用户名: 密码: 验证码:
随机介质固热耦合数学模型与岩石热破裂数值实验
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
众所周知,在高温环境下,岩石物理力学特性是一个极重要的问题。在石油的三次开采中,采用火烧油层的方法,降低油的粘度,同时诱发岩石破裂,达到提高储层渗透性的目的;高放射性核废料的深层处置,在相当长的时间,美国、法国一直致力于花岗岩岩层储存核废料,担心的就是岩石热破裂后,使核废料储存区域与地下水相通,最终危及人类生存环境,同时核贮库的围岩是吸收放射性核素并阻碍其迁移的最关键部分,其在高温作用下的长期力学性质及力学行为的演变规律对贮存库的选址、设计及长期安全性预测具有决定性的影响,是需要研究的主要问题之一;高温岩体地热资源开发中,从300℃C以上的高温岩体中,提取地热,由于温度降低,而产生热破裂;液体的地下储藏以及对地壳演变过程的研究和模拟中,所有这些,都迫切需要考虑工程围岩在高温下的物理力学性质和力学行为的长期演变规律。所以,研究在高温条件下岩石的破裂以及物理力学性质对高放射性核废料的深层处置、高温岩体地热资源开发等深部开采问题有着重大的实际工程意义。
     目前岩石破裂数值实验研究仅限于在外力载荷下对岩石进行变形、破裂和物理力学性质的研究,在高温下对岩石的物理力学性质的研究又主要依赖于现场观测和实验室物理实验。现场观测对工程而言是非常必要的,但由于这种方法受到现场条件、人力、物力和财力的限制,在较大工程中难以充分发挥其作用。到目前为止,还没有对岩石的热破裂及其在温度作用下岩石的物理力学性质的数值实验研究。由于岩石材料的非均匀性、非连续性、以及几何结构的复杂性,现有的解析方法尚缺少有效的手段对此过程进行研究,很难对岩石的热破裂与物理力学性质的变化规律做相对准确的描述。因此,既考虑岩石材料的随机非均匀性,又考虑了固体变形场与温度场的耦合作用和数值实验节省经费、直观演示等特点,建立随机介质固热耦合数学模型以及有限元数值解法,采用数值实验方法来研究岩石热破裂问题具有更重要的理论意义和现实意义。为此,本文从岩石介质的非均匀性特征入手,在引入岩石非均匀性细观统计描述和物理学愈渗理论的基础上,主要的研究内容如下:
     1.考虑岩石颗粒的物理力学性质的随机非均匀性,从理论上建立了随机非均质热弹塑性力学模型和随机介质固热耦合数学模型,并推导随机介质模型的有限元数值解法。这些方程与方法,奠定了岩石热破裂研究的基础。
     2.对岩石随机介质的热弹性力学模型的平面轴对称问题和球对称问题分别进行了解析分析,提出了岩石物理力学参数作为随机变量在解析分析中的处理方法,并给出在随机指数分布和韦泊分布下的解析解;对随机介质固热耦合数学模
    
    摘要
    型的平面轴对称问题也求出了解析解,包括位移、变形和热应力的精确解。
     3.在二维随机非均质热弹塑性力学模型和四种随机分布(均匀分布、指数分
    布、正态分布和weibull分布)下,在高温条件下,对热膨胀系数变化引起的岩
    石破裂门槛值温度的变化做了详细研究,揭示了岩石热破裂规律及门槛值温度随
    分布参数m的变化规律,得到了一致的结论:岩石热破裂门槛值温度随分布参数
    m的增加而升高,呈幂函数或直线关系;对岩石的力学性质进行了数值实验研究:
    包括门槛值温度随着弹性模量和泊松比的变化规律,采用正态分布和Weibull分
    布数值实验的结果与相应的实验结果相吻合;并再现了岩石热破裂的变化过程,
    表明文中所采用的数值实验的方法是可行和可靠的。
     4.在平面随机介质固热祸合数学模型和三种随机分布(指数分布、正态分布
    和weibull分布)下,对岩石的热物理特性(包括温度分布随热传导系数和比热
    容的变化规律)、岩石的渗透率和热破裂细观机理进行了数值实验的研究。通过
    数值实验详细讨论和分析了由于温度和岩石的非均匀性的作用下岩石试件中的
    裂纹的产生、形成、扩展、汇合以及贯通过程的变化规律,从随机介质固热藕合
    方面揭示了岩石热破裂的本质。这为深部开采提供了可靠的理论依据,同时对岩
    土工程也具有一定的指导意义。
     5.采用随机介质固热藕合数学模型,在正态分布、指数分布和Weibull分布
    下,对高温岩体地热开发人工储留层二次破裂进行了数值模拟,揭示了岩体温度
    场和应力场的特征和变化规律,同时直观地显示出人工储留层二次破裂随分布参
    数m和时间变化的全过程,并表明热膨胀系数的概率分布形式对岩体热破裂规律
    有重要影响。
     本文的研究有以下创新点:
     1.提出非均质岩石随机变量及随机概率的概念,考虑岩石物理力学性质为随
    机变量,建立了三维随机介质热弹塑性力学模型和随机介质固热祸合数学模型。
     2.在这两种模型下分别推导出非均质有限元数值方法。
     3.在平面随机介质热弹性力学模型和随机介质固热藕合数学模型的轴对称
    问题的解析分析中,提出了岩石物理力学参数作为随机变量在解析分析中的处理
    方法,并给出了解析解。
     4.通过数值实验的方法详细地研究岩石热破裂随概率分布形式和分布参数m
    的变化规律。
     5.开发了二维随机介质固热祸合数学模型的岩石热破裂数值实验软件。
     6.在实际工程中,对高温岩体地热开发人工储?
