectric-loading are taken into consideration also. Combine the small signal theory with the equation, optimum parameters of stable working gyro-TWT, and effective analyzing and simulation method to improve output power, widen banwidth and increase efficiency of gyro-TWT are present.
     3. The linear theory is used to analyze stability of gyro-TWT. Absolute instability simulation code and small signal gyro-BWO code are programmed to calculate and analyse oscillations of operation mode and parasitic modes in distributed-loss loading structure. By numerically calculating distributed-losss gyro-TWT’s dispersion equation and with the help of Briggs-Bers absolute instability criterion, propagation loss of operation and parasitic modes, start current of operation mode under different propagation loss are calculated. Star length of the three main parasitic modes under different loss-loading conditions and operation current are given. Dielectric loss parameters including thickness of loss layer and relative permittivity are decided. The small signal gain of gyro-TWT with dielectric loading is analyzed, and relationship of the small signal gain response to bandwidth is obtained. Based on integrative small signal gain analysis, initial parameters of gyro-TWT are determined.
     4. The performance of gyro-TWT nonlinear characteristics has been evaluated using a self-consistent nonlinear particle-tracing code to meet requirements of oscillation suppressing and choice of operation parameters. The 3 dimension PIC software Magic is used to build distributed-loss interaction structure of gyro-TWT and to validate the calculation results. Based on theoretical analysis and a great deal of simulations, a series of parameters including electron beam, power and frequency of RF input, magnetic field, interaction circuit and dielectric loading, etc. are analyzed about their relationships with interaction efficiency, output power and bandwidth. The optimum procedure of RF circuit together with electro-optic system is presented.
     5. With the help of field match method and HFSS, an input coupler with high mode purity is simulated and optimized. Effects on mode purity of the parameters of input coupler structure are compared and a wide-band, high mode purity input coupler is designed. The output taper and the output window are theoretically analized and numerically calculated, an output taper matched with RF circuit and the collector with a low reflectivity, low power absorbtion output window are designed.
     6. According to the status of our high power Gyrotron hot test Lab, essential parameters of distributed-loss loading circuit and input/output coupler of U-band gyro-TWT are determined and proved by experiments carried out on the Gyrotron Lab. This thesis proffers theoretical analysis and simulation tools for high gain U-band TE_(01) mode gyro-TWT, producing 150kW saturated output power at 34 dB stable gain with a 3-dB bandwidth of 2GHz.
引文
[1] V. A. Flyagin, A. V. Gaponov, M. I. Petelin, and V. K.Yulpatov. The Gyrotron, IEEE Trans. On Microwave Theory Techniques,1977,Vo1.25, No. 6:514-521
    [2] J. L. Hirshfield and V. L. Granatstein. The electron cyclotron maser-An Historical Survey.IEEE Trans. on Microwave theory and Techniques, 1977,Vol. 25 No.6:522-527
    [3] R. Q. Twiss.Radiation Transfer and the Possibility of Negative Absorption in Radio Astronomy. 1958, AUSt. J. Phys., Vol. 11:564
    [4] R. Q. Twiss and J. A. Roberts. Electromagnetic Radiation from Electrons Rotating in a Ionized Medium under the Action of a Uniform Magnetic Field. 1958, J. Phys., Vol.11:424.
    [5] J. Schneider. Stimulated Emission of Radiation by Relativistic Electrons in a Magnetic Field.Phys. Rev. Lett.,1959,Vo1.2:504
    [6] A. V. Gaponov, Addendum, Izv. an addendum to A. V. Gaponov. Interaction between Electron Fluxes and Electromagnetic Waves in Waveguides.Izv. VUZ Radionz, 1959,Vol. 2:450
    [7] J. L. Hirshfield, J. M. Wachtel. Electron Cycoltron Maser.Phys. Rev. Lett.,1964, Vo.12: 533.
