用户名: 密码: 验证码:
冻土带天然气水合物科学钻探参数检测系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然气水合物被各国科学家公认为是具有良好前景的重要后续能源。天然气水合物的形成与贮存条件比较特殊,需要低温高压的环境,它的勘探开发技术不仅与常规能源不相同,而且在海洋中和陆地上对水合物的勘探开发技术也不相同。
     钻探取样是天然气水合物资源勘探的重要环节,对于获得水合物并准确评估水合物储量具有重要作用,是研究水合物最直接、可靠和有效的方法。天然气水合物形成和存在于低温高压的特殊环境中,其钻探工艺也与常规地质钻探不同,要根据水合物地层的特点和钻探条件,制定符合水合物科学钻探特点的钻探规程。因此,需要在科学钻探过程中准确检测钻探工艺参数,通过钻探工艺参数的归纳总结,最终得到天然气水合物科学钻探规程。
     本文针对天然气水合物科学钻探过程的需要和规律,研制了冻土带天然气水合物科学钻探参数检测系统。整个检测控制系统采用两级分布式控制结构,第一级为上位工控机,第二级为下位机,由各种传感器组成。
     首先对钻探参数检测系统进行了硬件设计。确定了确定需要检测的27个参数:孔深、钻速、大钩载荷、钻压、立轴转速、回转扭矩、泥浆泵压力、电机功率、泥浆泵流量、循环泥浆体积、循环泥浆增减量、泥浆总体积、#1箱体积、#2箱体积、#3箱体积、井口可燃气体浓度、2#可燃气体浓度、进井泥浆温度、出井泥浆温度、泥浆制冷进口温度、泥浆制冷出口温度、进尺长度、传动轴转速、钻压油压A、钻压油压B、电机电流和电机电压。,并针对不同的参数进行了传感器的选型,选择了10种传感器进行检测。传感器有油压传感器、接近开关传感器、流量传感器、拉绳传感器、电流传感器、气体浓度传感器、功率变送器、超声波液位传感器、温度传感器、拉力传感器。介绍了各种传感器所要测量的参数、工作原理、工作过程和工作方式。此外对上位工控机的进行了硬件设计,主要有硬件结构,硬件配置以及硬件安装要求。由于系统使用环境恶劣,还对检测系统硬件在温度、湿度、日照适应性,防爆技术,信号抗干扰技术,断电、过压、过流、欠压保护技术,抗震、防腐技术的等方面进行了研究。
     然后对钻探参数检测系统进行了软件设计。钻探参数检测系统软件基于Windows操作系统设计,利用微软的Visual BASIC可视化开发工具开发。对系统的软件架构、软件的编制与算法实现、软件干扰滤波算法、数据存储于数据库应用、软件功能设计、打印软件6个方面进行了设计。最终系统软件包含了数据采集和人机界面两部分。通过数据采集软件的设计,保证了数据采集的精度,速度,对采集的参数数值通过各种数值滤波计算保证参数的可靠性、准确性、真实性;通过对人机界面的设计,使界面简单、易懂,方便设置,并能实现了数据存储、查询、回放及打印的功能。
     本文研制的钻探参数检测系统是针对MK-2冻土带天然气水合物科学钻探井工程的,对MK-2科学钻探井工程的自然地理条件、地表资料和地质情况进行了介绍。依据地质地层情况对对MK-2进行了工程设计,钻孔深度为2300m,终孔直径为Φ77.5,mm,孔身结构为4开,全孔取心,采用绳索取心钻具。对于钻探设备进行了选择,采用HXY-8型钻机,SG-24型钻塔,井控系统以及一系列的配套设备,对天然气水合物泥浆制冷系统的组成、工作原理以及实际的应用效果进行了介绍。特别对钻探参数检测系统在MK-2中的使用情况进行了介绍,包括对现场的安装情况,使用情况,各个参数检测的实际意义进行了叙述。
     对冻土带天然气水合物钻探参数检测系统在MK-2科学试验井野外试验取得的数据进行分析研究。主要的分析参数有八个:转速、钻进速度、钻压、扭矩、泥浆泵量、泥浆泵压、可燃气体含量和泥浆温度。研究各个参数在钻进过程中出现的问题及其原因。在钻探过程中,通过可燃气体的检测,预测了含气异常的层位;通过泵压的实时检测,避免了钻杆断裂事故造成重大影响;通过结合班报表和地层资料,研究了地层与转速、钻压之间的关系。还对各个参数之间的相互影响,相互关系进行研究。
     通过使用对整个检测系统在野外的实际应用效果做出了的评价:钻探参数检测系统结构合理、测量快速准确、工作稳定可靠,完全可以优质高效的完成天然气水合物钻探过程中钻探参数的检测工作,为科学钻探提供可靠的保障。
Natural gas hydrate is recognized as one of the important follow-up alternativeenergy with a good prospect by scientists from all over the world. Under specialformation and storage conditions, that is, high pressure with low temperature, theexploration and development technology of natural gas hydrate are different from thatof conventional energy, which is also different in the ocean and land.