As is known, in environment of high temperature, physical properties of rocks are crucial important, In tertiary oil recovery, the in-situ combustion method is adopted to decrease the viscosity of oil and induce rock cracking, then the permeability of the reservoir is increased. Deep geological disposal of high-level radioactive waste(HLW) is a study focus of America and France. They pay their attention to disposal of HLW in granite reservoir, but the question is that after thermal cracking, the area of HLW may be connective to the groundwater, which threats the living environment of human beings. Simultaneously, the surrounding rock of HLW disposal repositories, the key part of which absorbs the radionuclide and retard its transport, changes its mechanical properties and mechanical behavior in high temperature, which possesses crucial effects on the location choosing, design, and safety prediction of HLW disposal repositories, and it is one of the majors of study. In the exploration of geothermal, geotherma
    l is gotten from hot rock above 300 ℃. Because of the decrease of the temperature, rock cracking happened. In addition, the underground deposition of fluid, the study and simulation of crust evolutionary process are relative to rock cracking study, and the physical mechanical properties of rock change under high temperature. So it has important engineering value to study the effects of hot cracking and changes of rock physical mechanical properties to deposition of HLW, exploration of geothermal and other deep exploration questions. At present, rock cracking numerical tests are often limited on deformation, cracking and physical properties of rock, and the studies on physical mechanical properties of rock mainly depend on in-situ observation and experimental test. In-situ observation is necessary to engineering, but it is often limited by field environment, personnel and finance, so it is not much effective. Up to now, numerical tests of rock hot cracking and rock physical mechanical properties are not stud
    ied. Because of the non-homogeneity, non-continuum and complexity of geometry structure of rock, the analysis methods lack of effective technique to describe this question exactly. The coupled mathematical model and its finite element numerical equations of random media are established considering the random non-homogeneity and the coupling effects of deformation, temperature, and the numerical tests' simpleness. It provides important theory and practical values to adopt the numerical tests. In this paper, from the point of non-homogeneity of rock, the micro-structure statistical characterization and penetration theory on physics are introduced to study the following contents.
    1. Considering the physical mechanical properties' random non-homogeneity, the thermoplastics model and coupled solid-thermal numerical model of random media are established and the finite element numerical method is educed. The equations and the methods
    
    
    are basis of the study of rock hot cracking.
    2. The plane axis-symmetrical and spherical axis-symmetrical questions of random media's thermal-elastic model is analyzed, the technique of rock physical mechanical parameters as random variables is provide, and the analysis solutions are attain under the distributions of Gauss, Weibull and index, hi addition, the solution of random media's plane axis-symmetrical solid-thermal mathematical model, including displacement, deformation and thermal stress.
    3. Under the four random distribution (Uniform, Gauss, Weibull and index), 2-D random non-homogeneity thermoplastics-plastic model and high temperature, the effluence of thermal dilatability on thermal cracking law and temperature threshold is studied in detail, and the result provides the rock thermal cracking law and temperature threshold changing with the changing of distribution of parameter m and some conclusions are obtained. Hot to break threshold up to and distribute parameter rise by the increases of m by value temperature rock, Present power function or the straight line rela
引文
[1] 歌德 G.有限元法在岩土力学中的应用[M].张清,张弥(译).北京:中国铁道出版社.1985.
    [2] Aboustit B L, Advani S H, Lee J K, et al. Finite element evaluation of thermo-elastic consolidation [A]. In: Proc. 23rd U. S. Symp. Rock Mech.[C]. New York:[s.n.].1982,587-595.
    [3] 赵阳升主编.有限元法及其在采矿工程中的应用[M].北京:煤炭工业出版社,1994.
    [4] Mctigue D E. Themoelastic response of fluid saturated porous rock [J]. J. Geophy. Res.,1986,91(B9): 9533-9542.
    [5] Catmiri B, Delage P. A new formulation of fully coupled thermal-hydro-mechanical behavior of saturated porous media-numerical approach [J]. Int. J. Numer. Anal. Methods Gromech. 1997,21(3):199-225.
    [6] 赵阳升.矿山岩石流体力学[M].北京:煤炭工业出版社,1994.
    [7] T. K[oh]. K. F. Evans. R. Jhopkirk and L. Ryback. Couplod hydraulic thermal and mechanical considerations for the simulation of hot dry rock reservoirs [J]. Geothermics, 24(3),345-359.
    [8] Cundall P A. A computer model for simulating progressive large scale movements in blocky rock systems. In. Proc. Symp. Int. Soc. Rock Mechanics. Nancy. Franxe. 1971, 1:2-8.
    [9] Zubelewics, A. and Mroz, Z. Numerical simulation of rockbursts processes treated as problems of dynamic instability [J]. Rock Mechanics Rock Engineering. 1983, 16:253-274.
    [10] Cundall P A, Strak O D L. Modeling of microscopic mechanisms in grannlar material. In: Mechanics of grannlar materials: new model and constitutive relation eds. Jenkins J T and Satake M, Flsevier, Amsterdum. 1983,137-149.
    [11] Oda M, Hatsuyama Y and Ohnishi Y. Numerical experiments on permeability tenson and its application to jointed granite at Sttipa Mine Sweden [J]. Journal of Geophysical Research, 1987, 92(B8): 8037-8048.
    [12] Noorished J, Tsang C F, Witherspoon P A. Coupled themal-hydraulic-mechanical phenomena in saturated fractured porous rocks: numerical approach [J]. J. Geophy. Res, 1984, 89(B12): 10365-10373.