    [8] K. L. Felch, B. G. Danly, H. R. Jory, et al. Characteristics and applications of fast-wave gyrodevices. Proc. IEEE, 1999, 87(1): 752–781
    [9] R. J. Barker. High-Power Microwave Sources and Technologies. New York: IEEE, 2001, 156–198
    [10] S. H. Gold, G. S. Nusinovich. Review of high-power microwave source research. Rev. Sci. Instrum., 1997, 68(1): 3945–3974
    [11] A. L. Goldenberg, A. G. Litvak. Recent progress of high power millimeter wavelength gyrodevices. Phys. Plasmas, 1995, 2(2): 2562–2572
    [12] V. L. Granatstein, B. Levush, B. G. Danly. A quarter century of gyrotron research and development. IEEE Trans. Plasma Sci., 1997, 25(1): 1322–1335
    [13] A. V. Gapanov. Applications of High Power Microwaves. MA: Artech House, 1994,76-98
    [14] I. I. Antakov, A. V. Gapanov, O. V. Malygin, et al.Application of induced cyclotron radiation of electrons for the generation and amplification of high power electromagnetic waves. Radio Eng. Electron Phys.,1966, 11(2): 1195–1197
    [15] C. J. Edgcombe. Gyrotron Oscillators—Their Principles and Practices. New York: Taylor &Francis, 1993,167-216
    [16] V. L. Granatstein, P. S. Sprangle, A. T. Drobot, et al. Gyrotron traveling wave amplifier. U.S. Patent. 4224576, 1980
    [17] J. A. Nation. On the coupling of a high-current relativistic electron beam to a slow-wave structure. Appl. Phys. Lett., 1970, 17(2): 491–494
    [18] M. Friedman, M. Herndon. Microwave emission produced by the interaction of an intense relativistic electron beam with a spatially modulated magnetic field. Phys. Rev. Lett., 1972, 28(1): 210–212
    [19] Y. Carmel, J. A. Nation. Application of intense relativistic electron beam to microwave generation. J. Appl. Phys., 1973, 44(1): 5268–5274
    [20] V. L. Granatstein, P. Sprangle, R. K. Parker, et al. An electron synchrotron maser based on an intense relativistic electron beam. J. Appl. Phys., 1975, 46(1): 2021–2028
    [21] V. L. Granatstein, P. Sprangle, M. Herndon, et al. Microwave amplification with an intense relativistic electron beam. J. Appl. Phys., 1975, 46(2): 3800–3805
    [22] M. Friedman, D. A. Hammer, W. M. Manheimer, et al. Enhanced microwave emission due to the transverse energy of an intense relativistic electron beam. Phys. Rev. Lett., 1973, 31(2): 752–755
    [23] E. Ott, W. M. Manheimer. Theory of microwave emission by velocity-space instabilities of an intense relativistic electron beam. IEEE Trans. Plasma Sci., 1975, 3(2):1-5
    [24] P. Sprangle, W. M. Manheimer. Coherent nonlinear theory of a cyclotron-instability. Phys. Fluids, 1975, 18(3): 224–230
    [25] Y. V. Bykov, V. E. Semenov. A. V. Gaponov-Grekhov and V. L. Granatsteln. Processing of materal using microwave radiation In Apllications of High-power Microwaves. Eds. Bostofl,MA:Artech House,1994: 319-352
    [26] I. I. Antakov, G. Gachev, V. T. Kurbatov, E. B. Sokolov, E. A. Solujanova, and E. V. Zasypkln. A U-band 10kW CW efficient compact gyrotron for material processing. In Proc. 21Int. Conf. Infrared and Millimeter Waves, Berlin, Germany, 1996, Paper AM3
    [27] H. Asano, T. Kikynaga, K. Hemml, F. Sato, T. Tsaumoto. A 28 GHz Gyrotron with a permanent magnet system for Industry accelerator. In Prco. 21st Int. Conf. Infrared and Millimeter Waves, Berlin, Germany, 1996, paper AM5
    [28] W. M. Manheimer, G. Mesyats, M. T. Petelln, A. V. Gapono-Grekhov and V. L. Granatstein. Apllications of high-power microwave sources to enhanced radar systems.in apllications otHigh-Power Microwaves. Eds. Boston, Artech House,1994:169-208
    [29] J. B. Mead. Millimeter-wave radars for atmospheric remote sensing. In Dig. 22 st Int. Conf. Infraled and Millimeter Waves, Wlntergreen VA., 1997,July 20-25,: 277-280
