用户名: 密码: 验证码:
壳聚糖三维材料的降解及其降解速率的调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题组采用原位沉析法,制得高强度的壳聚糖三维材料,有望用做可降解吸收骨折内固定材料。本论文对其在制备及使用过程中的降解情况进行了研究:如在其制备过程中不同温度下的热处理对其材料性能和降解速率的影响;在其使用过程中,辐射灭菌对材料性能和降解速率的影响;在初步探明其体外降解机理和降解速率的前提下,采用不同脱乙酰度的壳聚糖原料、不同的材料制备工艺、形成不同的材料结构以及复合载酶微球调控其降解速率,以期达到材料降解速率与骨修复速率相匹配,为壳聚糖骨折内固定材料在人体内的安全应用提供理论依据。
     (1)在壳聚糖三维材料的制备过程中对其在80-400℃范围内热处理2 h。结果表明:材料在热处理过程中发生分子间交联。在热处理温度不高于200℃时,随着热处理温度的升高,壳聚糖三维材料热稳定性上升,弯曲强度在140℃时出现最大值,为161.3±4.9 MPa,与未经热处理的材料相比提高了33.1%。酶解实验结果发现热处理会降低材料的体外降解速率。
     (2)采用60Co辐射源对壳聚糖三维材料和热处理壳聚糖三维材料进行辐射。对于前者,随辐射剂量的增加,分子量下降,在辐射剂量为20 kGy时出现最强结晶峰,同时出现最高弯曲强度132.8±1.6 MPa。结果表明20 kGy的60Co辐射不但可以增强壳聚糖三维材料,而且对其体外降解速率不会造成明显影响。
     (3)壳聚糖三维材料在PBS和溶菌酶/PBS中的体外降解研究结果显示:其初始酶解速率较高,因为壳聚糖残基会阻碍溶菌酶对里层壳聚糖链的剪切,使得溶菌酶较难渗透入材料内部。在PBS和溶菌酶/PBS中降解24 w后,壳聚糖三维材料的失重率分别可达4.1%和7.9%。根据Burkersroda等提出的溶蚀模型计算,其在PBS和溶菌酶/PBS中都经历整体溶蚀。
     (4)采用N-乙酰化工艺,制得一系列不同脱乙酰度的壳聚糖,然后将不同脱乙酰度的壳聚糖共混制备壳聚糖三维材料或以不同脱乙酰度的壳聚糖层层叠加制备壳聚糖三维材料,并进行体外降解实验。结果表明:不同脱乙酰度的壳聚糖,降解速率不同,可以通过调节壳聚糖的脱乙酰度在一定的范围内调控材料的降解速率,尤其当脱乙酰度为45.7%时,所制备的材料在5w内可以完全降解。
     (5)初步探索了复合载酶微球调节壳聚糖三维材料降解速率的方法。结果表明:当溶菌酶和明胶微球的质量比为1:12时,包封率和载酶率综合来说较高,分别为75.9%,6.3%。在前14天,溶菌酶很快从明胶微球中释放出来,和外界溶菌酶共同作用、剪切壳聚糖,使壳聚糖三维材料的降解速率明显增大。
By an original in-situ precipitation method, our research group has successfully prepared three dimensional chitosan rod with a high bending strength, which has a potential application as biodegradable and bioabsorbable internal fixation nail. In this work, we investigated its degradations in preparation process and application process. For example, the influence of heat treatment at different temperatures in the preparation process on the properties and in-vitro degradation rate of chitosan rod was investigated; the influence of 60Co radiation as a sterilization method on the properties and in-vitro degradation rate of chitosan rod was studied; after the in-vitro degradation mechanism and in-vitro degradation rate of chitosan rod were clarified, in order to make the in-vitro degradation rate match the bone repair rate, several methods were adopted to adjust the in-vitro degradation rate of chitosan rod, including using chitosan raw materials with different deacetylation degrees and complexing chitosan rod with microspheres loaded with lysozyme. I hope the results of this research can provide theoretical basis to the safe applications of chitosan-based bone internal fixation materials in the human body.
     (1) The chitosan rods were heated at 80~400℃for 2 h. During the heat treatment, the CH2OH group in C-6 of chitosan would be oxidized to aldehyde group, and then react with the free amino group of chitosan, forming an intermolecular crosslinking structure. With the increase of temperature (when the temperature was not higher than 200℃), for the chitosan rod, the solubility decreased, and the thermal stability increased. The bending strength reached maximum at 140℃and was 161.3±4.9 MPa. Compared with the bending strength of chitosan rod without heat treatment, the bending strength of CS-140 increased by 33.1%. Moreover, the heat treatment could decrease the in-vitro degradation rate of chitosan rod.
     (2) Both the chitosan rods and heated chitosan rods were irradiated at doses from 10 kGy to 200 kGy by 60Co irradiation. In the degradation process induced by 60Co irradiation, the chain-scission reaction was dominant and deamination would also happen. With respect to chitosan rod with no heat treatment, when the irradiation dose increased, the molecular weight kept decreasing, and both the crystallization degree and the bending strength reached their maxima at the dose of 20 kGy. In the in-vitro degradation test, CS-20 kGy and CS-0 kGy displayed similar degradation rate. The results indicated that moderate 60Co irradiation not only could strengthen the chitosan rod, but also would not have obvious effect on the in-vitro degradation rate of chitosan rod.