    [13] Thomas H R, King S D. Coupled temperature/capillary potential variations in unsaturated soil[J]. J. Eng. Mech., ASCE, 1991,117(11): 2475-2491.
    [14] Lin Z., Myer L. R., Cook N. G. W. Numerical simulation of the effect of
    
    heterogeneities onmacro-behavior of granular materials [J]. Computer Mechanics and Advances in Geomechanics, Siriwardane & Zaman (eds). Balkema, Rotterdam, 1994: 611-616.
    [15] Garboczi E J, Day A R. An algorithm for computing the effective linear elastic properities of heterogeneous materials 3D results for composites with equal phase poisson ratios. J Mech phys solids. 1995,43: 1349-1362.
    [16] Wilson S A, Henderson J R. A cellular automation fracture model: the inffuence of heterogeneity in the failure process. Journal of stretural Geology. 1996,18(2/3): 343-348.
    [17] Seto M., Nag D. K., Vutukuri V. S. Experimental verification of the Kaiser effect in rock under differend environment condition Eurock' 1996,96: 1-8.
    [18] Frantziskonis G, Renaudin P, Breysse D. Heterogeneous solids-Part Ⅰ: analytical and numerical 1-D results on boundary effects. Eur J Mech, A/Solids, 1997,16(3):409-423.
    [19] Curtis R V, Juszczyk A S. Analysis of strength data using two and three parameter Weibull Models. Journal of Materials Seience. 1998, 33: 1151-1157.
    [20] Davies I J, Empirical Correction factor for the best estimate of Weibull modulus obtained using liner least square analysis. Journal of Materials Seience. 2001, 36: 997-999.
    [21] Blair S C, Cook N G. Analysis of compressive fracture n rock using statistical techniques: Part Ⅰ: a non-linar rule-based model. Int J Rock Mech Min Sci, 1998,35(7): 837-848.
    [22] Blair S C, Cook N G. Analysis of compressive fracture n rock using statistical techniques: Part Ⅱ: effect of microscale heterogeneity on macroscopic deformation. Int J Rock Mech Min Sci, 1998,35(7): 849-861.
    [23] Kou S Q, Lindqvist P A, Tang C A. Numerical simulation of the cutting of inhomogenrous rocks. Int. J. Rock. Mech. Min. Sci. 1999, 36(5): 911-717.
    [24] Kou S Q, Lin H Y Tang C A. Numerical simulation of the failure precss when cutting inhomogenrous rocks: influence of rake anyles. In: Proceedings of the 4th Regional Symposium on computer Applications in the Minerals Tndustries eds, Eloranta P and Sarkka P. APCOM Tampere, Finland, 2001,39-48.
    [25] Kou S Q, Lin H Y, Lindqvist P A. Numerical investigation of partical breakage as applied to mechanical crushing-Part Ⅱ: Interpurtical breakage. Int: J. Rock. Mech. Min. Sci. 2001, 38: 1163-1172.
    [26] Lin H Y, Kou S Q, Lindqvist P A. Numerical simulation of the fracture process in cutting heterogeneous brittle materical. International Journal for Numerical
    
    and Anglytical Methods in Geomechanics. 2002,26: 1253-1278.
    [27] Lin H Y, Kou S Q, Tang C A. Numerical simulation of the rock fragmentation process induced by indenters. Int: J. Rock. Mech.. Min. Sci. 2002, 39: 495-505.
    [28] Lin H Y. Numerical Modelling of the Rock. lulen university of Technology, 2002.
    [29] 唐春安.岩石破裂过程数值试验.沈阳:东北工学院(博士学位论文),1988.
    [30] 唐春安.岩石破裂过程中的灾变[M].北京:煤炭工业出版社,1993
    [31] Tang C A, J. A. Hudson, Xiaohe Xu. Rock failure instability and related aspect of earth-quake mechanism[M]. Chian Coal Industry Publishing House. 1993.
    [32] Tan X C, Kou S Q, Lindqvist P A. Simulation of crack fragmention by inenters using DDM and fracture mechanical. In: Proc of 2nd North American Rock Mech conf Montreal, Canada. 1996,685-692.
    [33] Kou S Q, Lindqvist P A, Tan X C. Formulation of models for indentation depth and crack length in mechanical excavation of rock. SKB report. HBL-96-20,1996.
    [34] Tang C A. Numerical simulation of pregressive rock failure and associated seismicity. Int: J. Rock Mech. Min. Sci., 1997, 34: 249-262.
    [35] Tang C A, Fu Y F, Kon S Q. Numerical simulation of loading inhomogeneous rock. Int. J. Rock. Mech. Min. Sci. & Geology. Abstr. 1998, 35: 1001-1007.
    [36] Tang C. A., Fu. Y., Lin p. Numerical simulation of rock failure under multi-axial compression, Strength Theory, (Yu M. H. AND Fan S. C. eds), Science Press, Beijing and New York, 1998: 609-614.
    [37] Tang C. A., Kou S, Lindqvist P. A. Numerical simulation of loading inhomogeneous rock[J], Int, J. Rock Mech. & Min. Sci., 1998, 35(7): 1001-1006.
    [38] Tang C. A., Kaiser P. K. Numerical simulation of cumulative damage and seismic energy release during brittle rock failure-Part Ⅰ: Fundamentals [J]. Int. J. Rock Mech. Min. Sci., 1998, 35(2): 113-121.
    [39] Kaiser P. K, Tang C. A. Numerical simulation of cumulative damage and seismic energy release during brittle rock failure-Part Ⅱ: rib pillar collapse [J]. Int. J. Rock Mech. Min. Sci., 1998, 35(2): 123-134.