    [30] A. A. Toluchev. Gyroklystron-based 35GHz radar for observation of space objects. In Dig. 22nd Int. Conf. Infrared and Millimeter Waves, Wintergreen, VA., 1997, July 20-25:37-38
    [31] W. W. Destler, E. Chojnacki, R. F. Hoeberling, W. Lawson, A. Singh, C. D. Strlffler. High-power microwave generation in large orbit devices. IEEE Trans. Plasma Sci., 1988, vol. PS-16:71-89
    [32] R. S. Symons and H. R. Jory, L. Marton and C. Marton. Cyclotron resonance devices. In Ady. Electronics Electron Phys, vol.55
    [33] Y. Carmel, K. H. Chu, M. Read, A. K. Ganguly, D. Dialetes, R. Seeley, J. S. Levlne,and V. L. Granatsteln. Realization of a stable and highly efficient gyrotron for controlled fusion research. Phys. Rev. Lett.,1953,Vo. 50:112-116
    [34] K. Felch, R. Bier, L. j. Craig, H. Huey. L. Ives, H. Jory, N. Lopez, and S. Sprang. CW operation of a 140GHz gyrotron. Int. J. Electron, 1986 vol. 61:701-714
    [35] K. Felch, R. Bier, L. J. Craig, H. Huey, L. Ives, H. Jory, N. Lopez, and S. Sprang. Achievements in the Cw operation of 140 GHz gyrotrons. In Dig. Int. Conf. Infrared and Millimeter Waves,Pisa, italy., Oct. 1986:43-45
    [36] Li Hongfu, Yang Shiwen, Huang yong. The study on third harmonic gyrotron with complex cavity. The 21 International Conference on Infrared and Millimeter Waves, 1996
    [37] Huang Yong, Li Hongfu, Du Pingzhong. Self-consistent nonlinear theory of third harmonic complex cavity gyrotron with gradual transition. Chinese Jurnal of Electronics, 1997, 6(4): 43-47
    [38] Huang Yong, Li Hongfu, Du Pingzhong, and Liu Shenggang. Third-harmonic complex cavity gyrotron self-consistent nonlinear alanysis. IEEE Trans. Plasma Sci., 1997,vol. 25: 1406-1411
    [39]李宏福,杜品忠,杨仕文等.突变复合腔回旋管自洽场理论与模拟,物理学报,2000,Vol. 49:312-317
    [40] W. M Bollen, A. H. Mccurdy, B Arfin, R. K. Parker, and A. K. Ganguly. Design and performance of a three-cavity gyroklystron amplifie. IEEE Trans. Plasma sci., 1985, vol. 13: 417-423
    [41] E. V. Zasypkin, M. A. Moiseev, E. V. Sokolov, and V. K. Yulpatov. Effect of penultimate cavity position and tuning on three-cavity gyroklystron amplifier performance. Int. J.Electron. ,Vol, 1995, vol. 78: 423-433
    [42] K. R. Chu,V. L. Granatstein, P. E. Lathaln, W. Lawson, and C. D. Striffler. A 30-Mw gyroklystron-amplifier design for high-energy linear accelerators. IEEE Tran. Plasma Sci.,1955,vol. 13:424-443
    [43] W. Lawson and P. E. Lathaln. The design of a small-orbit/large-orbit gyroklystron experiment. J. Appl. phys., 1987, vol. 61:519-528
    [44] K. R. Chu, P. E. Latham and V. L. Granatsteln. Penultlmate cavity tuning of the gyroklystron amplifier. Int. J. Electron, 1985, vol. 65: 419-428
    [45] P. E. Latham. AC space-charge effects in gyroklystron amplifiers. IEEE. Trans Plama Sci., 1990, Vol. 18:273-285
    [46] V. L. Granatstein, M. E. Read, L. R. Barnett. Measured performance of gyrotron oscillators and amplifiers. In Infrared and Millimeter Waves, Vol.5, ed. K. J. Button, Academic Press, New York, 1982. 267-304
    [47] Chu K. R, A. T. Lin, Gain and bandwidth of the gyro-TWT and CARM amplifiers, IEEE Trans. on Plasma Science, 1988, Vol. 16:90-103
    [48]尹协远,孙德军.旋涡流动的稳定性[M] .北京:国防工业出版社, 2003 : 27240. ( Yi X Y, Shun D J . The stability of transaction volition. Beijing : National Defense Industry Press , 2003 : 27240)
    [49] Chu. K. R. Overview of research on the gyrotron traveling wave amplifier. IEEE Trans. on Plasma Science, 2002, PS-309 903-908
    [50] K Ray Chu, Adam T. Drobot, V. L. Granatstein, and J. Larry Steftor. Characteristics and optimum operating pararrietens of a Gyrotron traveling wave Amplitier. IEEE Trans. on MTT, 1979, Vol. 27, No.2