     Drilling sampling is a very important part in the exploration of natural gashydrate, and plays an important role to evaluate accurately for hydrate reserves, whichis the most direct, reliable and effective way to study hydrates. However, formed andexisted in the special environment of high pressure in low temperature caused that thenatural gas hydrate drilling process is different from conventional geological drilling,which should formulate the special drilling regulation accord with the characteristicsof hydrate formation and scientific drilling condition. Therefore, we need to detectaccurately drilling process parameters in the process of scientific drilling, andconclude and summarize the drilling process parameters to got gas hydrate scientificdrilling regulation.
     In this paper, gas hydrate scientific drilling parameters monitoring system isdeveloped according to the need and law of scientific drilling process of natural gashydrate. The control system of this detection system composes of various sensors andadopts two level distributed control structures; the first level is the upper industrialcontrol, and the second is the down machine.
     First, the hardware of the system of drilling parameters monitoring is designed.The need to detect of27parameters is determined, they are hole depth, drilling rate,hook load, bit pressure, spindle speed, rotary torque, Mud pump pressure, motorpower, Mud pump flow, circulating mud volume, circulating mud quality changevalue, mud volume,#1box volume,#2box volume,#3box volume, combustiblegas concentration,2#combustible gas concentration, inlet mud temperature, outlet mud temperature, inlet mud cooling temperature, outlet mud cooling temperature,penetration length, drive shaft speed, drilling pressure and hydraulic A, drillingpressure and hydraulic B, motor current and motor voltage.And in view of thedifferent parameters, the sensors are selected, we choose the10kinds of sensor fortesting. The sensors including oil pressure sensor, proximity switch, flow sensor, pullon the rope sensors, current sensors, gas concentration sensor, power transducer,ultrasonic liquid level sensor, temperature sensor, tension sensor. Introducing thevarious sensors, it including measure the parameters, working principle, workingprocess and working methods of the sensors. In addition to we design industrialcomputer hardware, including the main hardware structure, hardware configurationand hardware installation requirements. Because of the system using environmentbadly, we research the system hardware adaptation, in difference temperature、humidness and sunlight, explosion-proof technology, signal anti-jamming technology,conservation technology about power cuts, over-voltage, over-current andunder-voltage,earthquake proofing technique and aseptic technology, and so on.
     Then we carried out software design for the drilling parameters monitoringsystem. The drilling parameters monitoring system is designed on the basis ofWindows operating system, and developed with the help of Microsoft's Visual BASICvisual development tools. To complete the final design requirements based on theresearch of six aspects: software architecture of the system, formulation and algorithmrealization of the software, interference filter algorithm of the software, application ofdata stored in the database, software function design, printing software. Systemsoftware include two parts of data acquisition and man-machine interface. Designrequirements for acquisition software: can ensure the acquisition precision, speed, andensure the authenticity, accuracy, reliability of parameters through various numericalcalculation of numerical data acquired; and for man-machine interface: that requirethe interface is simpler, easy to understand, easy setting and can achieve a variety offunctional requirements. Data storage need to be convenient query, playback andprinting.