    [40] Tang C. A. Numerical Tests on Micro-Macro Relationship of Rock Failure under Uniaxial Compression, Part Ⅰ: Effect of heterogeneity[J]. Int. J. Rock Mech. Min. Sci., 2000, 37(5): 555-569.
    [41] Tang C. A. Numerical Tests on Micro-Macro Relationship of Rock Failure under Uniaxial Compression, Part Ⅱ: Slenderness and Size Effect[J]. Int. J. Rock Mech. Min. Sci., 2000, 37(5): 570-583.
    [42] 唐春安.岩石声发射规律的数值模拟初探[J].岩石力学与工程学报,1997,16(4):368-374.
    
    
    [43] 唐春安主编.岩石破裂过程数值试验[M].北京:科学出版社,2003.
    [44] 陈忠辉,傅宇方,唐春安..岩石破裂声发射过程的围压效应[J].岩石力学与工程学报,1997,16(1):
    [45] 傅宇方.岩石脆性破裂过程的数值模拟试验研究.沈阳:东北大学(博士学位论文),2000.
    [46] 傅宇方,唐春安.岩石破裂声发射Kaiser效应的数值模拟研究[J].力学与实践,2000,22(6):42-44.
    [47] 傅宇方,唐春安.岩石介质细观非均匀性对宏观破裂过程的影响[J].岩土工程学报,2000,22(6):705-710.
    [48].芮勇勤,唐春安.岩石剪切破坏过程的RFPA~(2D)数值模拟[J].岩石力学与工程学报,2002,21(3):
    [49] 冯增朝,赵阳升,非均匀细胞元随机分布对岩石峰前变形特性的影响[J],中国第七届岩石与工程学术大会论文集.西安,科学技术出版社 2002.
    [50] 冯增朝,赵阳升.岩石非均质性与冲击倾向的相关规律研究[J].岩石力学与工程学报,2003,22(11):1863-1865.
    [51] 宋力,林韵梅.非均质材料弹塑性破裂过程的数值模拟研究[J].力学与实验,2002,24(4):30-32.
    [52] 焦明若,张国民,唐春安.含预制软弱带的岩石破裂过程的数值模拟[J].地震学报,2002,24(1):35—41.
    [53] 周辉,邵建富,冯夏庭.岩石细观统计渗流模型研究[I]:理论模型[J].岩土力学,2004,25(2):169-173.
    [54] 周小平等.中低围压下细观非均匀性岩石木构关系研究[J],岩土工程力学,2003 25(5) 607—611.
    [55] 陈永强,姚振汉,郑小平.三维非均匀固体材料等效性质和破坏过程数值模拟[C].“力学2000”会议论文集,北京:气象出版社.2000,577-579.
    [56] 陈永强,郑小平,姚振汉.三维非均匀脆性材料弹性行为及破坏过程的数值模拟[J].力学学报,2002,34(3):351-361.
    [57] Yao Zhenhan, Chen Yongqiang, Zheng Xiaoping. Numerical Simulation of Failure Process in 3-D Heterogeneous Brittle Material. ICTAM 2000, Chicago, US, 2000.
    [58] 陈永强,林葱郁,姚振汉等.非均匀材料破坏过程数值模拟的边界元研究[J].工程力学,2003,20(3):19-25.
    [59] Cook N G W, Hoodm, Tsai F. Observations of crack gronth in hard rock loaded by an indenter. Int. J. Rock. Mech. &. Min. sci. 1984,21:97-107.
    [60] Napier J. A. L., Hildyard M. W.. Simulation of fracture growth around openings in highly stressed. Brittle rock[J]. J. S. Afr. Inst. Min. Metall., 1992, 92(6): 159-168.
    
    
    [61] Mckinnon S D, Barra I G. Fracture initiation growth and effect on the stress field: a numerical investigation. Journal of structural Geology. 1998, 20(12): 1673-1689.
    [62] 黄明利.岩石多裂纹相互作用破坏机制的研究.沈阳:东北大学(博士学位论文),2000.
    [63] 黄明利,唐春安,朱万成.岩石破裂过程的数值模拟研究[J].岩石力学与工程学报,2000,19(4):
    [64] 朱万成,唐春安.岩板中混合裂纹扩展过程的数值模拟[J].岩土工程学报,2000,22(2):231-234.
    [65] 唐春安,刘红元,秦四清等.非均匀性对宏观岩石介质中裂纹扩展模式的影响[J].地球物理学报,2003,43(1):116-121.
    [66] 卢海星,黄醒春.弹性体裂纹扩展的数值模拟[J].上海交通大学学报,2001,35(4):634-637.
    [67] 杨天鸿,谭国焕,唐春安等.非均匀性对岩石水压致裂过程的影响[J].岩土工程学报,2002,24(6):
    [68] 杨天鸿,唐春安,梁正召等.脆性岩石破裂过程损伤与渗流耦合数值模拟研究[J].力学学报,2003,35(5):533-541.
    [69] 陈卫忠,李术才,邱祥波等.岩石裂纹扩展的实验与数值分析研究[J].岩石力学与工程学报,2003,22(1):
    [70] Berrthelot, J. M. and Robert, J. L. Damage evaluation of concrete test specimens related to failure analysis. Joural of Engineering Mechanics, ASCE, 1990,116(3): 587-604.
    [71] Schangen E, van Mier J G M. Simple lattice model for numerical simulation of fracture of concrete materials and stuctuers [J]. Materials and Structures. 1992, 25:534-542.
    [72] Schlangen E, Garboczi, E. J. Fracture simulations of concrete using lattice model: computational aspects. Engineering Fracture Mechanice, 1997,57(2/3): 319-332.