    [51]刘盛纲,回旋行波管的动力学理论,成都电讯工程学院学报,1983,第3期,110
    [52] Kwo Ray Chu, Adam T. Drobot, Harold Hwaling SZU, and Phlilip Sprangle. Theory and Simulation of the Gyrotron Traveling Wave Amplitier Operating At Cyclotron Harmonics. IEEE Trans. on Microwave Theory Tech., 1980, Vol. 28
    [53] P. A Lindsay. Self-Consistent Large-Signal Interaction in a TWT Gyrotron. Int. J. Electronics,1981,51(4):379-393
    [54] Kwo Ray Chu, Y. Y. Lau, Larry R. Barnett. Theory of a Wide-Band Distributed Gyrotron Traveling-Wave Amplifier. IEEE Trans. on Electron Devices, 1981, Vol. ED-28, No. 7
    [55] Lan.Y. Y., Chu. K. K. Gyrotron Traveing Wave Amplifier: Analysis Of oscillations.Int.1Infrared Millimeter waves, 1981, Vol. 2:373
    [56] A. K. Ganguly, S. Ahn. Self-consistent large signal theory of the gyrotron traveling wave amplifier. Int. J. Electron., 1982, 53(1): 641–658
    [57] D. B. McDermott, D. S. Furuno, N. C. Luhmann. Production of relativistic rotating electron beams by gyroresonant rf acceleration in a TE cavity. J. Appl. Phys., 1985, 58(1): 4501–4508
    [58] C. K. Chong, D. B. McDermott, N. C. Luhmann. Large-signal operation of a third-harmonic slotted gyro-TWT amplifier. IEEE Trans.Plasma Sci., 1998, 26(1): 500–507
    [59] A. K. Ganguly, S. Ahn, Large-signal theory of a two-stage wide band gyro-TWT. IEEE Trans. Electron Devices, 1984,31(1): 474–480
    [60] L. R. Barnett, K. R. Chu, J. M. Baird, et al. Gain, saturation, and bandwidth measurements of the NRL gyrotron traveling wave amplifier. IEDM Tech. Dig., 1979, 1(1): 164–167
    [61] L. R. Barnett, J. M. Baird, Y. Y. Lau, et al. A high gain single stage gyrotron traveling wave amplifier. IEDM Tech. Dig., 1980, 1(2): 314–317
    [62] P. E. Ferguson, G. Valier, R. S. Symons. Gyrotron-TWT operating characteristics.IEEE Trans. Microwave Theory Tech., 1981,29(2): 794–799
    [63] R. S. Symons, H. R. Jory, S. J. Hegji. An experimental gyro-TWT. IEEE Trans. Microwave Theory Tech., 1981, 29(2): 181–184
    [64] L. R. Barnett, Y. Y. Lau, K. R. Chu. An experimental wideband gyrotron traveling-wave amplifier. IEEE Trans. Electron Devices, 1981,28(1): 872–875
    [65] Larry R. Barnett, D. Dialetist, Y. Y. Lau, and K.R.Chu. Tapered Interaction Gyro-TWA Experiments. IEEE IEDM 83:280-283
    [66] W. Lawson, T. P. Calame, B. Hogan, P. E. Latham, M. E. Read, V. L. Granatstein M Relser, and C. D. Strlffler. Efficiency operation of a high power X-band gyroklystron. Phy. Rev. Lett., 1991, vol. 67:520-523
    [67] W. Lawson, T. P. Calame, B. Hogan, M. Skopec, C. D. Striffler, V. L. Granatstein. Performance and characteristics of a high power X-band two-cavity gyroklystron. IEEE. Trans Plama Sci., 1992, vol. 20: 216-223
    [68] W. Lawson, H. W. Matthews, T. P. Calame, M. K. E. Lee, J Cheng, B. Hogan, P. E. Latham, V. L. Granatsteln, and M. Relser. High power operation or a K-band second harmonic gyroklystron. Phy. Rev. Lett., 1993, vol. 71:456-459
    [69] H. W. Matthews, W. Lawson, J. P. Calame, M. K. Flaherty, B. Hogan, J. Cheng, and P. E. Latham. Experimental studies of stability and amplification in a two-cavity second harmonicgyrok1ystron. IEEE. Trans Plama Sci.,1994,vol. 22:825-833
    [70] K. R. Chu, H. Y. Chen, C. L. Hung, et al. Theory and experiment of ultrahigh gain gyrotron traveling-wave amplifier. IEEE Trans. Plasma. Sci., 1999, 27(2): 391–404
    [71] K. R. Chu, H. Y. Chen, C. L. Hung, et al. Ultra high gain gyrotron traveling wave amplifier. Phys. Rev. Lett., 1998, 81(1): 4760–4763
    [72] W. C. Tsai, T. H. Chang, N. C. Chen, K. R. Chu, H. H. Song, and N. C. Luhmann, Jr., Absolute instabilities in a high-order-mode gyrotron traveling-wave amplifier. Phys. Rev. Letter., 2004.