     (3) The in-vitro degradations of chitosan rod in PBS and lysozyme/PBS were studied. The enzymatic degradation rate at the first week was higher than that at other weeks. This was because the chitosan residues would hinder the penetration of lysozyme into interior chitosan rod. After degraded in PBS and lysozyme/PBS for 24 weeks, the weight losses of chitosan rods were 4.1% and 7.9% respectively. According to the erosion model proposed by Burkersroda et al., the chitosan rod would undergo bulk erosion both in PBS and lysozyme/PBS.
     (4) Methods such as N-acetylation, blending and layered compositing were adopted to adjust the in-vitro degradation rate of chitosan rod. The results indicated that chitosan rod with different deacetylation degree had different in-vitro degradation rate. Therefore, by adjusting the deacetylation degree of chitosan, the in-vitro degradation rate of chitosan rod could be controlled. Especially when the deacetylation degree of chitosan was 45.7%, the chitosan rod could be fully degraded.
     (5) A preliminary study was made on tuning the in-vitro degradation rate of chitosan rod by complexing chitosan rod with microspheres loaded with enzyme. In this paper, a hollow chitosan rod was prepared at first, and then the gelatin microspheres loaded with lysozyme were added in. When the mass ratio between lysozyme and gelatin microspheres was 1:12, the encapsulation ratio and loading ratio were the most suitable, and were 75.9% and 6.3% respectively. In the first 14 days of in-vitro degradation, the degradtion rate of the composite rod was much higher than the pure rod, because the lysozyme was released from the gelatin microspheres and degraded the chitosan jointly with lysozyme in the lysozyme/PBS solution.
引文
[1]Kim I. Y., Seo S. J., Moon H. S., Yoo M. K., Park I. Y., Kim B. C., Cho C. S. Chitosan and its derivatives for tissue engineering applications. Biotechnol Adv,2008, 26(1),1-21.
    [2]Rinaudo M. Chitin and chitosan:Properties and applications. Prog Polym Sci, 2006,31 (7),603-632.
    [3]Kean T., Thanou M. Biodegradation, biodistribution and toxicity of chitosan. Adv Drug Deliver Rev,2010,62 (1),3-11.
    [4]Aam B. B., Heggset E. B., Norberg A. L., Sorlie M., Varum K. M., Eijsink V. G H. Production of Chitooligosaccharides and Their Potential Applications in Medicine. Mar Drugs,2010,8(5),1482-1517.
    [5]Aider M. Chitosan application for active bio-based films production and potential in the food industry:Review. Lwt-Food Sci Technol,2010,43 (6),837-842.
    [6]Das N. Recovery of precious metals through biosorption-A review. Hydrometallurgy,2010,103 (1-4),180-189.
    [7]El Hadrami A., Adam L. R., El Hadrami I., Daayf F. Chitosan in Plant Protection. Mar Drugs,2010,8 (4),968-987.
    [8]Jayakumar R., Menon D., Manzoor K., Nair S. V., Tamura H. Biomedical applications of chitin and chitosan based nanomaterials-A short review. Carbohyd Polym,2010,82(2),227-232.
    [9]Pangestuti R., Kim S. K. Neuroprotective Properties of Chitosan and Its Derivatives. Mar Drugs,2010,8 (7),2117-2128.
    [10]Prashanth K. V. H., Tharanathan R. N. Chitin/chitosan:modifications and their unlimited application potential-an overview. Trends Food Sci Tech,2007,18 (3), 117-131.
    [11]Renault F., Sancey B., Badot P. M., Crini G. Chitosan for coagulation/flocculation processes-An eco-friendly approach. Eur Polym J,2009,45 (5),1337-1348.
    [12]Venkatesan J., Kim S. K. Chitosan Composites for Bone Tissue Engineering-An Overview. Mar Drugs,2010,8 (8),2252-2266.
    [13]Yin H., Zhao X. M., Du Y. G. Oligochitosan:A plant diseases vaccine-A review. Carbohyd Polym,2010,82 (1),1-8.
    [14]Arvanitoyannis I. S., Nakayama A., Aiba S. Chitosan and gelatin based edible films:state diagrams, mechanical and permeation properties. Carbohyd Polym,1998, 37(4),371-382.
    [15]Babu V. R., Hosamani K. M., Aminabhavi T. M. Preparation and in-vitro release of chlorothiazide novel pH-sensitive chitosan-N,N'-dimethylacrylamide semi-interpenetrating network microspheres. Carbohyd Polym,2008,71 (2),208-217.
    [16]Muzzarelli R. A. A., Muzzarelli C. Chitosan chemistry:Relevance to the biomedical sciences. Adv Polym Sci,2005,186 151-209.
    [17]Kumar M. N. V. R., Muzzarelli R. A. A., Muzzarelli C., Sashiwa H., Domb A. J. Chitosan chemistry and pharmaceutical perspectives. Chem Rev,2004,104 (12), 6017-6084.
    [18]Simunek J., Koppova I., Filip L., Tishchenko G., Belzecki G. The Antimicrobial Action of Low-Molar-Mass Chitosan, Chitosan Derivatives and Chitooligosaccharides on Bifidobacteria. Folia Microbiol,2010,55 (4),379-382.
    [19]Meng X. H., Yang L. Y, Kennedy J. F., Tian S. P. Effects of chitosan and oligochitosan on growth of two fungal pathogens and physiological properties in pear fruit. Carbohyd Polym,2010,81 (1),70-75.
    [20]Maeda Y., Kimura Y Antitumor effects of various low-molecular-weight chitosans are due to increased natural killer activity of intestinal intraepithelial lymphocytes in sarcoma 180-bearing mice. J Nutr,2004,134 (4),945-950.