    [73] Van Mier J. G., Van Vliet M. R. A. Experimetation, numerical simulation and the role of engineering judgement in the fracture mechanics of concrete and concrete structures [J]. Construction and Building Materials, 1999,23:3-14.
    [74] Pearce, C. J., A., Liao, Z., Bicanic, N. Computationnal aspects of the discomtinuous deformation analysis framework for modeling concrete fracture. Engineering Fracture Mechanics 2000, 65: 283-298.
    [75] 刘光延,王宗敏.用随机骨料模型模拟混凝土材料的断裂.清华大学学报.1996,1:84~89。
    
    
    [76] 朱万成,唐春安,齐安文.混凝土三点弯曲试件破坏过程的数值模拟[J].力学与实践,,1999,21(5):55-56.
    [77] 朱万成,齐安文,唐春安.混凝土试件裂纹扩展及破坏过程的计算机模拟[J].辽宁工程技术大学.2000,19(3):271-274.
    [78] 朱万成,赵启林,唐春安.混凝上断裂过程的力学模型与数值模拟.力学进展,2002,32(4) 579-598.
    [79] 朱万成,林天革,唐春安.混凝土拉伸断裂过程及尺寸效应的数值模拟[J].2002,23(2):147-151.
    [80] 张德海,邢纪波,牛浮声等.混凝土破裂过程的数值模拟[J].东北大学学报,2004,25(2):175-178.
    [81] 唐春安主编.混凝土损伤与断裂—数值试验[M].北京:科学出版社,2003.
    [82] 吕古贤,王红才,罗无华.构造岩带热源体热传导及其温度蛮化研究.地球学报,1998,19(2):138-143.
    [83] 吕古贤,王红才,郭涛.热源体分割程度引起热传导及其温度变化.科学通报,1999,44(10):1099-1102.
    [84] 王绳祖.高温高压岩石力学——历史、现状.展望[J],地球物理学进展,1995,10(4):1-10,
    [85] 王绳祖.高温高压岩石力学发展中的若干问题[A],中国岩石力学与工程学会高温高压岩石力学专业委员会编,第一届高温高压岩石力学学术讨论会论文集[C].北京:学术期刊出版社.1988:1-7
    [86] 金振民.高温高压岩石变形实验及其地球动力学意义[J].地质科技情报,1988,7(3):11-19.
    [87] 金振民.我国高温高压实验研究进展和展望[J].地球物理学报,1997,40(增刊):71-81.
    [88] Kumagal N and Ito H. Crcep of granlte observedin alaboratory for 10 years. In: Proc. Sib. Int. Congr. Rhcol. S. Onogi (editor), 1970,2: 579-590.
    [89] Tullis J, Yund R A. Experimental deformation of dry Westerly granite[J], J. Geophys. Res, 1977, 82 (36) 5705--5718.
    [90] Sasajlma S and Ito H. Long-term creep experiment of rock with small devlator of stress under hlgh connning pressure and temperature [J]. Tectonophysics, 1980,68 (3--4): 183-198.
    [91] Eard, H. C., Thermal Expansion and inferred Permeability of Climax Quartz Monzonite to 300℃ and 27.6 MPa, Int. J. Rock Mech. Min. Sci. and Geomech. Abstr. 17, 1980, 289-296
    [92] Urham, W, B, and Abey, E., The Effect of Pressure and Temperature on the Thermal Properties of a Salt and a Quartz Monzonite, Proc. 22nd U.S. Symp. on
    
    Rock Mech., 1981, 85-90
    [93] Vander Molen I. The shift of the α-β transition temperature of quartz associated with the thermal Expansion of granite at high pressure, Tectonophysics,1981,73:323-342.
    [94] Hcnnig-Michacli C and Stemes H, Experimental deformation of hematite crystals bctween 25℃ and 400℃ at 400MPa confining pressure: In: High--Pressure Researches in Geosoience. W. Schreyer (editor), E. Schweizerbart' sche Verlagsbuhandlung, Stuttgart, 1982: 133-150.
    [95] Ito H. Creep of rock based on long-terms experiments. Proc 5th Congr. Int. Soc. Rock Mech, Melbourne. 1983,1: A117--A120.
    [96] Moors D R, Summers R and Bycrlee J D. Strength of clay and nonclay fault gouge at elevated temperature and pressures. In: Proc. 24th US. Symp. on Rock meeh, 1983:489-500.
    [97] Sato H, SackslS Murase T, et al. Qp melting temperature relation in peridotite at high pressure and temperature: attenuation mechanism and imnlications for the mechanical properties of upper mantle .J. GeoPhys. Reso 1989、94(B8): 10647-10661.
    [98] Horseman S T and J Handln. Triaxial-compression tests on rocks at temperature from 50℃ to 200℃ and strain rates from 10~(-4) to 10~(-10)/s, In: The Brittle-Ductile Transition in Rocks (The Heard Volume), A G Duba et al. (editors), Geophys. Monogr. 56, Am. Geophys. Union, 1990: 103--110.
    [99] Green H. W Ⅱ and Borch R. S. High pressure and temperature deformation experiments in a liquid confining medium, In: The Brittlr-Ductile Transition in Rocks (The Heard Volume), A G Duba et al. (editors), Geophys. Monogr. 56, Am. Geophys. Union, 1990: 195--220.
    [100] Xu J A, Zhang, X M, Hou, W et al, Measurcments of ultrasomic wave velocities at high temperature and high pressure for window glass, pyrophyllite and kimterlite up to 1400℃ and 5.5Gpa, High Temperature-High pressure, 1994, 26:375-384.