     The drilling parameters monitoring system in this paper was designed for MK-2 Scientific Drilling Project to find permafrost gas hydrate. The physical geographycondition, surface surveys and geological condition of MK-2Scientific DrillingProject was also introduced. Project design for MK-2was based on the geologicalstratigraphy, MK-2depth was2300m and the end borehole diameter was77.5mm, thecoring for the whole hole is carried by wire-line coring. As to drilling equipment, weused the HXY-8-type drill rig, SG-24-type derrick, well control system and a series ofits auxiliary equipment. The system composition, working principle and actualapplication result of mud cooling system for gas hydrate core drilling was illustrated.The drilling parameters montoring system used in the MK-2project was especiallyexpatiated, including installation situation on site, service condition and meaningful ofall monitoring parameters.
     The field test data obtained at MK-2science test well are analyzed by gashydrates drilling parameters monitoring system, including rotate speed, drilling speed,drilling pressure, torque, mud pump, mud pumping pressure, combustible gas contentand mud temperature. And the drilling problems of the various parameters and itsreason are studied. In the process of drilling, the abnormal gas bearing strata arepredicted through the combustible gas detection; the pipe broken accident are avoidthrough the real-time detection of pump pressure; and the relationship betweenformation and rotate speed and drilling pressure are studied by combining statementsand stratigraphic data. Moreover, the mutual influence and the relationship betweeneach parameter are study.
     The basic evaluation of the parameters monitoring system was given based on itsactual application result in the field, which included well-constructed, fast and rightwhen monitoring and stable and reliable operation. So it can complete the monitoringjob for drilling parameters high quality and efficiency, provide reliable guarantee forScientific Drilling Project.
引文
[1] Al-Fattah S M,Startzman R A.Forecasting World Natural Gas Supply[J].JOURNAL OF PETROLEUM TECHNOLOGY.2000,52:62-72
    [2]雷怀彦,王先彬,房玄,郑艳红.天然气水合物研究现状与未来挑战[J].沉积学报.1999(03)
    [3] Beneley R W.Global Oil&Gas Depletion:an Overview[J].Energy Policy,2002;189-205
    [4] COLLETT T S, DALLIMORE S R. Permafrost-related natural gas hydrate[C]∥Max M D.Natural gas hydrate in oceanic and permafrost environments. TheNetherlands:Kluwer Academic Publishers,2000:43-60
    [5]王佟,王庆伟.我国陆域天然气水合物勘查技术理论与实践[J].煤炭科学技术,2012,10:27-29+60.
    [6]张洪涛,张海启,祝有海.中国天然气水合物调查研究现状及其进展[J].中国地质,2007,06:953-961.
    [7]翟文涛.复合钻进条件下钻进参数优选方法研究[D].北京.中国石油大学.2007
    [8]滕子军.用钻进参数仪实时优化钻进参数[J].探矿工程.2000.04:46-47
    [9]贾瑞,孙友宏,郭威,刘华南.东北冻土区天然气水合物科学钻探试验及钻进效率影响因素分析[J].探矿工程(岩土钻掘工程),2013,04:6-9
    [10]金庆焕.天然气水合物-未来的新能源[J].中国工程科学,2000,(11):29~34
    [11]许红,黄君权,夏斌,蔡乾忠.最新国际天然气水合物研究现状与资源潜力评估(上)[J].天然气工业,2005,05:21-25+3
    [12]梁学进.天然气水合物开采模拟实验方法研究[D]中国石油大学.2008
    [13] Collins M J, Ratc;liffe C I, Ripmeester J A, Nuclear magnetic;resonancestudies of guest species inclathrate hydrates: line hape anisortopieschemical shift,and the determination of cage occ;upanc;yratios and hydrationnumber[J].J. Phys. Chem,1990,94(1):157.
    [14] Holder G D, Zele S, Enic;k R, et rvl.,Modeling thermodynamic;s and kineticsof hydrate formation[A]. nt. Conf. on Nat. Gas Hydrates[C]1st, New YorkAcademy of Seience,1994,715:344.
    [15]钱伯章,朱建芳.天然气水合物:巨大的潜在能源[J].天然气与石油,2008,26(4):47-52.
    [16]李桂菊,庄新国.天然气水合物资源潜力评价[J].海洋地质动态,2004,20(10):19-22.