    [21]Osorio-Madrazo A., David L., Trombotto S., Lucas J. M., Peniche-Covas C. Domard A. Kinetics Study of the Solid-State Acid Hydrolysis of Chitosan:Evolution of the Crystallinity and Macromolecular Structure. Biomacromolecules,2010,11 (5), 1376-1386.
    [22]Zhang Z. H., Li C. Z., Wang Q., Zhao Z. B. K. Efficient hydrolysis of chitosan in ionic liquids. Carbohyd Polym,2009,78 (4),685-689.
    [23]Chen R. H., Chen W. Y, Wang S. T., Hsu C. H., Tsai M. L. Changes in the Mark-Houwink hydrodynamic volume of chitosan molecules in solutions of different organic acids, at different temperatures and ionic strengths. Carbohyd Polym,2009, 78 (4),902-907.
    [24]Knill C. J., Kennedy J. F., Mistry J., Miraftab M., Smart G., Groocock M. R., Williams H. J. Acid hydrolysis of commercial chitosans. J Chem Technol Biot,2005, 80(11),1291-1296.
    [25]Einbu A., Varum K. M. Depolymerization and de-N-acetylation of chitin oligomers in hydrochloric acid. Biomacromolecules,2007,8 (1),309-314.
    [26]Nguyen T. T. B., Hein S., Ng C. H., Stevens W. F. Molecular stability of chitosan in acid solutions stored at various conditions. J Appl Polym Sci,2008,107 (4), 2588-2593.
    [27]Zhao X. H., Kong A. G., Hou Y. W., Shan C. C., Ding H. M., Shan Y. K. An innovative method for oxidative degradation of chitosan with molecular oxygen catalyzed by metal phthalocyanine in neutral ionic liquid. Carbohyd Res,2009,344 (15),2010-2013.
    [28]Huang Q. Z., Zhuo L. H., Guo Y. C. Heterogeneous degradation of chitosan with H2O2 catalysed by phosphotungstate. Carbohyd Polym,2008,72 (3),500-505.
    [29]Qin C. Q., Du Y. M., Xiao L. Effect of hydrogen peroxide treatment on the molecular weight and structure of chitosan. Polym Degrad Stabil,2002,76 (2), 211-218.
    [30]Czechowska-Biskup R., Rokita B., Ulanski P., Rosiak J. M. Radiation-induced and sonochemical degradation of chitosan as a way to increase its fat-binding capacity. Nucl Instrum Meth B,2005,236383-390.
    [31]Hai L., Diep T. B., Nagasawa N., Yoshii F., Kume T. Radiation depolymerization of chitosan to prepare oligomers. Nucl Instrum Meth B,2003,208466-470.
    [32]Choi W. S., Ahn K. J., Lee D. W., Byun M. W., Park H. J. Preparation of chitosan oligomers by irradiation. Polym Degrad Stabil,2002,78 (3),533-538.
    [33]Wasikiewicz J. M., Yoshii F., Nagasawa N., Wach R. A., Mitomo H. Degradation of chitosan and sodium alginate by gamma radiation, sonochemical and ultraviolet methods. Radiat Phys Chem,2005,73(5),287-295.
    [34]Makuuchi K. Critical review of radiation processing of hydrogel and polysaccharide. Radiat Phys Chem,2010,79 (3),267-271.
    [35]Li J., Cai J., Fan L. H. Effect of sonolysis on kinetics and physicochemical properties of treated chitosan. J Appl Polym Sci,2008,109 (4),2417-2425.
    [36]Liu H., Bao J. G., Du Y. M., Zhou X., Kennedy J. F. Effect of ultrasonic treatment on the biochemphysical properties of chitosan. Carbohyd Polym,2006,64 (4), 553-559.
    [37]Kasaai M. R., Arul J., Charlet G. Fragmentation of chitosan by ultrasonic irradiation. Ultrason Sonochem,2008,15 (6),1001-1008.
    [38]Baxter S., Zivanovic S., Weiss J. Molecular weight and degree of acetylation of high-intensity ultrasonicated chitosan. Food Hydrocolloid,2005,19 (5),821-830.
    [39]Yue W., Yao P. J., Wei Y. A., Mo H. T. Synergetic effect of ozone and ultrasonic radiation on degradation of chitosan. Polym Degrad Stabil,2008,93 (10),1814-1821.
    [40]Choi Y. J., Kim E. J., Piao Z., Yun Y. C., Shin Y. C. Purification and characterization of chitosanase from Bacillus sp strain KCTC 0377BP and Its application for the production of chitosan oligosaccharides. Appl Environ Microb, 2004,70 (8),4522-4531.
    [41]Kulish E. I., Volodina V. P., Fatkullina R. R., Kolesov S. V., Zaikov G. E. Enzymatic degradation of chitosan films under the action of nonspecific enzymes. Polym Sci Ser B+,2008,50 (7-8),175-176.
    [42]Li J., Du Y. M., Liang H. B. Influence of molecular parameters on the degradation of chitosan by a commercial enzyme. Polym Degrad Stabil,2007,92 (3), 515-524.
    [43]Yue W., He R., Yao P. J., Wei Y. A. Ultraviolet radiation-induced accelerated degradation of chitosan by ozone treatment. Carbohyd Polym,2009,77 (3),639-642.
    [44]Wang S. M., Huang Q. Z., Wang Q. S. Study on the synergetic degradation of chitosan with ultraviolet light and hydrogen peroxide. Carbohyd Res,2005,340 (6), 1143-1147.