    [101] Heueckel T, Peano A, Pellegrint R. A constitutive law for thermo-plastics behavior of rocks: An analogy with clays. Surveys in Geophys., 1994,15:643-671.
    [102] A. A. Khan, W. D. Cook and D. Mitchell, "Thermal properties and transient thermal analysis of structural members during hydration" , ACI Materials Journal, 1998, 95: 293-302.
    [103] 郭才华、宋瑞卿,高温高压下岩石纵波速度的侧量,见:中国岩石力学与工程学会高温高压岩石力学专业委员会编,第一届高温高压岩石力学学术讨论会论文集,北京,学术期刊出版社,1988,61-66,
    
    
    [104] 吴宗絮、郭才华,冀东陆壳岩石在高温高压下波速实验研究,地球物理学进展,1993,8(4):206-213.
    [105] 谢鸿森、张月明、徐惠刚等.高温高压下测量岩石波速的新方法及其意义[J] ,中国科学(B辑),1993,23(8):861-864.
    [106] 谢鸿森,周文戈,李玉文等.高温高压下蛇绞岩脱水的弹性特征及其意义[J] .2000,43(6):806-810.
    [107] 谢鸿森,周文戈,刘永刚等.高压下岩石弹性波速度几种测量方法的比较实验研究[J] ,中国科学(D辑),2002,32(2).
    [108] 母润昌,高平,刘若新等.华北地区韧性剪切带几种岩石的波速各向异性高温高压实验研究.地球物理学报,1995,38(2):213-219.
    [109] 赵志丹、高山、骆庭川等,秦岭和华北地区地壳低速层的成因探讨——岩石高温高压波速实验证据,地球物理学报,1996,39(5):637-652.
    [110] 郑海飞、谢鸿森、徐有杰等,高温高压下含水矿物对岩石熔点影响的实验研究,地质学报,1996,69(4):326-336.
    [111] 高平、母润昌,高温高压下地馒岩石物理性质及其流体影响的实验研究,见:杜乐天等主编,地馒流体与软流层(体)地球化学,北京:地质出版社,1996:341-356.
    [112] 高山、金振民、Kcrn H等,大别山超高压榴辉岩高温高压地震波速和密度的初步研究——对造山带地壳深部组成和莫霍性质的启示,科学通报,1997,42(8):862-864.
    [113] 杨树锋,陈汉林,姜继双等,高温高压下华南I和S型花岗岩的波速特征及其地质意义.中国科学(D辑),1997,27(1):33-38.
    [114] 刘斌,葛宁洁,Kern H等 不同温压条件下蛇纹岩和角闪岩中波速与衰减的各向异性[J] ,地球物理学报,1998,41:371—382.
    [115] 白利平,杜建国,刘巍等.高温高压下辉长岩纵波速度和电导率实验研究[J] .中国科学(D辑),2002,32(11):959~968.
    [116] 黄晓葛,白武明,胡健民.斜长角闪岩弹性和流变性质的高温高压实验研究[J] ,中国科学(D辑),2003,33(1):
    [117] 顾藏娟、郭才华,高温高压下花岗岩条纹长石和电导率变化,地球物理学进展,1993,8(4):239-243.
    [118] 宋茂双、谢鸿森、郑海尾.高温高压下电导率—温度曲线方法进行蛇纹石脱水温度测量及其意义[J] .矿物学报,1996,16(2):178-183.
    [119] 朱茂旭 谢鸿森 郭捷许等.高温高压下滑石的电导率实验研究[J] .地球物理学报 2001,44(3):429-435.
    [120] 马瑾,Moors,D E,Summers R 等.温度、压力、孔隙压力对断层泥强度及滑动性质的影响,地震地质,1985,7(1):15—24
    [121] 马胜利、马莲,高温高压卜石英、方解石断层带和摩擦滑动性状,地震学报,1987,10(1):90-97.
    
    
    [122].李建国,玉绳祖,张渤涛等.固体三轴高温高压下红河断裂带断层泥力学性质研究,地震地质;1987,9(1):61—71.
    [123] 王威、王绳祖、崔效锋.地壳温压条件下居庸关花岗岩/济南辉长岩的强度特性,现代地壳运动研究(4),地震出版社,北京:1989,163—168.
    [124] 安欧.岩石在不同温度下的形变蠕变和滞后,地震地质,1980,2(4):21-26.
    [125] 赵阿兴、王于潮、崇秀美等,地壳温压条件下济南辉长岩蠕变破坏的实验研究,见:中国岩石力学与工程学会高温高压岩石力学专业委员会编,第一届高温高压岩石力学学术讨论会论丈集,北京:学术期刊出版让,1988,67—74,
    [126] 全振民Quan Bai,Kohlstedt D L.橄榄石单晶体高温蠕变,地球科学,1993,18(1):11-19,
    [127] 金淑燕,孙天泽,徐实昆等..辉绿岩脆-塑性变形转化的高温高压实验研究[J].地球科学-中国地质大学学报,2000,6
    [128] 桑祖南,周永胜,何昌荣.辉长岩脆-塑性转化及其影响因素的高温高压实验研究[J].地质力学学报 2001(2).
    [129] Caldwell J A. The theoretical determination of the permeability tensor for jointed rock[C]. In. Proc. Symp. On percolation through Fissured Rock. T1(C). Int. Soc. Rock Mech. and Int. Assoc. Eng. Geol., Stuttgart. 1972. 1-6.
    [130] Simmons G and Richter D. Physics and Chemisting of Rock. Strers R G J Wiley. 1976: 105-137.
    [131] Hasan, S. E., Thermophysical Properties of Rock, 19th U. S. Symp. on Rock Mech, 1978, 210-213.