    [73] K. R. Chu, L. R. Barnett, W. K. Lau, et al. Recent development in millimeter wave gyro-TWT research at NTHU. IEDM Tech. Dig.,1990, 1(1): 699–702.
    [74] M. Blank, B. G. Danly, B. levush, J. P. Calame, K. Nguyen, D. Pershing, G. Petillo, T. A. Hargreaves, R. B. True, A. J. Theiss, G. R. Good, K. Felch, B. G. James, P. Borchard, P. Cahalan, T. S. Chu, H. Jery, W. G. Lawson, and T. M. Antonsen, Jr., Demonstration of a 10 kW average power 94GHz gyroklystron amplifier. Phys. Plasmas. Vol. 6, pp 4405-4409, 1999.
    [75] L. R. Bamett, K. R. Chu,J. Mark Daird.Gain Saturationand Bandwidth measurements of the NKL Gyrotron Travelling Wave Amplifier.IEEE Internat. Electron Device Metting(IEDM) Technical Digest, 1979, 164-167
    [76] J. L. Seftor, V. L. Granatstein, K. R. Chu.The electron cyclotron cyclotron maser as a high power traveling-wave amplifier of millimeter waves. IEEE J. Quantum Electron, 1979, 15(2): 848–853
    [77] L. R. Barnett, J. Mark Fird, Y. Y. Lau, K. R Chu, V. L. Granatstem. A high Gain Single Stage Gyrotron Traveling wave Amplifier. IEEE 1980, 314-317
    [78] R. S. Symons, H. R. Jory, S. J. Hegji. An experimental gyro-TWT. IEDM Tech. Dig., 1979, 1(1):676–679
    [79] P. E. Ferguson, R. S. Symons. A C-band gyro-TWT, IEDM Tech.Dig., 1980, 1(1):310–313
    [80] R. S. Symons, H. R. Jory, S. J. Hegji. An experimental gyro-TWT. IEEE Trans. Microwave Theory Tech., 1981, 29(2): 181–184
    [81] P. E. Ferguson, G. Valier, R. S. Symons. Gyrotron-TWT operating characteristics.IEEE Trans. Microwave Theory Tech., 1981,29(2): 794–799
    [82] L. R. Barnett, L. H. Chang, H. Y. Chen, et al. Absolute instability competition and suppression in a millimeter-wave gyrotron traveling-wave tube.Phys. Rev. Lett., 1989, 63(1): 1062–1065
    [83] K. R. Chu, L. R. Barnett, W. K. Lau, et al. A wide-band millimeter-wave gyrotron traveling-wave amplifier experiment. IEEE Trans. Electron Devices, 1990, 37(2): 1557–1560
    [84] K. R. Chu, L. R. Barnett, W. K. Lau, et al. Recent development in millimeter wave gyro-TWT research at NTHU. IEDM Tech. Dig.,1990, 1(1): 699–702
    [85] K. R. Chu, L. R. Barnett, W. K. Lau, et al. Stabilizing of absolute instabilities in gyrotron traveling-wave amplifier. Phys. Rev. Lett., 1995, 74(1): 1103–1106
    [86] Q. S. Wang, D. B. McDermott, N. C. Luhmann. Demonstration of marginal stability theory by a 200-kW second-harmonic gyro-TWT amplifier. Phys. Rev. Lett., 1995, 75(1): 4322–4325
    [87] Q. S. Wang, D. B. McDermott, N. C. Luhmann. Operation of a stable 200-kW second-harmonic gyro-TWT amplifier. IEEE Trans. Plasma Sci., 1996, 24(1): 700–706