    [45]Shao H., Yang Y. M., Zhong Q. Q. Studies on preparation of oligoglucosamine by oxidative degradation under microwave irradiation. Polym Degrad Stabil,2003,82 (3),395-398.
    [46]Holme H. K., Davidsen L., Kristiansen A., Smidsrod O. Kinetics and mechanisms of depolymerization of alginate and chitosan in aqueous solution. Carbohyd Polym,2008,73 (4),656-664.
    [47]de Britto D., Campana S. P. Kinetics of the thermal degradation of chitosan. Thermochim Acta,2007,465 (1-2),73-82.
    [48]Sionkowska A., Wisniewski M., Skopinska J., Kennedy C. J., Wess T. J. The photochemical stability of collagen-chitosan blends. J Photoch Photobio A,2004,162 (2-3),545-554.
    [49]Sionkowska A., Kaczmarek H., Wisniewski M., Skopinska J., Lazare S., Tokarev V. The influence of UV irradiation on the surface of chitosan films. Surf Sci,2006, 600(18),3775-3779.
    [50]Sionkowska A., Wisniewski M., Skopinska J., Vicini S., Marsano E. The influence of UV irradiation on the mechanical properties of chitosan/poly(vinyl pyrrolidone) blends. Polym Degrad Stabil,2005,88 (2),261-267.
    [51]Ren D. W., Yi H. F., Wang W., Ma X. J. The enzymatic degradation and swelling properties of chitosan matrices with different degrees of N-acetylation. Carbohyd Res, 2005,340 (15),2403-2410.
    [52]Hong Y., Song H. Q., Gong Y. H., Mao Z. W., Gao C. Y., Shen J. C. Covalently crosslinked chitosan hydrogel:Properties of in vitro degradation and chondrocyte encapsulation. Acta Biomater,2007,3 (1),23-31.
    [53]Jiang T., Nukavarapu S. P., Deng M., Jabbarzadeh E., Kofron M. D., Doty S. B., Abdel-Fattah W. I., Laurencin C. T. Chitosan-poly(lactide-co-glycolide) microsphere-based scaffolds for bone tissue engineering:In vitro degradation and in vivo bone regeneration studies. Acta Biomater,2010,6 (9),3457-3470.
    [54]Niu X., Feng Q., Wang M., Guo X., Zheng Q. In vitro degradation and release behavior of porous poly(lactic acid) scaffolds containing chitosan microspheres as a carrier for BMP-2-derived synthetic peptide. Polym Degrad Stabil,2009,94 (2), 176-182.
    [55]Lim S. M., Song D. K., Oh S. H., Lee-Yoon D. S., Bae E. H., Lee J. H. In vitro and in vivo degradation behavior of acetylated chitosan porous beads. J Biomat Sci-Polym E,2008,19 (4),453-466.
    [56]Sashiwa H., Fujishima S., Yamano N., Kawasaki N., Nakayama A., Muraki E., Aiba S. Production of N-acetyl-D-glucosamine from beta-chitin by enzymatic hydrolysis. Chem Lett,2001, (4),308-309.
    [57]Tommeraas K., Varum K. M., Christensen B. E., Smidsrod O. Preparation and characterisation of oligosaccharides produced by nitrous acid depolymerisation of chitosans. Carbohyd Res,2001,333 (2),137-144.
    [58]Varum K. M., Ottoy M. H., Smidsrod O. Acid hydrolysis of chitosans. Carbohyd Polym,2001,46(1),89-98.
    [59]Jia Z. S., Shen D. F. Effect of reaction temperature and reaction time on the preparation of low-molecular-weight chitosan using phosphoric acid. Carbohyd Polym,2002,49 (4),393-396.
    [60]Tirkistani F. A. A. Thermal analysis of some chitosan Schiff bases. Polym Degrad Stabil,1998,60(1),67-70.
    [61]Sreenivasan K. Thermal stability studies of some chitosan-metal ion complexes using differential scanning calorimetry. Polym Degrad Stabil,1996,52 (1),85-87.
    [62]Ou C. Y., Li S. D., Li C. P., Zhang C. H., Yang L., Chen C. P. Effect of cupric ion on thermal degradation of chitosan. J Appl Polym Sci,2008,109 (2),957-962.
    [63]Li S. D., Zhang C. H., Dong J. J., Ou C. Y., Quan W. Y, Yang L., She X. D. Effect of cupric ion on thermal degradation of quaternized chitosan. Carbohyd Polym, 2010,81 (2),182-187.
    [64]Taboada E., Cabrera G., Jimenez R., Cardenas G. A Kinetic Study of the Thermal Degradation of Chitosan-Metal Complexes. J Appl Polym Sci,2009,114 (4), 2043-2052.
    [65]Ikejima T., Yagi K., Inoue Y. Thermal properties and crystallization behavior of poly(3-hydroxybutyric acid) in blends with chitin and chitosan. Macromol Chem Physic,1999,200 (2),413-421.
    [66]Qu X., Wirsen A., Albertsson A. C. Effect of lactic/glycolic acid side chains on the thermal degradation kinetics of chitosan derivatives. Polymer,2000,41 (13), 4841-4847.
    [67]de Britto D., Campana S. P. A kinetic study on the thermal degradation of N,N,N-trimethylchitosan. Polym Degrad Stabil,2004,84 (2),353-361.