    [132] Hodgkinson D P, et al. Initial assessment of the thermal stresses around a radioactive waste depository in hard rock [J]. Annals of Nuclear Energy, 1980, 7: 541-552.
    [133] Long T C S, Remer J S, Wilson C R and Withwespoon P A. Porous media equivalents for networks of discontinuous fractures [J]. Water Resources Research, 1982, 18(3): 645-658.
    [134] Heuze, F. E. High-temperture Mechanical, Physical and Thermal Properties of Granitic Rocks, A Review, Int. J. Rock Mech. Min. Sci. and Geomech. Abstr. 1983,20(1):3-10.
    [135] Oda M. Permeability tensor for discontinuous rock masscs. [J]. Geoteclmique. 1982, 35(4): 483-495.
    [136] Oda M. Similarity rule of crack geometry in statisically homogeneous rock masses [J]. Mech Mater. 1984, 3(2): 119-129.
    [137] Oda M. Modern developments in rock structure characterization [J]. In: Comprehensive Rock Engineering. 1993, 1: 185-200.
    
    
    [138] Balberg I, Anderson C H, Alexander S. and Wagner N. Excluded volume and its relation to the onset of perolation [J]. Physical Review B. 1984, 30(7): 3933-3943.
    [139] Charlaix E, Guyon E and Rivier N. A criterion for percolation threshold in a random array of plates[J]. Solid State Communications. 1984, 50(11): 999-1002.
    [140] Bianchi L. and Snow D T Permeability of crystalline rock interpretsd from measurement orientation and apertures of fractures[J]. Annals of Arid Zone. 1986, 8(2): 231-245.
    [141] Charlaix E. Percolation threshold of a random array of discs: a numerical simulation {J}. J. Phys. A. 1986, 19(7): L533-L536.
    [142] Germanovich L N, et al. Percolation theory, Thermoelasticity, and discrete hydrothermal venting in the earth' s crust[]]. Science, 1992, 255(3): 1564-1566.
    [143] Martin J T, et al. On themoelasticity and silcica oprecipitation in hydrothermal systems: Numerical modelling of laboratory experiments [J]. Joural of Geophysical Research, 1997, 102(b6): 12095-12107.
    [144] A. Mokhtarzadeh and C. French, "Mechanical properties of high-strength concrete with consideration for precast applications", ACI Materials Journal, 2000, 97: 136-147.
    [145] Kanatani K. Procedure for stereological estimation of structure anisotropy. [J]. Int. J. ENG. Sci. 1985, 23(5): 587-598.
    [146] Atkinson B K, et al. Proc. 3rd Int: Conf On AE/Microselsmic Activity in Geologic Structures and Materials, Ed. By H R. Hardy & F W Leighton. 1984.
    [147] Alm O, et al. The influence of micro crack density on the elastic and fracture mechanical properties of stropa granite [J]. Physics of the Earth and Planetary Interiors, 1985, 40: 161-179.
    [148] Suzuki K and Takahashi M. A visualizing method of porss and cracks using filmy replica system. Journal of the JSEG [J]. 1994, 35(2): 31-32.
    [149] Suzuki K, Oda M, Kuwahara T and Hirama K. Material property changes of granitic rock under long-term immersion in hot water[J]. Engineering Geology, 1995, 40: 29-39.
    [150] Suzuki K, Oda M, Yamazaki M and Kuwahara T. Permeability changes in granitic with crack growth during immersion in hot water[J].Int. J. Rock Mech. Min. Sei. 1998, 35(7): 907-921.
    [151] 寇绍全,O,Alm.微裂隙和花岗岩的抗拉强度[J].力学学报,1987,19(4):366-373.
    [152] 林睦曾.岩石热物理学及其工程应用[M].重庆:重庆大学出版社,1991:.
    [153] 许锡昌,刘泉声.高温下花岗岩基本力学性质初步研究[J].岩土工程学报,2000,22
    
    (3)332-335.
    [154] 许锡昌,刘泉声.三峡高温下花岗岩基本力学性质初步研究[J
    [155] 张静华,王靖涛,赵爱国,高温下花岗岩断裂特性的研究[J],岩土力学,1987,8(4):11-16.
    [156] 王靖涛,赵爱国,黄明昌,花岗岩断裂韧度的高温效应[J],岩土工程学报,1989,11(6):13-118.
    [157] 张晶瑶,马万昌,张风鹏,高温条件下岩石结构特征的研究,东北大学学报,1996,17(1):5-9.
    [158] 刘泉声,许锡昌.温度作用下脆性岩石的损伤分析[J].岩石力学与工程学报 2000,4
    [159] 刘泉声,许锡昌,山口勉.三峡花岗岩与温度及时间相关的力学性质试验研究[J].岩石力学与工程学报 2001,5
    [160] 刘泉声,王崇革.岩石时—温等效原理的理论与实验研究,第一部分:岩石时-温等效原理的热力学基础,岩石力学与工程学报,2002,21(2):193-198.
    [161] 王颖轶,张宏君,黄醒春等.高温作用下大理岩应力—应变全过程的试验研究[J],岩石力学与工程学报,2002,21(增2):2345~2349.
    [162] 黄炳香,邓广哲,王广地.温度影响下北山花岗岩蠕变断裂特性研究[J].岩土力学 2003
    [163] Johnson B., Gangi A F. Handin J. Thermal cracking of rock subject to slow, uniform temperature changes. Proc 19th US Symp. Rock Mech., 1978. 259-267.
    [164] Wang H F, B Bonner. Thermal stress cracking in granite. Journal of Geophysical Research, 1989, 94(B2):1745-1758.