    [88] K. C. Leou, D. B. McDermott, and N. C. Luhmann. Dielectric-Loaded Wideband Gyro- TWT. IEEE Trans. on Plasma Sci., 1992,Vo1.20,No.3:188-196
    [89] K. C. Leou. Tao Pi, D. B.McDermott,N. C. Luhmann.Circuit Design for a Wide-Band Disk-Loaded Gyro- TWT Amplifier,IEEE Trans. Plasma,1998,Vol. 26, No. 3:488-495
    [90] G. S. Park, S. Y. Park, R. H. Kyser, et al. Gain broadening in an inhomogeneous gyrotron traveling wave amplifier. 1991 Technical Digest of International Electron Device Meeting(IETD’91), Vol.1: 779–781
    [91] G. S. Park, S. Y. Park, R. H. Kyser, et al. Broadband operation of a U-band tapered gyro-traveling wave amplifier. IEEE Trans. Plasma Sci., 1994, 22(1): 536–543
    [92] G. S. Park, J. J. Choi, S. Y. Park, et al. Gain broadening of two-stage tapered gyrotron travelingwave amplifier. Phys. Rev. Lett., 1995, 74(2): 2399–2402
    [93] J. A. Davis. Conditions for absolute instability in the cyclotron resonance maser. Phys. Fluids B, 1989, 1(1): 663–669
    [94] A. W. Fliflet. Linear and nonlinear theory of the Doppler-shifted cyclotron resonance maser based on TE and TM waveguide modes. Int. J. Electron, 1986, 61(1): 1049–1080
    [95] S. H. Gold, D. A. Kirkpatrick.. High-voltage millimeter-wave gyro-traveling-wave amplifier. J Appl Phys., 1991, 69(1): 6696–6698
    [96] G. G. Denisov, V. L. Bratman, A. D. R. Phelps, et al. Gyro-TWT with a helical operating waveguide: New possibilities to enhance efficiency and frequency bandwidth. IEEE Trans. Plasma Sci., 1998, 26(1): 508–518
    [97] G. G. Denisov, V. L. Bratman, A. W. Gross, et al.Gyrotron traveling wave amplifier with a helical interaction waveguide. Phys. Rev. Lett., 1998, 81(1): 5680–5683
    [98] V. L. Bratman, A. W. Gross, G. G. Denisov, et al.High-gain wide band gyrotron traveling wave amplifier with a helically corrugated waveguide.Phys. Rev. Lett., 2000, 84(1): 2746–2749
    [99] H. Guo, S. H. Chen, V. L. Granatstein, et al. Operation of a highly overmoded harmonic-multiplying wideband gyrotron amplifier. Phys. Rev. Lett., 1997, 79(2): 515–518
    [100] J. Rodgers, H. Guo, G. S. Nusinovich. Experimental study of phase deviation and pushing in a frequency doubling second harmonic gyro-amplifier. IEEE Trans. Electron Devices, 2001, 48(1): 2443–2441
    [101] K. R. Chu, H. Guo, V. L. Granatstein. Theory of the harmonic multiplying gyrotron traveling wave amplifier. Phys. Rev. Lett., 1997, 78(1): 4661–4464
    [102] L. Chen, H. Guo, H. Y. Chen, et al. An extended interaction oscillator based on a complex resonator structure. IEEE Trans. Plasma. Sci., 1996, 28(1): 626–632
    [103]罗勇,李宏福,赵青,等.回旋速调放大器输入谐振腔分析及数值模拟[J].强激光与粒子束,2004,16(3):358-362.