    [68]Yoo S. H., Lee J. S., Park S. Y., Kim Y. S., Chang P. S., Lee H. G. Effects of selective oxidation of chitosan on physical and biological properties. Int J Biol Macromol,2005,35 (1-2),27-31.
    [69]Sun T., Zhou D. X., Xie J. L., Mao F. Preparation of chitosan oligomers and their antioxidant activity. Eur Food Res Technol,2007,225 (3-4),451-456.
    [70]Seo S., King J. M., Prinyawiwatkul W. Simultaneous depolymerization and decolorization of chitosan by ozone treatment. J Food Sci,2007,72 (9), C522-C526.
    [71]Rinaudo M. Properties and degradation of selected polysaccharides:hyaluronan and chitosan. Corros Eng Sci Techn,2007,42 (4),324-334.
    [72]Mishra A. S., Chaturvedi O. H., Khali A., Prasad R., Santra A., Misra A. K. Parthasarathy S., Jakhmola R. C. Effect of sodium hydroxide and alkaline hydrogen peroxide treatment on physical and chemical characteristics and IVOMD of mustard straw. Anim Feed Sci Tech,2000,84 (3-4),257-264.
    [73]Parovuori P., Hamunen A., Forssell P., Autio K., Poutanen K. Oxidation of Potato Starch by Hydrogen-Peroxide. Starch-Starke,1995,47 (1),19-23.
    [74]Arantes V., Milagres A. M. F. Degradation of cellulosic and hemicellulosic substrates using a chelator-mediated Fenton reaction. J Chem Technol Biot,2006,81 (3),413-419.
    [75]Tian F., Liu Y, Hu K., Zhao B. Y. The depolymerization mechanism of chitosan by hydrogen peroxide. J Mater Sci,2003,38 (23),4709-4712.
    [76]Chang K. L. B., Tai M. C., Cheng F. H. Kinetics and products of the degradation of chitosan by hydrogen peroxide. J Agr Food Chem,2001,49 (10),4845-4851.
    [77]Hawkins C. L., Davies M. J. Direct detection and identification of radicals generated during the hydroxyl radical-induced degradation of hyaluronic acid and related materials. Free Radical Bio Med,1996,21 (3),275-290.
    [78]Rosiak J., Ulanski P., Kucharska M., Dutkiewicz J., Judkiewicz L. Radiation Sterilization of Chitosan Sealant for Vascular Prostheses. J Radioan Nucl Ch Ar,1992, 159(1),87-96.
    [79]Aliste A. J., Vieira F. F., Del Mastro N. L. Radiation effects on agar, alginates and carrageenan to be used as food additives. Radiat Phys Chem,2000,57 (3-6),305-308.
    [80]Ershov E. G., Isakova O. V., Rogozhin S. V., Gamzazade A. I., Leonova E. I. Radiation-Chemical Transformation of Chitosan. Dokl Akad Nauk Sssr+,1987,295 (5),1152-1156.
    [81]Ulanski P., Rosiak J. Preliminary Studies on Radiation-Induced Changes in Chitosan. Radiat Phys Chem,1992,39 (1),53-57.
    [82]Zhao W. W., Zhong X. G., Yu L., Zhang Y. F., Sun J. Z. Some Chemical-Changes in Chitosan Induced by Gamma-Ray Irradiation. Polym Degrad Stabil,1993,41 (1), 83-84.
    [83]Ulanski P., von Sonntag C. OH-radical-induced chain scission of chitosan in the absence and presence of dioxygen. J Chem Soc Perk T 2,2000, (10),2022-2028.
    [84]Huang L., Zhai M. L., Peng J., Li J. Q., Wei G. S. Radiation-induced degradation of carboxymethylated chitosan in aqueous solution. Carbohyd Polym,2007,67 (3), 305-312.
    [85]Zainol I., Akil H. M., Mastor A. Effect of gamma-irradiation on the physical and mechanical properties of chitosan powder. Mat Sci Eng C-Bio S,2009,29 (1), 292-297.
    [86]Nagasawa N., Mitomo H., Yoshii F., Kume T. Radiation-induced degradation of sodium alginate. Polym Degrad Stabil,2000,69 (3),279-285.
    [87]Janik I., Kasprzak E., Al-Zier A., Rosiak J. M. Radiation crosslinking and scission parameters for poly(vinyl methyl ether) in aqueous solution. Nucl Instrum Meth B,2003,208374-379.
    [88]Andrady A. L., Hamid S. H., Hu X., Torikai A. Effects of increased solar ultraviolet radiation on materials. J Photoch Photobio B,1998,46 (1-3),96-103.
    [89]Sionkowska A. Effects of solar radiation on collagen and chitosan films. J Photoch Photobio B,2006,82 (1),9-15.
    [90]Andrady A. L., Torikai A., Kobatake T. Spectral sensitivity of chitosan photodegradation. J Appl Polym Sci,1996,62 (9),1465-1471.
    [91]Wang J. T., Jin X. X., Chang D. F. Chemical modification of chitosan under high-intensity ultrasound and properties of chitosan derivatives. Carbohyd Polym, 2009,78(1),175-177.
    [92]Cravotto G., Tagliapietra S., Robaldo B., Trotta M. Chemical modification of chitosan under high-intensity ultrasound. Ultrason Sonochem,2005,12 (1-2),95-98.
    [93]Tsaih M. L., Chen R. H. Effect of degree of deacetylation of chitosan on the kinetics of ultrasonic degradation of chitosan. J Appl Polym Sci,2003,90 (13), 3526-3531.