    [17]刘广志.天然气水合物开发的现状和商业化的技术关键[J].探矿工程(岩土钻掘工程),2003,(2):8-10.
    [18]刘玉山,祝有海,吴必豪.天然气水合物——21世纪的新能源[J].矿床地质,2012, v.3102:401-405.
    [19]雷怀彦,王先彬,郑艳红等.天然气水合物地质前景[J].沉积学报,1999,17(S1):846-852.
    [20] Rodger, The stability of gas hydrates [J].Phys.Chem,1990(94):6080
    [21] Hendriks, E.M., B.Edmonds, R.A.S.Moorwood, Gas Hydrate Structure Stabilityin simple and mixed hydrates [J].Fluid Phase Equilibrium,1996,117:193~200
    [22]郭威.天然气水合物孔底冷冻取样方法的室内试验及传热数值模拟研究[D].吉林大学,2007.
    [23]蒋国盛,王荣璟,黎忠文,汤凤林等.天然气水合物的钻进过程控制样技术[J].探矿工程,2001(3):33~35
    [24]李宽.冻土区天然气水合物蒸汽法开采系统数值模拟与野外试验[D].吉林大学.2012
    [25]张卫东,王瑞和,任韶然等.由麦索雅哈水合物气田的开发谈水合物的开采[J].石油钻探技术,2007,35(4):94-96
    [26]陈志豪,吴能友.国际多年冻土区天然气水合物勘探开发现状与启示[J].海洋地质动态,2010,11:36-44.
    [27] Collett T S, Lewis R, Dallimore S R,et al.Detailed evaluation of gas hydratereservoir properties using JAPEX/JNC/GSC Mallik2L-38gas hydrate researchwell downhole well-log displays[C]∥Dallimore S.R, Uchida T, Collett TS.Scientificresults from JAPEX/JNC/GSC Mallik2L-38gas hydrateresearch well,Machenzie Delta, Northwest Territories,Canada,Ottawa:Canadian GovernmentPublishing Centre,1999:295-311.
    [28] Fischer P A.Gas hydrates research continues to increase[J].World Oil,2000,221(12):66-68.
    [29]龚建明.M allik天然气水合物国际研讨会综述[J].海洋地质动态,2004,20(2):28-31
    [30]祝有海.加拿大马更些冻土区天然气水合物试生产进展与展望[J].地球科学进展,2006,21(5):513-520
    [31]张金昌.天然气水合物勘探开发:从马里克走向未来——加拿大北极地区天然气水合物勘探开发情况综述[J].地质通报,
    [32]吴茂炳,王新民,李在兆.天然气水合物的形成分布特征及其开发前景[J].中国石油勘探,2003,8(2):75-78
    [33] Williams T E, Millheim K,King B.Methane hydrate production from Alaskanpermafrost: Technical progress report[EB/OL]. http:∥www. osti.gov/energycitations/servlets/purl/828282-kfvMhc/native/828282.pdf.
    [34] Jung J W,Santamarina J C.CH4-CO2replacement in hydrate-bearingsediments:A pore-scale study[J].Geochemistry,Geophysics,Geosystems,2010,11(12)
    [35] U.S. National Energy Laboratory (NETL).Gas hydrate production trial usingCO2/CH4exchange[EB/OL].http://www.netl.doe.gov/technologies/oil-gas/FutureSupply/MethaneHydrates/projects/DOEProjects/MH_06553HydrateProdTrial.html.
    [36] U.S. National Energy Laboratory (NETL).2012Ignik Sikumigas hydrate fieldtrial [EB/OL].(2012-05-07). http://www.netl.doe.gov/technologies/oil-gas/FutureSupply/MethaneHydrates/rd-program/ANSWell/co2_ch4exchange.html
    [37] Ignik Sikumi Gas Hydrate Exchange Trial Project Team.Ignik Sikumi gashydrate field trial completed[J].Fire In The Ice,2012,12(1):1-3.
    [38]李加国.钻井参数仪的现状及发展趋势[J].汉江石油职工大学学报,2009,(4):31~32.