    [104] N. S. Ginzburg, S. P. Kuznetsov, T. N. Fedoseeva. Theory of transients in relativistic backward-wave tubes. Radiophys., 1979, 21(1): 728-739
    [105] M. Garven, J. P. Calame, B. G. Danly, K. T. Nguyen, B. Levush, F. N. Wood, and D. E. Pershing, Experimental studies of a gyro-TWT amplifier with a lossy ceramic interaction region. IEEE Trans. Plasma Sci. 30, 885-893, 2002
    [106] J. R. Sirigiri, M. A. Shapiro, R. J. Temkin, High-Power 140-GHz Quasioptical Gyrotron Traveling-wave Amplifier. Phys. Rev. Lett., vol. 90, 258302, 2003
    [107] G. G. Denisov, V. L. Bratman, V. N. Manuilov, G. I. Ulynova, M. M. Ofitserov, S. V. Samsonov, and A. B. Volkov, New test results on broad-band gyro-TWT and gyro-BWO with helically grooved operating waveguides. Proceedings of the 27th International Conference on Infrared and Millimeter Waves, San Diego, USA, pp. 197-198, 2002
    [108]王晖,李宏福,罗勇,徐勇.回旋速调管调制腔模拟分析[J].强激光与粒子束, 2005, 17(10): 1544-1546
    [109] C. S. Kou, Q. S. Wang, D. B. McDermott, et al. High-power harmonic gyro-TWT Part I: Linear theory and oscillation study. IEEE Trans. Plasma Sci., 1992, 20(1): 155–162
    [110]罗勇,李宏福,赵青,等.低反射低吸收高平均功率输出窗的设计[J].强激光与粒子束, 2004, 16(11): 1425-1428
    [111] L. R. Barnett, K. R. Chu, J. M. Baird, et al. Gain, saturation, and bandwidth measurements of the NRL gyrotron traveling wave amplifier. IEDM Tech. Dig., 1979, 1(1): 164–167
    [112] G. S. Nusinovich and H. Li. Theory of gyro-traveling-wave tubes at cyclotron harmonics. Int. J. Electron., 1992, 72(5): 895-907
    [113] G. S. Nusinovich and H. Li. Theory of the relativistic gyrotwystron. Phys. Fluids B. 1992, 4(4): 1058-1065
    [114] G. S. Nusinovich, P. M. Mallouf, V. L. Granatstein. Theory of the gyrotwystrons with mixed transverse geometries of the various stages. IEEE Trans. Plasma Sci., 1994, 22(5): 518-525
    [115] G. S. Nusinovich and H. Li. Large-signal theory of Gyro-traveling-wave tubes at cyclotron harmonics. IEEE Trans. Plasma Sci., 1992, 20(3): 170-175
    [116] G. S. Nusinovich, O. V. Sinitsyn, and A. Kesar. Linear theory of gyro-traveling-wave-tubes with distributed losses. Phys. Plasma, 2001, 8(7): 3247-4333
    [117] G. S. Nusinovich and O. Dumbrajs. Theory of Gyro-BackWard Wave Oscillators with tapered magnetic field and waveguide cross section. IEEE Trans. Plasma Sci., 1996, 24(3):620-629
    [118]罗勇,李宏福,谢仲怜,等.含有吸收介质的突变结构腔体场匹配分析[J].物理学报,2004,53(1):229-243.
    [119] H. Wang, H. F. Li, Y. Luo. Analysis And Design Of U-Band Gyro-TWT Output Structure With Dolph-Chebychev Waveguide Taper. 2008 33# International conference on Infrared and Millimeter Waves and THz Conference, 2008
    [120] Sh. E. Tsimring. Gyrotron Electron Beam Velocity and Energy Spread and Beam Instabilities. Int. J. Infrared Millimeter Waves, 2001, 22(10): 1433-1466
    [121]张宏斌.回旋行波管理论及数值模拟研究.电子科技大学博士学位论文, 1999
    [122] K. T. Nguyen, G. S. Park, J. J. Choi, et al. Effects of beam velocity spread on two-stage tapered gyro-TWT amplifier. IEEE Trans. Electron Devices, Vol. 43, No.4, pp.113, 1996
    [123] H. H. Song, D. B. McDermott, Hirata et al. Theory and experiment of a 94GHz gyrotron traveling wave amplifier. Phys. Plas. 2004, 11(5): 2935-2941
    [124] Y. S. Yeh, C. L. Hung, C. W. Su, et al. W-band Second Harmonic Gyrotron Traveling Wave Amplifier With Distributed-Loss and Severed Structures. Int. J. Infrared Millimeter Waves, 2004, 25(1): 29-42
    [125] R. E. Collin,“Field Theory of Guided Waves”, 2nd ed. (IEEE Press, Piscataway, NJ, 1991)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700