    [94]Tsaih M. L., Tseng L. Z., Chen R. H. Effects of removing small fragments with ultrafiltration treatment and ultrasonic conditions on the degradation kinetics of chitosan. Polym Degrad Stabil,2004,86 (1),25-32.
    [95]Trzcinski S., Staszewska D. U. Kinetics of ultrasonic degradation and polymerisation degree distribution of sonochemically degraded chitosans. Carbohyd Polym,2004,56 (4),489-498.
    [96]Qun G., Ajun W., Yong Z. Effect of reacetylation and degradation on the chemical and crystal structures of chitosan. J Appl Polym Sci,2007,104 (4), 2720-2728.
    [97]Liu H., Du Y. M., Kennedy J. F. Hydration energy of the 1,4-bonds of chitosan and their breakdown by ultrasonic treatment. Carbohyd Polym,2007,68 (3),598-600.
    [98]Chen R. H., Hwa H. D. Effect of molecular weight of chitosan with the same degree of deacetylation on the thermal, mechanical, and permeability properties of the prepared membrane. Carbohyd Polym,1996,29 (4),353-358.
    [99]Chen R. H., Tsaih M. L. Effect of temperature on the intrinsic viscosity and conformation of chitosans in dilute HCl solution. Int J Biol Macromol,1998,23 (2), 135-141.
    [100]Tsaih M. L., Chen R. H. Effect of molecular weight and urea on the conformation of chitosan molecules in dilute solutions. Int J Biol Macromol,1997,20 (3),233-240.
    [101]Muzzarelli R. A. A., Rocchetti R. Determination of the Degree of Acetylation of Chitosans by 1st Derivative Ultraviolet Spectrophotometry. Carbohyd Polym,1985,5 (6),461-472.
    [102]Sorbotten A., Horn S. J., Eijsink V. G. H., Varum K. M. Degradation of chitosans with chitinase B from Serratia marcescens-Production of chito-oligosaccharides and insight into enzyme processivity. Febs J,2005,272 (2), 538-549.
    [103]Heggset E. B., Hoell I. A., Kristoffersen M., Eijsink V. G. H., Varum K. M. Degradation of Chitosans with Chitinase G from Streptomyces coelicolor A3(2): Production of Chito-oligosaccharides and Insight into Subsite Specificities. Biomacromolecules,2009,10 (4),892-899.
    [104]Heggset E. B., Dybvik A. I., Hoell I. A., Norberg A. L., Sorlie M., Eijsink V. G. H., Varum K. M. Degradation of Chitosans with a Family 46 Chitosanase from Streptomyces coelicolor A3(2). Biomacromolecules,2010,11 (9),2487-2497.
    [105]Liu Y. L., Jiang S., Ke Z. M., Wu H. S., Chi C. W., Guo Z. Y. Recombinant expression of a chitosanase and its application in chitosan oligosaccharide production. Carbohyd Res,2009,344 (6),815-819.
    [106]Lee D. X., Xia W. S., Zhang J. L. Enzymatic preparation of chitooligosaccharides by commercial lipase. Food Chem,2008,111 (2),291-295.
    [107]Shin S. S., Lee Y. C., Lee C. The degradation of chitosan with the aid of lipase from Rhizopus japonicus for the production of soluble chitosan. J Food Biochem, 2001,25(4),307-321.
    [108]Li J., Du Y. M., Liang H. B. Low molecular weight water-soluble chitosans: Preparation with the aid of cellulase, characterization, and solubility. J Appl Polym Sci,2006,102(2),1098-1105.
    [109]Xie Y., Wei Y, Hu J. G. Depolymerization of Chitosan with a Crude Cellulase Preparation from Aspergillus Niger. Appl Biochem Biotech,2010,160 (4), 1074-1083.
    [110]Roncal T., Oviedo A., de Armentia I. L., Fernandez L., Villaran M. C. High yield production of monomer-free chitosan oligosaccharides by pepsin catalyzed hydrolysis of a high deacetylation degree chitosan. Carbohyd Res,2007,342(18), 2750-2756.
    [111]Kumar B. A. V., Varadaraj M. C., Tharanathan R. N. Low molecular weight chitosan-Preparation with the aid of pepsin, characterization, and its bactericidal activity. Biomacromolecules,2007,8 (2),566-572.
    [112]Kumar A. B. V., Varadaraj M. C., Lalitha R. G., Tharanathan R. N. Low molecular weight chitosans:preparation with the aid of papain and characterization. Bba-Gen Subjects,2004,1670 (2),137-146.
    [113]Lin H., Wang H. Y., Xue C. H., Ye M. Preparation of chitosan oligomers by immobilized papain. Enzyme Microb Tech,2002,31 (5),588-592.
    [114]Mitsutomi M., Isono M., Uchiyama A., Nikaidou N., Ikegami T., Watanabe T. Chitosanase activity of the enzyme previously reported as beta-1,3-1,4-glucanase from Bacillus circulans WL-12. Biosci Biotech Bioch,1998,62 (11),2107-2114.
    [115]Cabrera J. C., Van Cutsem P. Preparation of chitooligosaccharides with degree of polymerization higher than 6 by acid or enzymatic degradation of chitosan. Biochem Eng J,2005,25 (2),165-172.
    [116]Kittur F. S., Kumar A. B. V, Varadaraj M. C., Tharanathan R. N. Chitooligosaccharides-preparation with the aid of pectinase isozyme from Aspergillus niger and their antibacterial activity. Carbohyd Res,2005,340 (6), 1239-1245.