    [39]唐德才.钻参仪在反馈地质信息方面的重要作用[J].中国煤田地质.1996(04)
    [40]胡郁乐,科学深钻岩心钻探钻进参数随钻检测与监控系统的研究[J],工程地球物理学报,2011,(8):122.
    [41]郭静.钻井工程实时多参数监测系统[D].重庆大学,2001.
    [42]祁化龙.现场总线传感器系统互操作性研究[D].北京化工大学,2007.
    [43]赵奎.现场总线互操作性及其应用研究[D].北京化工大学,2005
    [44] Richard C.Dorf,Robert H.Bishop.Modern Control Systems(Ninth Edition)Pearson Education,2001:695~702
    [45]董云鹏.欠平衡钻井监测分析系统的研究与实现[D].哈尔滨工程大学,2009.
    [46]陶青龙,甄建,李特,王丽娟. DML钻井参数仪[J].石油科技论坛,2011,03:56-58+71.
    [47]卢春华,张冰,鄢泰宁,方俊. CUG-2高精度钻参仪及其在深孔生产中的应用[J].工矿自动化,2011,02:16-20.
    [48]焦阳.钻机参数监测仪的研制[D].吉林大学,2006.
    [49]朱俊锋.钻井多参数仪传感器模块设计[D].华中科技大学,2007
    [50]夏柏如. SCC钻进系统和最优化控制钻进的试验与研究[D].中国地质大学(北京),1988.6:1~45
    [51]何俏君.50KW燃料电池发电机组状态监测与控制系统[D].华南理工大学,2010.
    [52]陆明霞.引用黄河水源工程中自控参数控制过程的设计与研究[D].山东大学,2006
    [53]张成功.钻井工程监控管理系统研究[D].西南石油大学,2006
    [54]覃永平.新型石油钻井多参数仪的研制[D].华中科技大学,2007
    [55]吉林工业大学等编写.工程机械液压与液力传动(上册)[M].机械工业出版社,1979.6:192~233
    [56]吉林工业大学等编写.工程机械液压与液力传动(下册)[M].机械工业出版社,1979.6:1~17
    [57]许福玲,陈尧明.液压与气压传动[M].北京:机械工业出版社,2001.4:24~30,132~151
    [58]孔晓武.带长管道的负载敏感系统研究[D].浙江大学,2003.6:17~20,84~103
    [59]董光源.负荷传感控制液压系统[J].工程机械,1995(1):20~38
    [60]孙增圻等著.智能控制理论与技术[M].清华大学出版社,广西科学技术出版社,2002.9:1~14,52~81
    [61] Antsaklis P J. Intelligent learning control[J]. IEEE Control Systems,1995,15(3):5~8
    [62] Henke R W. Evolution of load-sensing hydraulics[J]. Diesel ProgressInternational Edition,1998,17(4):53~55
    [63]曹金亮.多参数电磁流量计及其实现技术的研究[D].上海大学,2007
    [64]孙增圻,张再兴.智能控制的理论与技术[J].控制与决策,1996,11(1):1~7
    [65] Yao B,Chris D. Energy-saving adaptive robust motion control of single-rodhydraulic cylinders with programmable valves.[C] In:Proc.of theAmericanControl Conference,Anchorage,AK.2002,5:4819~4824
    [66]沈祖冀.大功率交流稳流电源的研制[J].天津师大学报(自然科学版),2000,04:15-19.
    [67]陶洪山.大功率交流稳流源的研制[D].浙江大学,2004.
    [68] Marc E M. Control of mobile hydraulic cranes[C]. In: Proc.of first FPNI-PhDsymposium,Hamburg.2000,9:475~483
    [69]姜培刚.在线红外气体分析器的发展及工程应用研究[J].分析仪器,2009,06:77-86
    [70]常健生主编.检测与转换技术(第2版)[M]北京:机械工业出版社,2000.5:129~167
    [71]中国计量出版社组编.测量与传感电路.中国计量出版社,2001.5:1~10,59~73
    [72]杨欣,王玉凤等.电子设计从零开始.清华大学出版社,2005.10:329~334
    [73]裘雪红,顾新等.微型计算机原理及接口技术.西安电子科技大学出版社,2001.8:173~221
    [74]陆嘉.基于PLC的乳化液泵智能监控系统研制[D].西南交通大学,2009.