    [165] Simpson C. Deformation of granitic rocks across the brittle-ductile transition. J. Struct Geol,1985,7:503-511.
    [166] Booker J R and Savvidou C. Consolidation around a point heat source. Int: J. Numerical Analytical Meth Geomech. 1985,9:173-184.
    [167] E. Ayotte, B. Massicotte, J. Houde and V. Gocevski, "Modeling the thermal stresses at early ages in a concrete monolith" , ACI Materials Journal, 1994, 94: 577- 587.
    [168] C.-X. Huang, "The three dimensional modelling of thermal cracks in concrete structure", Materials and Structures, 1999,32: 673-678.
    [169] 寇绍全.热开裂损伤对花岗岩变形及破坏特性的影响[J].力学学报,1987,19(6):550-556.
    [170] 陈颙,吴晓东,张福勤,岩石热开裂的实验研究,科学通报,1999,4(8):880-883.
    [171] 周克群、楚泽涵、张元中等,岩石热开裂与检测方法研究,岩石力学与工程学报,2000,19(4):412~416.
    [172] 许锡昌.花岗岩热损伤特性研究[J].岩土力学,2003.
    
    
    [173] 重庆大学,南京航空学院合编.弹性力学基础[M] 重庆.重庆大学出版.1980.
    [174] Jaeger J. C. and Cook N. G. W. Fundamentals of Rock Mechanics. Methuen [M]. London, 1969.
    [175] Brady B. H. G, Broun, E. T, Rock Mechanics [M]. London: Chapman & Hall.1993.
    [176] 奥特科里 V S,拉马 K D,萨鲁加 S S.岩石力学性质手册(第一册)[M].水利水电岩石力学情报网(译).北京:水利出版社.1980.
    [177] 张清,杜静.岩石力学基础[M].北京:中国铁道出版社.1987.
    [178] 周维恒.高等岩石力学[M],北京:水利电力出版社.1990.
    [179] Scheidegger A E. The Physixs of flow through porous media [M]. University of Toronto Press. 1957.
    [180] 钱伟长.弹性理论[M].北京:科学出版社,1980.
    [181] 铁摩辛柯 吉地尔著.弹性理论[M].徐芝纶译.北京:高等教育出版社.1990.
    [182] 浙江大学数学系高等数学教研组编[M],概率论与数理统计.北京:人民教育出版社,1979.3.
    [183] M N 奥齐西克,热传导[M](中译本,俞昌铭主译),北京,高等教育出版社,1983.
    [184] Nowinski J N. Theory of Thermoelasticity With Applications[m]. New York: Sijhoff & Noordhoff Intemational Publishers, 1978, 135-141.
    [185] Biot M A. Themoelasticity and irreversible themodynamics [J]. Journal of Appl Phys, 1956, 27(3): 240-253.
    [186] Verruijt A. The completeness of Biot's solution of the coupled themoelastic problem [J]. Quart Appl Math, 1969, 26(4): 485-490.
    [187] [日]竹内洋一.热应力[M].廷玮译.北京:科学出版社.1977.
    [188] Boley B. A. Theory of Thermal Stresses. Wiley, New Yock, 1960.
    [189] P. P. Benham and R. Hoyle, Thermal Stress, (Sir Isaac Pitman & Sons Ltd, 1964).
    [190] 严宗达,王洪礼.热应力[M].北京:高等教育出版社.1993.
    [191] Zimmerman R W. Coupling in poroelasticity and thermoelasticity [J] Int. J. Rock Mech. Min. Sci. 2000; 37: 84-87.
    [192] Rehbinder G. Analytical Solutoins of stationary coupled thermo-hydro-mechanical problems [J]. Int. J. Rock. Mech. Min. sci. & Geomech.Abstr 1995,32(5):453-463. [185] Kendall M G and Moran P A P. Geometrical Probability[M]. Hanfner, New Yory. 1963.
    [193] 复旦大学数学系主编.数学物理方法[M].北京.人民教育出版社.1979.
    [194] 徐曾和.渗流的流固耦合问题及应用[C](博士论文).东北大学,2000.
    [195] 王勖成.有限单元法[M].北京:清华大学出版社.2003.
    [196] 朱伯芳.有限单元法原理与应用[M],北京:水利电力出版社。1978.
    [197] Sandu R S, Wilson E L. Finite element analyent of seepage in elasic media [J].
    
    J. Eng. Mech. Div, ASCE, 1969,(EM3):641-646.
    [198] D. Kolditz. modeling flow and head transfer in fractured rocks; conceptual model of a 3-d determ inistic fracture net work [J]. Geothermics, 24(3),451-470.
    [199] T. K[oh].K. F. Evans. R. Jhopkirk and L. Ryback. Couplod hydraulic thermal and mechanical considerations for the simulation of hot dry rock reservoirs [J]. geothermics, 24(3),345-359.
    [200] 郑锡荣(编译)地热开采.太阳能工程学报[J].1996(2),22-23。
    [201] 赵阳升.高温岩体地热开发的岩石力学问题[C],中国第六届岩石与工程学术大会论文集.武汉:科学技术出版社 2000(1),361-364.
    [202] 赵阳升.高温岩体地热开发导论[M].科学出版社,2004.
    [203] 赵阳升,王瑞风,胡耀青等.高温岩体地热开发的块裂介质固流热耦合三维数值模拟[J],岩石力学与工程学报,2002,21(12):1751-1755.
    [204] 王瑞凤,赵阳升,胡耀青.高温岩体地热开发的固流热耦合三维数值模拟[J].太原理工大学学报 2002,33(3):275-278.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700