    [117]Zhang H., Du Y. G, Yu X. J., Mitsutomi M., Aiba S. Preparation of chitooligosaccharides from chitosan by a complex enzyme. Carbohyd Res,1999,320 (3-4),257-260.
    [118]Ilyina A. V., Tikhonov V. E., Albulov A. I., Varlamov V. P. Enzymic preparation of acid-free-water-soluble chitosan. Process Biochem,2000,35 (6),563-568.
    [119]Varum K. M., Holme H. K., Izume M., Stokke B. T., Smidsrod O. Determination of enzymatic hydrolysis specificity of partially N-acetylated chitosans. Bba-Gen Subjects,1996,1291 (1),5-15.
    [120]Somashekar D., Joseph R. Chitosanases-Properties and applications:A review. Bioresource Technol,1996,55 (1),35-45.
    [121]Pantaleone D., Yalpani M., Scollar M. Unusual Susceptibility of Chitosan to Enzymatic-Hydrolysis. Carbohyd Res,1992,237 325-332.
    [122]Yalpani M., Pantaleone D. An Examination of the Unusual Susceptibilities of Aminoglycans to Enzymatic-Hydrolysis. Carbohyd Res,1994,256 (1),159-175.
    [123]Kittur F. S., Kumar A. B. V., Gowda L. R., Tharanathan R. N. Chitosanolysis by a pectinase isozyme of Aspergillus niger-A non-specific activity. Carbohyd Polym, 2003,53(2),191-196.
    [124]Chiang C. L., Chang Y. M., Chang C. T., Sung H. Y. Characterization of a chitosanase isolated from a commercial ficin preparation. J Agr Food Chem,2005,53 (19),7579-7585.
    [125]Sikorski P., Sorbotten A., Horn S. J., Eijsink V. G. H., Varum K. M. Serratia marcescens chitinases with tunnel-shaped substrate-binding grooves show endo activity and different degrees of processivity during enzymatic hydrolysis of chitosan. Biochemistry-Us,2006,45 (31),9566-9574.
    [126]Wu G. J., Tsai G. J. Cellulase degradation of shrimp chitosan for the preparation of a water-soluble hydrolysate with immunoactivity. Fisheries Sci,2004,70 (6), 1113-1120.
    [127]Qin C. Q., Zhou B., Zeng L. T., Zhang Z. H., Liu Y., Du Y M., Xiao L. The physicochemical properties and antitumor activity of cellulase-treated chitosan. Food Chem,2004,84 (1),107-115.
    [128]Qin C. Q., Du Y. M., Zong L. T., Zeng F. A., Liu Y, Zhou B. Effect of hemicellulase on the molecular weight and structure of chitosan. Polym Degrad Stabil, 2003,80(3),435-441.
    [129]Terbojevich M., Cosani A., Muzzarelli R. A. A. Molecular parameters of chitosans depolymerized with the aid of papain. Carbohyd Polym,1996,29 (1), 63-68.
    [130]Abd-Elmohdy F. A., El Sayed Z., Essam S., Hebeish A. Controlling chitosan molecular weight via bio-chitosanolysis. Carbohyd Polym,2010,82(3),539-542.
    [131]Temel A., Kazokoglu H., Taga Y Tear Lysozyme Levels in Contact-Lens Wearers. Ann Ophthalmol,1991,23 (5),191-194.
    [132]Thein-Han W. W., Kitiyanant Y. Chitosan scaffolds for in vitro buffalo embryonic stem-like cell culture:An approach to tissue engineering. J Biomed Mater Res B,2007,80B(1),92-101.
    [133]Wan Y., Yu A. X., Wu H., Wang Z. X., Wen D. J. Porous-conductive chitosan scaffolds for tissue engineering Ⅱ. in vitro and in vivo degradation. J Mater Sci-Mater M,2005,16(11),1017-1028.
    [134]Wan Y., Gao J. A., Zhang J., Peng W. M., Qiu G. F. Biodegradability of conducting chitosan-g-polycaprolactone/polypyrrole conduits. Polym Degrad Stabil, 2010,95(10),1994-2002.
    [135]Picart C., Schneider A., Etienne O., Mutterer J., Schaaf P., Egles C, Jessel N., Voegel J. C. Controlled degradability of polysaccharide multilayer films in vitro and in vivo. Adv Funct Mater,2005,15(11),1771-1780.
    [136]Okamoto Y., Nose M., Miyatake K., Sekine J., Oura R., Shigemasa Y, Minami S. Physical changes of chitin and chitosan in canine gastrointestinal tract. Carbohyd Polym,2001,44(3),211-215.
    [137]Abarrategi A., Lopiz-Morales Y, Ramos V., Civantos A., Lopez-Duran L., Marco F., Lopez-Lacomba J. L. Chitosan scaffolds for osteochondral tissue regeneration. J Biomed Mater Res A,2010,95A (4),1132-1141.
    [138]Freier T., Koh H. S., Kazazian K., Shoichet M. S. Controlling cell adhesion and degradation of chitosan films by N-acetylation. Biomaterials,2005,26 (29), 5872-5878.
    [139]Yang Y. M., Hu W., Wang X. D., Gu X. S. The controlling biodegradation of chitosan fibers by N-acetylation in vitro and in vivo. J Mater Sci-Mater M,2007,18 (11),2117-2121.
    [140]尹雪琼 壳聚糖金属配位控制降解及低聚壳聚糖的应用研究[博士学位论文]昆明,昆明理工大学,2002,1-180.