    [75]孙海霞.ZX智能巡检管理系统的防爆设计[D].天津大学,2007.
    [76]杜刚.基于CAN总线的防爆远程I/O系统设计及硬件实现[D].上海交通大学,2009.
    [77]孙庚山,兰西柱著.工程模糊控制.机械工业出版社,1995.11:88~211
    [78]何平,王鸿绪著.模糊控制器的设计及应用.科学出版社,1997.1:140~209
    [79]张化光,何希勤等.模糊自适应控制理论及其应用.北京航空航天大学出版社,2002,7:18~52
    [80]佟绍成,王涛等.模糊控制系统的设计及稳定性分析[M]科学出版社,2004,4:22~45
    [81]包建勇.称重传感器的干扰来源及解决方法[J].衡器,2010,05:35-39.
    [82]王爱玲.钻井安全装置的现状及其发展方向探讨[J].安全,2013,04:18-20.
    [83]杨斌文.矿井通风机房监控系统设计中的几个问题[J].科技情报开发与经济,2008,25:179-180.
    [84]编程高手工作室编. Visual Basic编程高手.[M],北京希望电子出版社,2001,2:171~176
    [85]郭富东.基于CAN总线的钻井多参数测量系统开发[D].北京化工大学,2007
    [86] K.Dasgupta,R.Karmakar. Dynamic analysis of pilot operated pressure reliefvalve[J]. Simulation Modelling Practice and Theory,2002(10):35~49
    [87] K.Dasgupta,J.Watton. Dynamic analysis of proportional solenoid controlledpiloted relief valve by bondgraph[J]. Simulation Modelling Practice and Theory,2005(13):21~38
    [88]刘海波.轴角同步采集及在舵伺服系统应用研究[D].哈尔滨工程大学,2009.
    [89] Bora Eryilmaz,Bruce H.Wilson. Unified modeling and analysis of a proportionalvalve[J]. Journal of Franklin Institute,2006(343):48~68
    [90](美)Evangelos Petroutsos.邱仲潘等译. Visual Basic6从入门到精通[M]电子工业出版社,1999,1:494~479
    [91]赵毅,牟同升,沈小丽.单片机系统中数字滤波的算法[J].电测与仪表,2001,06:5-8.
    [92]冯玲.基于C8051F005无线电高度表检测仪的研制[D].南京航空航天大学,2008.
    [93]李洪兴.模糊控制的插值机理.中国科学(E辑),1998,28(3):259~267
    [94]海玉,陈军,钱献芬.一种单片机数据采集系统的数字滤波器设计[J].信息技术,2012,09:175-177.
    [95]续蕾.浅谈.NET框架下数据库编程[J].科技信息(科学教研),2007,33:396-397.
    [96]黄培泉.基于.NET与EasyUI的工资查询系统的设计与实现[J].福建电脑,2013,04:104-106.
    [97]鄢景华著.自动控制原理[M]哈尔滨工业大学出版社,1996.5:52~79
    [98]于海生.微型计算机控制技术[M]清华大学出版社,1999.3:81~95
    [99]张强.漠河盆地MK-1与MK-2井天然气水合物钻探施工关键技术[D].吉林大学,2012.
    [100]于磊,赵大军,孙友宏,张永勤,郭威,贾瑞,段会军.漠河冻土地区天然气水合物钻探施工技术[J].探矿工程(岩土钻掘工程),2011,06:13-16
    [101]刘玉民,赵大军,郭威,孙友宏,白奉田,贾瑞,杨虎伟.水合物钻探低温泥浆制冷系统实验及理论[J].吉林大学学报(地球科学版),2012,S3:301-308.
    [102]陈大勇,陈晨,冯雪威.漠河盆地天然气水合物钻探施工中的泥浆冷却系统及其应用[J].地质与勘探,2011,04:705-709.
    [103]赵江鹏.天然气水合物钻控泥浆制冷系统及孔底冷冻机构传热数值模拟
    [D].吉林大学,2011

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700