    [141]von Burkersroda F., Schedl L., Gopferich A. Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials,2002,23 (21),4221-4231.
    [142]Hu Q. L., Qian X. Z., Li B. Q., Shen J. C. Studies on chitosan rods prepared by in situ precipitation method. Chem J Chinese U,2003,24 (3),528-531.
    [143]Hu Q. L., Li B. Q., Wang M., Shen J. C. Preparation and characterization of biodegradable chitosan/hydroxyapatite nanocomposite rods via in situ hybridization: A potential material as internal fixation of bone fracture. Biomaterials,2004,25 (5), 779-785.
    [144]Hu Q. L., Li B. Q., Zhang Z. M., Shen J. C. Preparation and characterization of three dimensions chitosan rods with biomimetic layered structure similar to annual ring. Key Eng Mat,2005,288-289 473-476.
    [145]Imoto T., Yagishit.K Simple Activity Measurement of Lysozyme. Agr Biol Chem Tokyo,1971,35 (7),1154-&.
    [146]Lim L. Y., Khor E., Ling C. E. Effects of dry heat and saturated steam on the physical properties of chitosan. J Biomed Mater Res,1999,48 (2),111-116.
    [147]Ogawa K. Effect of Heating an Aqueous Suspension of Chitosan on the Crystallinity and Polymorphs. Agr Biol Chem Tokyo,1991,55 (9),2375-2379.
    [148]Toffey A., Samaranayake G., Frazier C. E., Glasser W. G. Chitin derivatives.1. Kinetics of the heat-induced conversion of chitosan to chitin. J Appl Polym Sci,1996, 60(1),75-85.
    [149]Lim S. H., Park K. S., Park H. S., Gin Y. J., Noh I. S., Park C. W., Son Y. S., Kim C. H. Influence of heat treatment on biological properties of chitosan toward vascular cells in vitro. Macromol Symp,2005,224263-273.
    [150]Kumbar S. G, Kulkarni A. R., Aminabhavi T. M. Crosslinked chitosan microspheres for encapsulation of diclofenac sodium:effect of crosslinking agent. J Microencapsul,2002,19 (2),173-180.
    [151]Chmielewski A. G., Haji-Saeid M., Ahmed S. Progress in radiation processing of polymers. Nucl Instrum Meth B,2005,23644-54.
    [152]Jeun J. P., Jeon Y. K., Nho Y. C., Kang P. H. Effects of gamma irradiation on the thermal and mechanical properties of chitosan/PVA nanofibrous mats. J Ind Eng Chem,2009,15 (3),430-433.
    [153]Gryczka U., Dondi D., Chmielewski A. G., Migdal W., Buttafava A., Faucitano A. The mechanism of chitosan degradation by gamma and e-beam irradiation. Radiat Phys Chem,2009,78 (7-8),543-548.
    [154]Park P. J., Je J. Y, Kim S. K. Free radical scavenging activity of chitooligosaccharides by electron spin resonance spectrometry. J Agr Food Chem, 2003,51 (16),4624-4627.
    [155]Yang Y. M., Zhao Y. H., Liu X. H., Ding F., Gu X. S. The effect of different sterilization procedures on chitosan dried powder. J Appl Polym Sci,2007,104 (3), 1968-1972.
    [156]Vanichvattanadecha C., Supaphol P., Nagasawa N., Tamada M., Tokura S., Furuike T., Tamura H., Rujiravanit R. Effect of gamma radiation on dilute aqueous solutions and thin films of N-succinyl chitosan. Polym Degrad Stabil,2010,95 (2), 234-244.
    [157]Raymond L., Morin F. G., Marchessault R. H. Degree of Deacetylation of Chitosan Using Conductometric Titration and Solid-State Nmr. Carbohyd Res,1993, 246331-336.
    [158]Mitomo H., Watanabe Y, Ishigaki I., Saito T. Radiation-Induced Degradation of Poly(3-Hydroxybutyrate) and the Copolymer Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate). Polym Degrad Stabil,1994,45 (1), 11-17.
    [159]Huang L., Peng J., Zhai M., Li J., Wei G. Radiation-induced changes in carboxymethylated chitosan. Radiat Phys Chem.2007,76 (11-12),1679-1683.
    [160]El-Sawy N. M., Abd El-Rehim H. A., Elbarbary A. M., Hegazy E. S. A. Radiation-induced degradation of chitosan for possible use as a growth promoter in agricultural purposes. Carbohyd Polym,2010,79 (3),555-562.
    [161]Lim L. Y, Khor E., Kool O. gamma irradiation of chitosan. J Biomed Mater Res, 1998,43(3),282-290.
    [162]Hirai A., Odani H., Nakajima A. Determination of Degree of Deacetylation of Chitosan by H-1-Nmr Spectroscopy. Polym Bull,1991,26 (1),87-94.
    [163]Lavertu M., Xia Z., Serreqi A. N., Berrada M., Rodrigues A., Wang D., Buschmann M. D., Gupta A. A validated H-1 NMR method for the determination of the degree of deacetylation of chitosan. J Pharmaceut Biomed,2003,32 (6), 1149-1158.
    [164]Zhou J. M., Lucas J. P. Hygrothermal effects of epoxy resin. Part I:the nature of water in epoxy. Polymer,1999,40 (20),5505-5512.
    [165]Aiba S. Studies on Chitosan.3. Evidence for the Presence of Random and Block Copolymer Structures in Partially N-Acetylated Chitosans. Int J Biol Macromol,1991, 13(1),40-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700